首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutathione (GSH) is the most abundant non-protein thiol in eukaryotic cells and acts as reducing equivalent in many cellular processes. We investigated the role of glutathione in Dictyostelium development by disruption of gamma-glutamylcysteine synthetase (GCS), an essential enzyme in glutathione biosynthesis. GCS-null strain showed glutathione auxotrophy and could not grow in medium containing other thiol compounds. The developmental progress of GCS-null strain was determined by GSH concentration contained in preincubated media before development. GCS-null strain preincubated with 0.2 mM GSH was arrested at mound stage or formed bent stalk-like structure during development. GCS-null strain preincubated with more than 0.5 mM GSH formed fruiting body with spores, but spore viability was significantly reduced. In GCS-null strain precultured with 0.2 mM GSH, prestalk-specific gene expression was delayed, while prespore-specific gene and spore-specific gene expressions were not detected. In addition, GCS-null strain precultured with 0.2 mM GSH showed prestalk tendency and extended G1 phase of cell cycle. Since G1 phase cells at starvation differentiate into prestalk cells, developmental defect of GCS-null strain precultured with 0.2 mM GSH may result from altered cell cycle. These results suggest that glutathione itself is essential for growth and differentiation to prespore in Dictyostelium.  相似文献   

2.
R Insall  O Nayler    R R Kay 《The EMBO journal》1992,11(8):2849-2854
DIF-1 is a novel chlorinated alkyl phenone which induces differentiation of prestalk cells in Dictyostelium discoideum. It is broken down and inactivated by a cytoplasmic enzyme, DIF-1 3(5)-dechlorinase (hereafter referred to as DIF-1 dechlorinase), which is found only in prestalk cells. We show that DIF-1 dechlorinase levels are induced at least 50-fold when cells are treated with DIF-1. This response is rapid--enzyme activity doubles within 15 min and is fully induced within an hour--and occurs early in development, before other prestalk markers can be induced by DIF-1. Maximum inducibility is seen towards the end of aggregation, when DIF-1 dechlorinase is barely detectable in uninduced cells. The dose-dependence reveals a threshold concentration of DIF-1 (15 nM) below which almost no response is seen. Cyclic AMP, which is the chemoattractant during aggregation and plays a key role in later development, suppresses the induction of DIF-1 dechlorinase by DIF-1. We conclude that induction of DIF-1 dechlorinase is one of the first steps on the developmental pathway which leads to prestalk cell differentiation, and suggest that the resulting negative feedback on DIF-1 levels is an important part of the mechanism by which cells decide whether to become prestalk or prespore cells.  相似文献   

3.
Cells from the pseudoplasmodial stage of Dictyostelium discoideum differentiation were dispersed and separated on Percoll gradients into prestalk and prespore cells. The requirements for stalk cell formation in low-density monolayers from the two cell types were determined. The isolated prespore cells required both the Differentiation Inducing Factor (DIF) and cyclic AMP for stalk cell formation. In contrast, only part of the isolated prestalk cell population required both cyclic AMP and DIF, the remainder requiring DIF alone, suggesting the possibility that there were two populations of prestalk cells, one independent of cyclic AMP and one dependent on cyclic AMP for stalk cell formation. The finding that part of the prestalk cell population required only a brief incubation in the presence of DIF to induce stalk cell formation, whilst the remainder required a considerably longer incubation in the presence of both DIF and cyclic AMP was consistent with this idea. In addition, stalk cell formation from cyclic-AMP-dependent prestalk cells was relatively more sensitive to caffeine inhibition than stalk cell formation from cyclic-AMP-independent prestalk cells. The latter cells were enriched in the most anterior portion of the migrating pseudoplasmodium, indicating that there is spatial segregation of the two prestalk cell populations. The conversion of prespore cells to stalk cells took longer and was more sensitive to caffeine when compared to stalk cell formation from cyclic-AMP-dependent prestalk cells.  相似文献   

