首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Prohibitin 1 (PHB1) is a highly conserved protein that together with its homologue prohibitin 2 (PHB2) mainly localizes to the inner mitochondrial membrane. Although it was originally identified by its ability to inhibit G1/S progression in human fibroblasts, its role as tumor suppressor is debated. To determine the function of prohibitins in maintaining cell homeostasis, we generated cancer cell lines expressing prohibitin-directed shRNAs. We show that prohibitin proteins are necessary for the proliferation of cancer cells. Down-regulation of prohibitin expression drastically reduced the rate of cell division. Furthermore, mitochondrial morphology was not affected, but loss of prohibitins did lead to the degradation of the fusion protein OPA1 and, in certain cancer cell lines, to a reduced capability to exhibit anchorage-independent growth. These cancer cells also exhibited reduced adhesion to the extracellular matrix. Taken together, these observations suggest prohibitins play a crucial role in adhesion processes in the cell and thereby sustaining cancer cell propagation and survival.  相似文献   

3.
Prohibitin is a ubiquitous and highly conserved protein implicated as an important regulator in cell survival. Prohibitin content is inversely associated with cell proliferation, but it increases during granulosa cell differentiation as well as in earlier events of apoptosis in a temperature-sensitive granulosa cell line. In the present study, we have characterized the spatial expression patterns for prohibitin using established in vivo models for the induction of follicular development and atresia in the mammalian ovary. Comparative Western blot analyses of granulosa cell lysates from control ovaries and from ovaries primed with eCG or treated with eCG plus anti-eCG (gonadotropin withdrawal) were conducted. Prohibitin was immunolocalized in rat ovarian sections probed with antibodies against either proliferating cell nuclear antigen (PCNA) or cholesterol side-chain cleavage cytochrome P450 (P450(scc)) or in terminal deoxynucleotidyl transferase-mediated dUTP nick end labeled sections. Additionally, porcine oocytes, zygotes, and blastocyts were also immunolocalized with prohibitin antibody. Immunolocalization revealed the presence of prohibitin in granulosa cells, theca-interstitial cells, and the oocyte. The results indicate that prohibitin protein expression in the gonadotropin-treated cells was upregulated. Immunoreactivity of prohibitin was inversely related to PCNA expression during follicular maturation and colocalized with P450(scc). Prohibitin appeared to be translocated from the cytoplasm to the nucleus in atretic follicles, germinal vesicle-stage oocytes, zygotes, and blastocysts. These results suggest that prohibitin has several functional regulatory roles in granulosa and theca-interstitial cells and in the ovum during follicular maturation and atresia. It is likely that prohibitin may play an important role in determining the fate of these cells and eventual follicular destiny.  相似文献   

4.
5.
6.
7.
Ginsenoside Rg1, cinnamic acid, and tanshinone IIA (RCT) are effective anticancer and antioxidant constituents of traditional Chinese herbal medicines of Ginseng, Xuanseng, and Danseng. The molecular mechanisms of anticancer effects of those constituents and their targets are unknown. Prohibitin, an inner membrane‐bound chaperone in mitochondrion involved in the regulation of cell growth, proliferation, differentiation, aging, and apoptosis, was chosen as a candidate molecular target because of its frequent up‐regulation in various cancer cells. We demonstrated that prohibitin existed in the filaments of the nuclear matrix of the MG‐63 cell and its expression was down‐regulated by the treatment of RCT using proteomic methodologies and Western blot analysis. Immunogold electro‐microscopy also found that prohibitin was localized on nuclear matrix intermediate filaments (NM‐IF) that had undergone restorational changes after RCT treatment. Prohibitin may function as a molecular chaperone that might interact with multiple oncogenes and tumor suppressor genes. We found that oncogenes c‐myc and c‐fos and tumor suppressor genes P53 and Rb were regulated by RCT as well and that these gene products co‐localized with prohibitin. Our study identified prohibitin as a molecular target of the effective anticancer constituents of Ginseng, Xuanseng, and Danseng that down‐regulated prohibitin in nuclear matrix, changed prohibtin trafficking from nucleolus to cytoplasm, and regulated several oncogenes and tumor suppressor genes. Prohibitin downregulation and cellular trafficking from nucleolus to cytoplasm indicated RCT protective roles in cancer prevention and treatment. J. Cell. Biochem. 108: 926–934, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
9.
A 70% partial hepatectomy (70%PHx) induces cell proliferation until the original mass of the liver is restored. Mitochondria are involved directly in the process of liver regeneration (LR); however, their role in the early phase of LR is not clear. In an attempt to identify mitochondrial proteins that are correlated with the early phase of LR, we obtained a mitochondrial fraction via Nycodenz(R) density gradient centrifugation and subcellular proteomic analysis was performed. The mitochondrial proteins were separated by two-dimensional gel electrophoresis and identified by mass spectrometry. Compared to the sham-operation control group, 3 proteins were up-regulated and 22 proteins were down-regulated at 24 h after 70%PHx. We identified 22 differentially expressed proteins that were associated with carbohydrate metabolism, lipid metabolism, the respiratory chain and oxidation-phosphorylation, biotransformation and other metabolic pathways. Prohibitin, a proliferation-regulating protein that was down-regulated at 24 h after PHx, was analyzed by applying RNAi (PHBi) with BRL-3A. This demonstrated a decreased mitochondrial membrane potential, implying a potential role in maintaining mitochondrial integrity. These results indicated that hepatic mitochondrial adaptations to LR after 70%PHx affect various cellular metabolic pathways, which advances our knowledge of the role of mitochondria in the early phase of LR.  相似文献   

