首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chromatographic methods have been used to purify the DNA of plasmid RP1. DNA was purified in two stages. DNA was precipitated by ethanol and separated from RNA and proteins in Sepharose 4B column after lysis of plasmid containing cells by alkaline solution of sodium dodecylsulphate. Separation of the total DNA preparation and isolation of plasmid DNA was achieved at the second stage by chromatography on the hydroxyapatite column. The resulting purified plasmid DNA was free of RNA, protein and linear fragments of chromosomal DNA. The plasmid DNA kept intact native structure and possessed the transforming activity. The DNA of RP1 yield after purification by the described technique presented 70-80 micrograms per g of wet biomass.  相似文献   

2.
In this paper we show that restriction DNA fragments can prime DNA synthesis of a homologous supercoiled plasmid DNA. Using the dideoxyribonucleotide chain terminator method, newly synthesized truncated chains can be detached from the primers by restriction enzyme digestion. Therefore, by choosing DNA fragments flanked by two different restriction enzymes sites, nucleotide sequence information can be simultaneously obtained on both regions of the DNA surrounding the restriction fragment. The advantage of this sequencing approach over current methods is that no prior knowledge of the primary sequence is needed to find the nucleotide sequence of a given DNA fragment. Thus, synthetic primers are not required and internal sequences of a given clone can be easily accessed without the need of fragmenting the original construct. The method has been used with rapid plasmid preparations, thus considerable time and effort can be saved in the gathering of nucleotide sequence information.  相似文献   

3.
Purification of supercoiled DNA of plasmid col E1 by RPC-5 chromatography   总被引:2,自引:0,他引:2  
Col E1 DNA can be purified to a high degree by RPC-5 chromatography of a partially purified cell lysate with a very shallow linear NaCl gradient at pH 7.8. Electron micrographs demonstrated that the purest fractions were composed of 93% supercoiled (form I) DNA and 7% open circular (form II) DNA. The actual chromatography can be accomplished in 13–14 h and is designed for the production of several milligrams of plasmid DNA.  相似文献   

4.
Small particles of metallic tungsten, known also as tungsten microprojectiles, are routinely used for biotechnological purposes. In such applications, tungsten was observed to affect the integrity of plasmid DNA. Here we present evidence that interaction between tungsten particles and intact circular plasmids pU19, pUC119, and ColE1 may result in generation of a limited number of single-strand DNA breaks. As a consequence, supercoiled DNA is converted into its open circular form and no fragmentation products can be detected. The rate of the tungsten-mediated reaction depends on pH but is not influenced by ascorbate, Tris, or EDTA. No DNA nicking can be observed when the tungsten particles are replaced by substances that can be leached out from these particles with water or incubation buffers. Likewise, commercial sodium tungstate, tungsten (VI) oxide, and tungsten (VI) chloride and products of its decomposition remain DNA undamaged. Native plasmid DNA molecules, upon adsorption on the surface of tungsten microparticles, may undergo some nicking without a need for participation of external catalysts.  相似文献   

5.
Proteins that recognize and bind specific sites in DNA are essential for regulation of numerous biological functions. Such proteins often require a negative supercoiled DNA topology to function correctly. In current research, short linear DNA is often used to study DNA–protein interactions. Although linear DNA can easily be modified, for capture on a surface, its relaxed topology does not accurately resemble the natural situation in which DNA is generally negatively supercoiled. Moreover, specific binding sequences are flanked by large stretches of non-target sequence in vivo. Here, we present a straightforward method for capturing negatively supercoiled plasmid DNA on a streptavidin surface. It relies on the formation of a temporary parallel triplex, using a triple helix forming oligonucleotide containing locked nucleic acid nucleotides. All materials required for this method are commercially available. Lac repressor binding to its operator was used as model system. Although the dissociation constants for both the linear and plasmid-based operator are in the range of 4 nM, the association and dissociation rates of Lac repressor binding to the plasmid-based operator are ∼18 times slower than on a linear fragment. This difference underscores the importance of using a physiologically relevant DNA topology for studying DNA–protein interactions.  相似文献   