4.
Cell death in the model organism Dictyostelium, as studied in monolayers in vitro, can be induced by the polyketide DIF-1 or by the cyclical dinucleotide c-di-GMP. c-di-GMP, a universal bacterial second messenger, can trigger innate immunity in bacterially infected animal cells and is involved in developmental cell death in Dictyostelium. We show here that c-di-GMP was not sufficient to induce cell death in Dictyostelium cell monolayers. Unexpectedly, it also required the DIF-1 polyketide. The latter could be exogenous, as revealed by a telling synergy between c-di-GMP and DIF-1. The required DIF-1 polyketide could also be endogenous, as shown by the inability of c-di-GMP to induce cell death in Dictyostelium HMX44A cells and DH1 cells upon pharmacological or genetic inhibition of DIF-1 biosynthesis. In these cases, c-di-GMP–induced cell death was rescued by complementation with exogenous DIF-1. Taken together, these results demonstrated that c-di-GMP could trigger cell death in Dictyostelium only in the presence of the DIF-1 polyketide or its metabolites. This identified another element of control to this cell death and perhaps also to c-di-GMP effects in other situations and organisms.  相似文献   

5.
Thompson CR  Kay RR 《Molecular cell》2000,6(6):1509-1514
We have constructed a mutant blocked in the biosynthesis of DIF-1, a chlorinated signal molecule proposed to induce differentiation of both major prestalk cell types formed during Dictyostelium development. Surprisingly, the mutant still forms slugs retaining one prestalk cell type, the pstA cells, and can form mature stalk cells. However, the other major prestalk cell type, the pstO cells, is missing. Normal pstO cell differentiation and their patterning in the slug are restored by development on a uniform concentration of DIF-1. We conclude that pstO and pstA cells are in fact induced by separate signals and that DIF-1 is the pstO inducer. Positional information, in the form of DIF-1 gradients, is evidently not required for pstO cell induction.  相似文献   

6.
At least three distinct types of cell arise from a population of similar amoebae during Dictyostelium development: prespore, prestalk A and prestalk B cells. We report evidence suggesting that this cellular diversification can be brought about by the combinatorial action of two diffusible signals, cAMP and DIF-1. Cells at different stages of normal development were transferred to shaken suspension, challenged with various combinations of signal molecules and the expression of cell-type-specific mRNA markers measured 1-2 h later. pDd63, pDd56 and D19 mRNAs were used for prestalk A, prestalk B and prespore cells respectively. We find the following results. (1) Cells first become responsive to DIF-1 for prestalk A differentiation and to cAMP for prespore differentiation at the end of aggregation, about 2 h before these cell types normally appear. (2) At the first finger stage of development, when the rate of accumulation of the markers is maximal, the expression of each is favoured by a unique combination of effectors: prespore differentiation is stimulated by cAMP and inhibited by DIF-1; prestalk A differentiation is stimulated by both cAMP and DIF-1 and prestalk B differentiation is stimulated by DIF-1 and inhibited by cAMP. (3) Half-maximal effects are produced by 10-70 nM DIF-1, which is in the physiological range. (4) Ammonia and adenosine, which can affect cell differentiation in other circumstances, have no significant pathway-specific effect in our conditions. These results suggest that cell differentiation could be brought about in normal development by the localized action of cAMP and DIF-1.  相似文献   

7.
Dictyostelium discoideum prestalk cells and prespore cells from migrating slugs and culminating cell aggregates were isolated by Percoll density centrifugation. Several activities relevant to the generation, detection, and turnover of extracellular cyclic AMP (cAMP) signals were determined. It was found that: the two cell types have the same basal adenylate cyclase activity; prespore cells and prestalk cells are able to relay the extracellular cAMP signal equally well; intact prestalk cells show a threefold higher cAMP phosphodiesterase activity on the cell surface than prespore cells, whereas their cytosolic activity is the same; intact prestalk cells bind three to four times more cAMP than prespore cells; no large differences in cAMP metabolism and detection were observed between cells derived from migrating slugs and culminating aggregates. The results are discussed in relation to the possible morphogenetic role of extracellular cAMP in Dictyostelium cell aggregates. On the basis of the properties of the isolated cells we assume that a gradient of extracellular cAMP exists in Dictyostelium aggregates. This gradient appears to be involved in the formation and stabilization of the prestalk-prespore cell pattern.  相似文献   