10.
Prohibitin, which consists of two subunits PHB1 and PHB2, plays a role in cell-cycle progression, senescence, apoptosis, and maintenance of mitochondrial function in mammals and yeast. In this study, we examined the role of prohibitins in plants by using virus-induced gene silencing (VIGS) of two prohibitin subunit genes of Nicotiana benthamiana, designated NbPHB1 and NbPHB2. NbPHB1 and NbPHB2 were targeted to the mitochondria, and their gene expression was suppressed during senescence. VIGS of NbPHB2 caused severe growth inhibition, leaf yellowing and symptoms of cell death, whereas VIGS of NbPHB1 resulted in a milder phenotype. At the cellular level, depletion of these subunits affected mitochondria by severely reducing their number and/or mass, and by causing morphological and physiological abnormalities. Suppression of prohibitin function resulted in a 10- to 20-fold higher production of reactive oxygen species and induced premature leaf senescence. Finally, disruption of prohibitin function rendered the plants more susceptible to various oxidative stress-inducing reagents, including H(2)O(2), paraquat, antimycin A and salicylic acid. These results suggest that prohibitins play a crucial role in mitochondrial biogenesis and protection against stress and senescence in plant cells.  相似文献   

11.
12.
13.
Prohibitin proteins have been implicated in cell proliferation, aging, respiratory chain assembly and the maintenance of mitochondrial integrity. The prohibitins of Saccharomyces cerevisiae, Phb1 and Phb2, have strong sequence similarity with their human counterparts prohibitin and BAP37, making yeast a good model organism in which to study prohibitin function. Both yeast and mammalian prohibitins form high-molecular-weight complexes (Phb1/2 or prohibitin/BAP37, respectively) in the inner mitochondrial membrane. Expression of prohibitins declines with senescence, both in mammalian fibroblasts and in yeast. With a total loss of prohibitins, the replicative (budding) life span of yeast is reduced, whilst the chronological life span (the survival of stationary cells over time) is relatively unaffected. This effect of prohibitin loss on the replicative life span is still apparent in the absence of an assembled respiratory chain. It also does not reflect the production of extrachromosomal ribosomal DNA circles (ERCs), a genetic instability thought to be a major cause of replicative senescence in yeast. Examination of cells containing a mitochondrially targeted green fluorescent protein indicates this shortened life span is a reflection of defective mitochondrial segregation from the mother to the daughter in the old mother cells of phb mutant strains. Old mother phb mutant cells display highly aberrant mitochondrial morphology and, frequently, a delayed segregation of mitochondria to the daughter. They often arrest growth with their last bud strongly attached and with the mitochondria adjacent to the septum between the mother and the daughter cell.  相似文献   

14.
Proteins selectively upregulated in infective parasitic forms could be critical for disease pathogenesis. A mammalian prohibitin orthologue is upregulated in infective metacyclic promastigotes of Leishmania donovani, a parasite that causes visceral leishmaniasis. Leishmania donovani prohibitin shares 41% similarity with mammalian prohibitin and 95–100% within the genus. Prohibitin is concentrated at the surface of the flagellar and the aflagellar pole, the aflagellar pole being a region through which host–parasite interactions occur. Prohibitin is attached to the membrane through a GPI anchor. Overexpression of wild‐type prohibitin increases protein surface density resulting in parasites with higher infectivity. However, parasites overexpressing a mutant prohibitin with an amino acid substitution at the GPI anchor site to prevent surface expression through GPI‐link show lesser surface expression and lower infective abilities. Furthermore, the presence of anti‐prohibitin antibodies during macrophage–Leishmania interaction in vitro reduces infection. The cognate binding partner for Leishmania prohibitin on the host cell appears to be macrophage surface HSP70, siRNA mediated downregulation of which abrogates the capability of the macrophage to bind to parasites. Leishmania prohibitin is able to generate a strong humoral response in visceral leishmaniasis patients. The above observations suggest that prohibitin plays an important role in events leading to Leishmania–host interaction.  相似文献   

