共查询到14条相似文献,搜索用时 0 毫秒
1.
In 17 healthy volunteers, we studied movements of the forearm, which included episodes of positioning on the target level. The trajectory of the non-ballistic (relatively slow) movement looked like a double trapezium (flexion of the elbow joint from the state of full extension, 0 deg, positioning on the 50 deg level, further flexion to the limit angle of 100 deg, and a similar reverse sequence). The command trajectory and the trajectory of the realized movement were visualized with movements of cursors on a monitor in time/joint angle coordinates. We compared parameters of the tracking movements (in the presence of visual feedback) and their blindfold reproduction (with the complete absence of visual control). It was found that blindfold reproduction movements differ from sample tracking movements and their reproduction with partial limitation of visual control [16] in higher peak velocities and shorter durations, i.e., a trend toward conversion of such movements into ballistic ones was observed. Under conditions of elimination of visual control, movements that led to positioning were mostly hypermetric, i.e., positioning was usually accompanied by positive systematic errors (whose sign coincided with the direction of the preceding movement phase). The mean intragroup value of the systematic error of the first positioning (after flexion to the target level) was +6.73 ± 1.15 deg, while the respective mean for the second positioning (after extension to the same level) was +4.00 ± 1.31 deg. The nonlinear properties of stretch receptors of muscles whose activity provides the formation of a proprioceptive estimate of the joint angle are considered the crucial reason for systematic errors of blindfold positioning.Neirofiziologiya/Neurophysiology, Vol. 36, Nos. 5/6, pp. 393–404, September–December, 2004.This revised version was published online in April 2005 with a corrected cover date and copyright year. 相似文献
2.
In 14 healthy persons, we studied movements of the forearm with its positioning on a target level. A double trapezium was used as the command trajectory (flexion in the elbow joint from the state of full extension, 0°, with positioning on the level of 50 or 60° and further flexion to the 100° angle, and a similar reverse movement). We compared (i) tracking movements, when the subject tried to adequately reproduce the movement of the target along the command trajectory visualized on the monitor screen and obtained visual information about the performed movement (shifts of the second light point in time/joint angle coordinates), and (ii) reproduction of these movements under conditions of limitation of the visual feedback (when there was no information about the performed movement). Parameters of the tracking movements and of their reproductions (delays of initiation of the movement phases as compared with the command signal, durations of these phases, and angle velocities of the forearm movement), as well as the quality of positioning after oppositely directed movements, were compared. Positioning on the target level performed under proprioceptive control (when visual control was limited) was accompanied by systematic errors, whose sign in most test series performed by most subjects coincided with the direction of the preceding movement phase. The pattern of signs of systematic positioning errors after movements of opposite directions was quite individual (typical of a given subject) and demonstrated no dependence on the value of the extensor loading. Averaged intragroup systematic errors of positioning after movement phase 1 (flexion to the target level) and phase 3 (extension to the same level) under conditions of a minimum extensor loading (0.5-1.0 N · m) were 2.57° and 2.52°, respectively. When the loading was substantial (3.6-6.0 N · m), the respective errors were 3.85° and 3.48°. The nonlinear properties of muscle stretch receptors in the elbow flexors and extensors (responsible for the significant dependence of the parameters of afferent signals produced in these receptors on the movement prehistory) are considered the primary reason for systematic errors when positioning is performed exclusively under proprioceptive control. The influence of alpha-gamma co-activation in active muscles on the characteristics of the above signals is discussed. 相似文献
3.