8.
The DIF-1 signaling system in Dictyostelium. Metabolism of the signal   总被引:2,自引:0,他引:2  
DIF-1 is a novel, chlorinated alkyl phenone from Dictyostelium which, at very low concentrations, induces amoebae to differentiate into stalk cells and may act as a morphogen in the formation of the prestalkprespore pattern during development. We report here the existence of a developmentally regulated metabolic pathway which inactivates DIF-1. Radioisotopically labeled DIF-1 was synthesized, incubated with developing cells, the metabolites recovered, and then analyzed by high pressure liquid chromatography and TLC. At least 12 metabolites are produced and the early steps of a complex metabolic pathway have been deduced by following the flow of counts from one metabolite to another and by determining the fate of purified metabolites when they are incubated with cells. The first metabolite, DM1, is largely cell-associated whereas the more distal ones are found mainly in the medium. Metabolism inactivates DIF-1, since DM1 retains only 7% of the specific activity of DIF-1 in the stalk cell differentiation bioassay and later metabolites possess even less activity. Metabolism is developmentally regulated, increasing toward the end of aggregation to reach maximal levels at the tipped mound stage, as endogenous DIF-1 levels are themselves rising. Cells at this stage of development possess the capacity to metabolize their endogenous DIF-1 with a half-life of a few minutes. We suggest that DIF-1 metabolism is important to prevent the DIF-1 receptor system from becoming saturated by excess ligand, thus allowing cells to respond to changes in DIF-1 production. Metabolism may also produce other effector molecules from DIF-1 or produce DIF-1 gradients in the aggregate by the localized destruction of DIF-1.  相似文献   

9.
10.
STATc becomes tyrosine phosphorylated and accumulates in the nucleus when Dictyostelium cells are exposed to the prestalk cell inducer Differentiation inducing factor 1 (DIF-1), or are subjected to hyper-osmotic stress. We show that the protein tyrosine phosphatase PTP3 interacts directly with STATc and that STATc is refractory to activation in PTP3 overexpressing cells. Conversely, overexpression of a dominant inhibitor of PTP3 leads to constitutive tyrosine phosphorylation and ectopic nuclear localisation of STATc. Treatment of cells with DIF-1 or exposure to hyper-osmotic stress induces a decrease in biochemically assayable PTP3 activity and both agents also induce serine-threonine phosphorylation of PTP3. These observations suggest a novel mode of STAT activation, whereby serine-threonine phosphorylation of a cognate protein tyrosine phosphatase results in the inhibition of its activity, shifting the phosphorylation-dephosphorylation equilibrium in favour of phosphorylation.  相似文献   

11.
The polyketide DIF-1 induces Dictyostelium amoebae to form stalk cells in culture. To better define its role in normal development, we examined the phenotype of a mutant blocking the first step of DIF-1 synthesis, which lacks both DIF-1 and its biosynthetic intermediate, dM-DIF-1 (des-methyl-DIF-1). Slugs of this polyketide synthase mutant (stlB) are long and thin and rapidly break up, leaving an immotile prespore mass. They have ∼ 30% fewer prestalk cells than their wild-type parent and lack a subset of anterior-like cells, which later form the outer basal disc. This structure is missing from the fruiting body, which perhaps in consequence initiates culmination along the substratum. The lower cup is rudimentary at best and the spore mass, lacking support, slips down the stalk. The dmtA methyltransferase mutant, blocked in the last step of DIF-1 synthesis, resembles the stlB mutant but has delayed tip formation and fewer prestalk-O cells. This difference may be due to accumulation of dM-DIF-1 in the dmtA mutant, since dM-DIF-1 inhibits prestalk-O differentiation. Thus, DIF-1 is required for slug migration and specifies the anterior-like cells forming the basal disc and much of the lower cup; significantly the DIF-1 biosynthetic pathway may supply a second signal - dM-DIF-1.  相似文献   