6.
A method for quantifying the proportion of supercoiled circular (SC) forms in DNA solutions is described. The method (SCFluo) takes advantage of the reversible denaturation property of SC forms and the high specificity of the PicoGreen fluorochrome for double-stranded (ds)DNA. Fluorescence values of forms capable of reversible denaturation after a 5 min heating, 2 min cooling step are normalised to fluorescence values of total dsDNA present in the preparation. For samples with a SC content >20–30%, good regression fits were obtained when values derived from densitometric scanning of an agarose gel and those derived from the SCFluo method were compared. The method represents an attractive alternative to currently established methods because it is simple, rapid and quantitative. During large-scale processing and long-term storage, enzymatic, chemical and shear degradation may substantially decrease the SC content of plasmid DNA preparations. Regulations for pharmaceutical grade products for use in gene therapy and DNA vaccination may require >90% of the plasmid to be in the SC form. In the present study the SC content of 6.9, 13 and 20 kb plasmid preparations that had been subjected to chemical and shear degradation was successfully quantified using the new method.  相似文献   

7.
Supercoiled plasmid DNA was selectively purified from its open circular form by thiophilic interaction chromatography, performed in the presence of high concentrations of water-structuring salts. To identify optimal conditions for purification, various aromatic thioether ligands were coupled to a chromatographic support and screened for their ability to separate plasmid isoforms from each other and from other host cell contaminants, including RNA, genomic DNA, protein, and endotoxins. Selectivity of the chromatographic medium depended on the structure of the ligands, with characteristics of the substituents on the aromatic ring determining the resolution between the different plasmid DNA isoforms. Optimal resolution was obtained with ligands consisting of an thioaromate, substituted with highly electronegative groups. When 2-mercaptopyridine was used as a ligand, the difference in conductivity for eluting open circular and supercoiled plasmid DNA is only 6 mS/cm. However, with 4-nitrothiophol the resolution for plasmid DNA separation on the media increased, resulting in a 20 mS/cm difference. When used in combination with a prior group separation step, these aromatic thioether ligands facilitated the isolation of highly purified supercoiled plasmid DNA, suitable for use in gene therapy and DNA vaccine applications.  相似文献   

8.
Supercoiled plasmid DNA is susceptible to fluid stress in large-scale manufacturing processes. A capillary device was used to generate controlled shear conditions and the effects of different stresses on plasmid DNA structure were investigated. Computational fluid dynamics (CFD) analysis was employed to characterize the flow environment in the capillary device and different analytical techniques were used to quantify the DNA breakage. It was found that the degradation of plasmid DNA occurred at the entrance of the capillary and that the shear stress within the capillary did not affect the DNA structure. The degradation rate of plasmids was well correlated with the average elongational strain rate or the pressure drop at the entrance region. The conclusion may also be drawn that laminar shear stress does not play a significant role in plasmid DNA degradation.  相似文献   

9.
Production of nucleic acids as an active pharmaceutical ingredient (API) in gene therapy and genetic vaccination is gaining more and more importance. Non-viral vectors like plasmid DNA are currently investigated in various clinical trials. Supercoiled multimeric plasmids are of particular interest for pharmaceutical purpose because they contain multiple copies of a therapeutic gene and can therefore be more efficient vectors. A process for the preparation of Escherichia coli strains replicating dimers, trimers, and tetramers of a 4.6 kb plasmid is presented. Cultivation of these clones on semi-defined glycerol medium in a 7 l bioreactor shows structural stability of dimers and trimers during the whole cultivation process. Plasmid concentrations and selectivities are compared to the corresponding cultivation with the plasmid monomer. Cultivation of the tetramer replicating strain shows a disintegration of the plasmid multimer and reconstitution of the monomer and smaller multimers.  相似文献   