Gimmon Y Riemer R Oddsson L Melzer I 《Journal of electromyography and kinesiology》2011,21(6):922-928
Objective
Previous studies have demonstrated that ankle muscle fatigue alters postural sway. Our aim was to better understand postural control mechanisms during upright stance following plantar flexor fatigue.Method
Ten healthy young volunteers, 25.7 ± 2.2 years old, were recruited. Foot center-of-pressure (CoP) displacement data were collected during narrow base upright stance and eyes closed (i.e. blindfolded) conditions. Subjects were instructed to stand upright and as still as possible on a force platform under five test conditions: (1) non-fatigue standing on firm surface; (2) non-fatigue standing on foam; (3) ankle plantar flexor fatigue, standing on firm surface; (4) ankle plantar flexor fatigue, standing on foam; and (5) upper limb fatigue, standing on firm surface. An average of the ten 30-s trials in each of five test conditions was calculated to assess the mean differences between the trials. Traditional measures of postural stability and stabilogram-diffusion analysis (SDA) parameters were analyzed.Results
Traditional center of pressure parameters were affected by plantar flexor fatigue, especially in the AP direction. For the SDA parameters, plantar flexor fatigue caused significantly higher short-term diffusion coefficients, and critical displacement in both mediolateral (ML) and anteroposterior (AP) directions. Long-term postural sway was different only in the AP direction.Conclusions
Localized plantar flexor fatigue caused impairment to postural control mainly in the Sagittal plane. The findings indicate that postural corrections, on average, occurred at a higher threshold of sway during plantar flexor fatigue compared to non-fatigue conditions. 相似文献4.
Mattioli E Columbaro M Capanni C Maraldi NM Cenni V Scotlandi K Marino MT Merlini L Squarzoni S Lattanzi G 《Cell death and differentiation》2011,18(8):1305-1315
Lamin A is a nuclear lamina constituent expressed in differentiated cells. Mutations in the LMNA gene cause several diseases, including muscular dystrophy and cardiomyopathy. Among the nuclear envelope partners of lamin A are Sad1 and UNC84 domain-containing protein 1 (SUN1) and Sad1 and UNC84 domain-containing protein 2 (SUN2), which mediate nucleo-cytoskeleton interactions critical to the anchorage of nuclei. In this study, we show that differentiating human myoblasts accumulate farnesylated prelamin A, which elicits upregulation and recruitment of SUN1 to the nuclear envelope and favors SUN2 enrichment at the nuclear poles. Indeed, impairment of prelamin A farnesylation alters SUN1 recruitment and SUN2 localization. Moreover, nuclear positioning in myotubes is severely affected in the absence of farnesylated prelamin A. Importantly, reduced prelamin A and SUN1 levels are observed in Emery-Dreifuss muscular dystrophy (EDMD) myoblasts, concomitant with altered myonuclear positioning. These results demonstrate that the interplay between SUN1 and farnesylated prelamin A contributes to nuclear positioning in human myofibers and may be implicated in pathogenetic mechanisms. 相似文献
5.
Effect of low frequency fatigue on human muscle strength and fatigability during subsequent stimulated activity 总被引:3,自引:0,他引:3
M. J. Stokes R. H. T. Edwards R. G. Cooper 《European journal of applied physiology and occupational physiology》1989,59(4):278-283
Fatiguing contractions of the adductor pollicis muscle were produced by intermittent supramaximal stimulation of the ulnar nerve in a set frequency pattern, in six normal subjects. At the end of an initial fatiguing contraction series, low frequency fatigue (LFF) had been induced and persisted at 15 min of recovery. Stimulated fatiguing activity was then repeated in an identical fashion to the initial series. At high frequencies, declines in force were similar for both series. At low frequencies, declines in force were greater during the second series despite similar changes in compound muscle action potential amplitude. This confirmation that LFF persists during subsequent stimulated activity, and reduces low but not high frequency fatigue resistance, suggests that the impaired endurance of fatigued muscle during voluntary activity primarily results from peripheral changes at low frequency. These findings also have implications for therapeutic electrical stimulation of muscle. 相似文献
6.