15.
16.
Metformin exhibits antiproliferative and proapoptotic effects in a variety of diseases, characterized by malignant and nonmalignant hyperplastic cells; however, the underlying molecular mechanism of metformin in psoriasis has not been elucidated. In the current study, we found that after metformin treatment the proliferation of human immortalized keratinocytes (HaCaT) was significantly inhibited, while cell apoptosis was increased in a dose-dependent manner, accompanied with enhanced protein expression of acyl-coenzyme A dehydrogenase 10 (ACAD10). Furthermore, mechanism analysis revealed that ACAD10 expression is induced by downregulated activities of mechanistic target of rapamycin 1 (mTORC1) signaling rather than AMP-activated protein kinase signaling. The inactivation of mTORC1 by rapamycin pretreatment or rotenone-induced mitochondrial complex inhibition showed a similar effect because of the metformin treatment on the proliferation and apoptosis of HaCaT keratinocytes. Overexpression of mTORC1 almost reversed the antiproliferation and proapoptosis effects induced by metformin. This study showed that the metformin treatment inhibited HaCaT cells proliferation and promoted apoptosis by affecting the mitochondrial-mTORC1 signaling and elevated the ACAD10 expression. Hence, metformin can be used as a potential therapeutic agent for psoriasis.  相似文献   

17.
Psoriasis is a common immune-mediated chronic inflammatory skin disease characterized by abnormal keratinocyte proliferation, differentiation and apoptosis. However, the exact etiology and pathogenesis are still unclear. Evidence is rapidly accumulating for the role of microRNAs in psoriasis. It has been demonstrated that Interleukin-22 (IL-22) plays vital role in T cell-mediated immune response by interacting with keratinocytes in the pathogenesis of psoriasis. The aim of our study was to explore the possible functional role of miR-20a-3p in psoriasis and in IL-22 induced keratinocyte proliferation. Here, we found that miR-20a-3p was down-regulated in psoriatic lesions and in HaCaT cells (human keratinocyte cell line) treated by IL-22 stimulation. Functional experiments showed that overexpression of miR-20a-3p in HaCaT cells suppressed proliferation and induced apoptosis while its knockdown promoted cell proliferation and reduces cell apoptosis. Mechanistically, SFMBT1 was identified as the direct target of miR-20a-3p by dual luciferase reporter assay. SFMBT1 knockdown was demonstrated to inhibit cell growth and induced apoptosis, which was consistent with the function of miR-20a-3p upregulation in HaCaT cells. In addition, results of western blot analysis showed that miR-20a-3p upregulation or SFMBT1 knockdown changed the protein expression levels of TGF-β1 and survivin. Our findings suggest that miR-20a-3p play roles through targeting SFMBT1 and TGF-β1/Survivin pathway in HaCaT cells, and loss of miR-20a-3p in psoriasis may contribute to hyperproliferation and aberrant apoptosis of keratinocytes.  相似文献   

18.
陈操  刘欣  孙晶  李庆伟 《生命科学》2010,(5):405-410
抗增殖蛋白作为一种高度保守的蛋白广泛分布于细菌、原虫、酵母等多种生物细胞中,主要定位于细胞膜、线粒体内膜、细胞核中,参与细胞增殖、分化、衰老、凋亡等多种生物学进程。由于抗增殖蛋白结构进化上的保守性和功能的多样性,正逐渐引起广泛的关注。该文正是基于抗增殖蛋白重要的生物学意义,通过对其基因结构和功能的分析,系统地阐述了它在生物体中发挥的重要作用,并对其应用前景作以展望。  相似文献   

19.
The brain and reproductive organ expressed (BRE) gene encodes a highly conserved stress-modulating protein. To gain further insight into the function of this gene, we used comparative proteomics to investigate the protein profiles of C2C12 and D122 cells resulting from small interfering RNA (siRNA)-mediated silencing as well as overexpression of BRE. Silencing of BRE in C2C12 cells, using siRNA, resulted in up-regulated Akt-3 and carbonic anhydrase III expression, while the 26S proteasome regulatory subunit S14 and prohibitin were down-regulated. Prohibitin is a potential tumour suppressor gene, which can directly interact with p53. We found that cell proliferation was significantly increased after knockdown of BRE, concomitant with reduced p53 and prohibitin expression. In contrast, we observed decreased proliferation and up-regulation of p53 and prohibitin when BRE was overexpressed in the D122 cell line. In total, five proteins were found to be up-regulated after BRE over-expression. The majority of these proteins can target or crosstalk with NF-kappaB, which plays a central role in regulating cell proliferation, differentiation and survival. Our results establish a crucial role for BRE in the regulation of key proteins of the cellular stress-response machinery and provide an explanation for the multifunctional nature of BRE.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号