10.
Gene therapy and DNA vaccination cover a variety of applications using viral and non-viral vectors as vehicles of choice for treatment of genetic or acquired diseases. Recently, most therapeutic applications have been performed with non-viral biological agents preparations highly enriched in supercoiled plasmid molecules and it has been concluded that this isoform is more efficient at gene transfection than open circular isoform. This work describes for the first time a new strategy that uses lysine-chromatography to efficiently eliminate Escherichia coli impurities as well as other ineffective plasmid isoforms present in a complex clarified lysate to purify and obtain pharmaceutical-grade supercoiled plasmid DNA. The quality control tests indicated that the levels of impurities in the final plasmid product were below the generally accepted specifications. Furthermore, the delivery of the purified product to eukaryotic cells, the cell uptake and transfection efficiency were also analyzed. The results showed that the transfection efficiency reached with the application of the supercoiled plasmid conformation, purified with lysine-agarose, was higher than the values achieved for other plasmid topologies. Therefore, this study presents a new enabling technology to obtain the completely purified non-viral vector, able to act with good efficiency as gene therapy delivery vehicle in several diseases like cancer.  相似文献   

11.
12.
It was found that ozone reacted preferentially with thymine and guanine residues located in the specific region in pBR322 DNA. The sequence analysis of the region including the cleavage site produced by ozonization of ccDNA showed that ozone-modification proceeded in the single stranded region formed by cruciform-formation in supercoiled DNA.  相似文献   

13.
To study the alkali denaturation of supercoiled DNA, plasmid pBR322 was treated with gradient concentrations of NaOH solution. The results of gel electrophoresis showed that the alkali denaturation of the supercoiled DNA occurred in a narrow range of pH value (12.88-12.90). The alkali-denatured supercoiled DNA ran, as a sharp band, faster than the supercoiled DNA. The supercoiled plasmid DNA of pBR322, pACYC184 and pJGX15A were denatured by NaOH, and then visualized by atomic force microscopy. Compared with the supercoiled DNA, the atomic force microscopy images of the alkali-denatured supercoiled DNA showed rough surface with many kinks, bulges on double strands with inhomogeneous diameters. The apparent contour lengths of the denatured DNA were shortened by 16%, 16% and 50% for pBR322, pACYC184 and pJGX15A, respectively. All evidence suggested that the alkali-denatured supercoiled DNA had a stable conformation with unregistered, topologically constrained double strands and intrastrand secondary structure.  相似文献   

14.
The supercoiled circular (SC) topology form of plasmid DNA has been regarded to be advantageous over open circular or linearized analogue in transfection and expression efficiency, and therefore are largely demanded in the biopharmaceutical manufacturing. However, production of high-purity SC plasmid DNA would result in high manufacturing cost. The effect of SC proportion in plasmid DNA on the quality of packaged lentiviral vectors has never been reported. In this study, we established an efficient system for production of high-titer lentiviral vectors using suspension HEK293SF cells in serum-free media, and the lentiviral titer was not associated with the proportion of SC plasmid DNA. Plasmids DNA with different proportion of SC, open-circular, and linearized forms were prepared using the thermal denaturation method, and were transfected to adherent HEK293T or suspension HEK293SF cells for packaging of lentiviral vectors. The titer of lentiviral vectors from HEK293T cells, but not from HEK293SF cells, was significantly impaired when the proportion of SC plasmid DNA decreased from 60–80% to 30–40%. Further decrease of SC plasmid proportion to 3% led to a dramatic reduction of lentiviral titer no matter the packaging cell line was. However, lentiviral vectors from HEK293SF cells still showed a high titer even when the proportion of SC plasmid DNA was 3%. This study demonstrated that extremely high proportion of SC plasmid DNA was not required for packaging of high-titer lentiviral vector in HEK293SF cells, at least under our manufacturing process.  相似文献   