Dong-Hee Kim Seok-Hwan Kim Woo-Seok Jeong Ha-Yan Lee 《Journal of Exercise Nutrition & Biochemistry》2013,17(4):169-180
The increase rate of utilization of branched-chain amino acids (BCAA) by muscle is reduced to its plasma concentration during prolonged exercise leading to glycogen. BCAA supplementation would reduce the serum activities of intramuscular enzymes associated with muscle damage. To examine the effects of BCAA administration on fatigue substances (serotonin, ammonia and lactate), muscle damage substances (CK and LDH) and energy metabolism substances (FFA and glucose) after endurance exercise. Subjects (n = 26, college-aged males) were randomly divided into an experimental (n = 13, EXP) and a placebo (n = 13, CON) group. Subjects both EXP and CON performed a bout of cycle training (70% VO2max intensity) to exhaustion. Subject in the EXP were administrated BCAA (78ml/kg·w) prior to the bout of cycle exercise. Fatigue substances, muscle damage substances and energy metabolism substances were measured before ingesting BCAAs and placebos, 10 min before exercise, 30 min into exercise, immediately after exercise, and 30 min after exercise. Data were analyzed by two-way repeated measure ANCOVA, correlation and statistical significance was set at p < 0.05. The following results were obtained from this study; 1. In the change of fatigue substances : Serotonin in the EXP tended to decreased at the 10 min before exercise, 30 min into exercise, post exercise, and recovery 30 min. Serotonin in the CON was significantly greater than the EXP at the10 min before exercise and recovery 30. Ammonia in the EXP was increased at the 10 min before exercise, 30 min into exercise, and post exercise, but significantly decreased at the recovery 30min (p < 0.05). Ammonia in the CON was significantly lower than the EXP at the 10 min before exercise, 30 min into exercise, and post exercise (p < 0.05). Lactate in the EXP was significantly increased at the 30 min into exercise and significantly decreased at the post exercise and recovery 30 min. Lactate in the CON was significantly lower than the EXP at the post exercise (p < 0.05). 2. In the change of muscle damage substances : CK in the EXP was decreased at the 10 min before exercise and increased at the 30 min into exercise and then decreased at the post exercise and recovery 30 min. CK in the CON was greater than the EXP. LDH in the EXP was decreased at the 10 min before exercise and increased at the 30 min into exercise and then decreased at the post exercise and recovery 30 min. LDH in the CON was higher than the EXP. 3. In the change of energy metabolism substances :Glucose in the EXP tended to decrease at the 10 min before exercise, 30 min into exercise, post exercise and recovery 30 min. Glucose in the CON was significantly greater than the EXP at the recovery 30 min (p < .05). FFA in both EXP and CON was increased at the post exercise and recovery 30 min. % increase for FFA in the EXP was greater than the CON at the post exercise and recovery 30 min. 4. The relationship of the fatigue substances, muscle damage substances and energy metabolism substances after endurance exercise indicated strongly a positive relationship between LDH and ammonia and a negative relationship between LDH and FFA in the EXP. Also, there were a strong negative relationship between glucose and FFA and a positive relationship between glucose and serotonin in the EXP. There was a strong positive relationship between CK and LDH and a strong negative relationship between FFA and glucose in the CON. These results indicate that supplementary BCAA decreased serum concentrations of the intramuscular enzymes as CK and LDH following exhaustive exercise. This observation suggests that BCAA supplementation may reduce the muscle damage associated with endurance exercise. 相似文献
7.
Dependence of joint stiffness on the conditions of visual control in upright undisturbed stance in humans 总被引:2,自引:0,他引:2
We recorded the sagittal and frontal components of the stabilogram of healthy humans in upright undisturbed stance under five conditions of visual control: (i) open eyes (OE); (ii) closed eyes (CE); (iii) visual inversion (VI); (iv) central vision (CV), and (v) diffused light (DL). Through a low-pass filter of trajectories of the center of pressure of feet (CPF), the vertical projection of the center of gravity (CG) and, consequently, the difference CPF-CG were estimated. The former represents the controlled variable, while the latter is proportional to the horizontal acceleration and assumed to express the resultant joint stiffness (mostly in the ankle joints). The stiffness was characterized through a method based on spectral analysis of the CPF-CG variable and subsequent calculations of the median frequency (MF) and the root mean square (RMS) of the spectra. The median frequencies of the spectra of the CPF-CG variable changed slightly under various visual conditions. At standing on a rigid support, they varied from 0.97 to 0.99 Hz and from 0.93 to 0.97 Hz for the CPF-CG, calculated from the sagittal and frontal components of the stabilogram, respectively. Under conditions of a pliable support, the corresponding frequencies varied within the limits of 0.79–0.83 Hz and 0.74–0.78 Hz. In contrast