15.
Arginine chromatography was used to fully separate supercoiled and open circular plasmid DNA (pDNA) isoforms. The results show that the arginine matrix promotes multiple interactions with pDNA, including not only electrostatic and hydrophobic but also biorecognition of nucleotide bases by the arginine ligand. The strong interactions occurring with DNA backbone provide stability, conducting to high effectiveness of arginine support to bind pDNA at low ionic strength. The specific interaction of arginine with sc pDNA could be due to the ability of arginine matrix to be involved in complex interactions that are partly dependent on the conformation of the DNA molecule.  相似文献   

16.
The plasmid pUC18 DNA isolated from Escherichia coli HB101 were analyzed by two-dimensional agarose gel electrophoresis and hybridization. The results show that the DNA sample can be separated into six groups of different structural components. The plectonemically and solenoidally supercoiled pUC18 DNA coexist in it. These two different conformations of supercoiled DNA are interchangeable with the circumstances (ionic strength and type, etc.). The amount of solenoidally supercoiled pUC18 DNA in the samples can be changed by treatment of DNA topoisome rases. Under an electron microscope, the solenoidal supercoiling DNA has a round shape with an average diameter of 45 nm. The facts suggest that solenoidaUy supercoiled DNA be a structural entity independent of histones. The polymorphism of DNA structure may be important to packing of DNA in vivo.  相似文献   

17.
Ozone-reactive sites on the nucleobase moieties in supercoiled pBR322 DNA were investigated by using sequencing procedures. Ozonolysis in the absence of salt resulted in degradation of thymine residues in the A + T rich region located at 3100-3400bp. In the presence of salt, such as NaCl or MgCl2, a conformational change of plasmid DNA was induced. Subsequently the thymine and guanine residues in the loop of the cruciform located at 3120bp and 3220bp were degraded. In addition, central thymine residues present in sequences GTA, GTT and ATA were also degraded.  相似文献   

18.
We report for the first time the use of liquid-liquid counter-current chromatography (CCC) for the preparative scale fractionation of plasmid DNA. Almost complete fractionation of supercoiled and open circular plasmid DNA (6.9 kb) could be achieved using a phase system comprising 12.5% (w/w) PEG 600 and 18% (w/w) K2HPO4. Experiments were carried out on a Brunel J-type CCC machine (100 ml PTFE coil) at a mobile phase flow rate of 0.5 ml min– 1 and a rotational speed of 600 rpm. Compared to conventional HPLC techniques the capacity of CCC is not limited by the surface area of resin available for adsorption. Symbols: C b, Concentration of plasmid in lower phase (g ml–1); C t, Concentration of plasmid in upper phase (g ml–1); CV, Total volume of mobile phase present in the coil and connecting leads (ml); K, Equilibrium solute partition coefficient (K=C t/C b); OC, Open circular plasmid; SC, Supercoiled plasmid; S f, Percentage stationary phase retention (S f=V s/V c); t s, Time for phase separation (s); V b, Volume of bottom phase (ml); V c, Coil volume (ml); V m, Volume of mobile phase present in coil at equilibrium (ml); V r, Volume ratio of two phases (V r=V t/V b); V s, Volume stationary phase present in coil at equilibrium (ml); V t, Volume of top phase (ml); V tot, Total volume of phase system (ml).  相似文献   

19.
20.
Supercoiled DNA plasmids were exposed in the frozen state to high-energy electrons. Surviving supercoiled molecules were separated from their degradation products (e.g., open circle and linear forms) by agarose gel electrophoresis and subsequently quantified by staining and image analysis. Complex survival curves were analyzed using radiation target theory, yielding the radiation-sensitive mass of each form. One of the irradiated plasmids was transfected into cells, permitting radiation analysis of gene expression. Loss of this function was associated with a mass much smaller than the entire plasmid molecule, indicating a lack of energy transfer in amounts sufficient to cause structural damage along the DNA polynucleotide. The method of radiation target analysis can be applied to study both structure and function of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号