to the median frequencies, the RMSs demonstrated greater variability depending on different visual conditions. At standing on a rigid support, paired comparisons showed significant differences between the RMSs of the spectra of the CPF-CG variable of the sagittal direction under CE and OE conditions (0.14 ± 0.030 and 0.09 ± 0.020 mm, respectively) and under DL and OE conditions (0.130 ± ± 0.025 and 0.090 ± 0.020 mm, respectively). The RMS of the CPF-CG variable calculated for the frontal stabilogram differed significantly from each other for the VI and OE conditions (0.115 ± 0.020 and 0.075 ± ± 0.015 mm, respectively). In case of standing on a pliable support, a greater variability of visual influences on the CPF-CG variable was found. The RMS for its sagittal motion was the greatest under CE conditions (0.19 ± 0.03 mm); it was significantly greater than the respective values under OE, CV, and DL conditions (0.097 ± ± 0.020, 0.110 ± 0.020, and 0.140 ± 0.030 mm, respectively). The means of RMSs of the spectra of the frontal CPF-CG was also the greatest under CE conditions (0.20 ± 0.03 mm) and the smallest under OE conditions (0.095 ± 0.020 mm). In addition, the value of the RMS fluctuations under CE conditions (0.150 ± 0.025 mm) differed significantly from the respective values under OE conditions (0.095 ± 0.020 mm) and CV conditions (0.110 ± 0.020 mm). Thus, our findings support the statement that the influence of visual conditions on the maintenance of vertical stance is mediated (at least partially) by the mechanisms controlling the ankle joint stiffness. This regulation is mostly manifested in changes of a single parameter, the amplitude of fluctuations of the CPF-CG variable. We also found that the joint stiffness can be modulated by both nonspecific visual influences (which, in particular, reflect the perception of illumination) and specific visual influences, related to information on the position of the body and on its movements with respect to external objects. Neirofiziologiya/Neurophysiology, Vol. 38, No. 2, pp. 157–166, March–April, 2006. 相似文献
8.
9.
Simon S. Yeung Ada L. Au Cedric C. Chow 《European journal of applied physiology and occupational physiology》1999,80(4):379-385
The effects of muscle fatigue on the temporal neuromuscular control of the vastus medialis (VM) muscle were investigated in 19 young male subjects. The electromyogram (EMG) activities of VM and the force generation capacities of the quadriceps muscle were monitored before and after a fatigue protocol. In response to light signals, which were triggered randomly, the subjects made three maximal isometric knee extensions. This was then followed by the fatigue protocol which consisted of 30 isometric maximal voluntary contractions at a sequence of 5-s on and 5-s off. Immediately after the exercise to fatigue, the subjects performed another three maximal isometric contractions in response to the light signals. The effects of fatigue on the temporal neuromuscular control were then investigated by dividing the total reaction time (TRT) into premotor time (PMT) and electromechanical delay (EMD). The TRT was defined as the time interval between the light signal and the onset of the knee extension force. The PMT was defined as the time from the light signal to the onset of EMG activities of VM, and EMD as the time interval between onset of EMG activities to that of force generation. Following the contractions to fatigue there was a significant decrease in peak force (Fpeak, P = 0.016), an increase in the root mean square (rms)-EMG: Fpeak quotient (P = 0.001) but an insignificant change in the median frequency (P = 0.062) and rms-EMG (P = 0.119). Significant lengthening of mean EMD was found after the fatigue protocol [0.0396 (SD 0.009) vs. 0.0518 (SD 0.016) s P<0.001]. The lengthening of EMD in VM would affect the stabilizing effect of the patella during knee extension. The faster mean PMT [0.2445 (SD 0.093) vs. 0.2075 (SD 0.074) s, P = 0.042] following the fatigue protocol might have compensated for the lengthened EMD and contributed to the insignificant change in the mean TRT [0.284 (SD 0.09) vs. 0.259 (SD 0.073) s, P = 0.164]. This was probably related to the low level of fatigue (15% decrease in force) and the stereotyped nature of the action such that the effects of the fatigue on neuromuscular control were likely to have been attributable to peripheral processes. 相似文献
10.
The properties of the system maintaining the upright posture were compared in different states of the oculomotor system: during target fixation and horizontal fast and slow pursuit (0.1 and 0.01 Hz), recording the trajectories of the center of pressure in the frontal and the sagittal planes. Methods of nonlinear analysis were applied to assess the similarity in pairwise comparisons. The overall similarity of the frontal plane dynamics proved to be higher than that of the sagittal plane dynamics. However, differences were revealed in fast pursuit versus slow pursuit or fixation in the frontal but not in the sagittal plane. Such differences may reflect the different inertia of the oculomotor and the balance control systems. In general, the results are consistent with the current notions on the two orthogonal subsystems of postural control. 相似文献
11.
V. N. Loshchilov 《Human physiology》2006,32(6):696-700
The effect of a magnetic field on changes in working capacity at different stages of fatigue during cyclic exercises was studied. The data obtained indicated that the magnetic field affected the neuromuscular system, increasing working capacity under the conditions of considerable local or general fatigue without causing pathological changes in neuromuscular regulation. 相似文献
12.
13.
We checked on the supposition that the magnitude of postural reactions to an unexpected postural disturbance in upright stance
in humans can be determined to a considerable extent by the level of background stiffness in the ankle joints. For this purpose,
we estimated changes in the joint stiffness under different conditions of visual control; these values were estimated within
the period of background body oscillations (i.e., before the beginning of a compensatory motor reaction) and compared with
those in the course of postural reactions evoked by vibrational stimulation of the ankle (shin) muscles. Experiments were
carried where the subjects stood with open and closed eyes (OE and CE, respectively) and while standing wearing spectacles
with frosted glass passing only diffuse light (DL). In the course of the tests, the subjects stood in the usual comfortable
vertical position (hereafter, standard stance) or in the same position but with the possibility to lightly touch an immobile
object by a finger (stance with additional support). Such technique was used to weaken the effects of CE and DL on background
sways of the body and to lead these sways close to the level typical of OE conditions. The joint stiffness was estimated using
an approach based on frequency filtration of oscillations of the center of pressure of the feet (CPF) that allowed us to select
signals proportional to displacements of the total center of gravity (CG) of the body and to calculate the difference between
oscillations of the CPF and CG (a CPF-CG variable). The CPF-CG variable is proportional to the horizontal acceleration of
the CG and, therefore, can be used for estimation of the changes in stiffness in the ankle joints. Under conditions of standard
stance, the usual conditions rather similarly influenced both variables (CG and CPF-CG) in the course of both background body
oscillations and a postural response. The examined variables were the greatest under CE conditions, decreased under conditions
of perception of DL, and became smallest with OE. At standing with additional support, the dependence of the examined variables
on visual conditions disappeared within the period of background body oscillations (before the beginning of postural reactions).
In this case, the magnitude of oscillations of the CPF-CG variable under CE and DL conditions decreased to the level observed
at standing under OE conditions. The magnitude of CG displacements induced by vibrational stimulations of the muscles remained,
nevertheless, clearly dependent on visual conditions (the same regularities were observed as in the case of standing with
no additional support). Thus, our findings demonstrate that the correlation between the characteristics of postural reactions
in the upright stance and the level of ankle joint stiffness is not single-valued.
Neirofiziologiya/Neurophysiology, Vol. 39, No. 2, pp. 146–153, March–April, 2007. 相似文献
14.
This is the first report of the successful use of Pochonia chlamydosporia as a biological control agent against potato cyst nematodes (PCN) (Globodera pallida and G. rostochiensis) in potato crops grown under commercial field conditions and represents an important step in the development of biological control for PCN. Two field experiments were established in consecutive years (2006 and 2007) at different field sites in Shropshire, England. Treatments comprised of (1) untreated control, (2) P. chlamydosporia, (3) P. chlamydosporia with the nematicide fosthiazate and (4) fosthiazate alone. In both experiments, significant reductions in the nematode multiplication rate (Pf/Pi) for P. chlamydosporia treated plots were observed (48% and 51% control, respectively). The P. chlamydosporia treatment did not differ significantly from both fosthiazate treatments in terms of Pf/Pi in spite of the trend towards increased control particularly in Experiment 1. P. chlamydosporia therefore provided similar levels of nematode population control as fosthiazate. The combined treatment did not provide any additional reduction in Pf/Pi but demonstrated that P. chlamydosporia was compatible with fosthiazate. Over the different developmental stages of the juvenile nematodes, there was evidence of parasitism of adult females on the plant root by P. chlamydosporia. Root colonization by P. chlamydosporia was higher in the P. chlamydosporia treatment due to increased levels of nematodes in plant roots. Results from both experiments demonstrated the efficacy of P. chlamydosporia as a biological control agent of PCN and indicate its potential for use as part of an integrated pest management strategy. 相似文献