12.
Expression of a dominant inhibitor of the Dictyostelium cAMP-dependent protein kinase in prespore cells blocks their differentiation into spore cells. The resultant structures comprise a normal stalk supporting a bolus of cells that fail to express a sporulation-specific gene and that show greatly reduced levels of expression of several prespore-specific genes. The latter result suggests that in addition to activating spore formation, the cAMP-dependent protein kinase may play a role in initial prespore cell differentiation. Development of the strain expressing the dominant inhibitor is hypersensitive to the inhibitory effects of ammonia, the molecule that is believed to repress entry into culmination during normal development. This result supports a model whereby a decrease in ambient ammonia concentration at culmination acts to elevate intracellular cAMP and hence induce terminal differentiation.  相似文献   

13.
The stalk cell differentiation inducing factor (DIF) has the properties required of a morphogen responsible for pattern regulation during the pseudoplasmodial stage of Dictyostelium development. It induces prestalk cell formation and inhibits prespore cell formation, but there is as yet no strong evidence for a morphogenetic gradient of DIF. We have measured DIF accumulation by monolayers of isolated prestalk and prespore cells in an attempt to provide evidence for such a gradient. DIF is accumulated in the largest quantities by a subpopulation of prestalk cells that specifically express the DIF-inducible genes pDd56 and pDd26. Since it has been shown recently that cells that express pDd56 are localized in the central core of the prestalk cell region of the pseudoplasmodia, our current results suggest a morphogenetic gradient generated by this region.  相似文献   

14.
15.
Dictyostelium discoideum pseudoplasmodia exhibit a gradient of the cytosolic free Ca2+-concentration ([Ca2+]i) along their anterior-posterior axis involved in cell-type specific differentiation. [Ca2+]i is high in prestalk and low in prespore cells. We determined the content and localization of calcium and other elements in cryosectioned cells of pseudoplasmodia and fruiting bodies by X-ray microanalysis. Granular stores rich in Ca, Mg and P were identified. Average Ca was higher in prespore than prestalk granules (225vs 111 mmol/kg dry weight). Total Ca stored in granules was also higher in prespore than prestalk cells. The amount of P and S in granules differed between the two cell types indicating different store composition. In spores mean granular Ca was 120 mmol/kg dry weight. Stalk cells had smaller granules with 360 mmol Ca/kg dry weight. Complementary to microanalysis, vesicular Ca2+-fluxes were studied in fractionated cell homogenates. The rate of Ca2+-uptake was higher in pellet fractions of prespore than prestalk amoebae (4.7 vs 3.4 nmol/min x mg). Ca2+-release was greater in supernatant fractions from prestalk than prespore cells (16.5vs 7.7 nmol/10(8)cells). In summary, prestalk and prespore cells possess qualitatively different, high-capacity stores containing distinct amounts of Ca and probably being involved in regulation of the anterior-posterior [Ca2+]i-gradient.  相似文献   

16.
The differentiation-inducing factor-1 (DIF-1) is a putative morphogen that induces stalk-cell formation in the lower eukaryote Dictyostelium discoideum. This molecule has been shown to inhibit cell growth and induce erythroid differentiation in human leukemia K562 cells. In the present study, to clarify the mechanism of the actions of DIF-1, we examined the effect of DIF-1 on Akt/protein kinase B (PKB) in K562 cells. Akt/PKB is a serine/threonine kinase that plays a pivotal role in the regulation of cell survival and differentiation in a variety of cells. A nonphosphorylated (inactive) form of Akt/PKB was ordinarily expressed in K562 cells. However, Akt/PKB was phosphorylated and potently activated within several hours of incubation with 5-30 microM DIF-1, and this activation was inhibited by wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-kinase). Calcium-increasing agents thapsigargin and A23187 also activated Akt/PKB slightly, which was inhibited by wortmannin. By contrast, calcium-reducing agents TMB-8 and EGTA together with A23187 inhibited the DIF-1-induced activation of Akt/PKB. PMA (PKC activator) also activated Akt/PKB but this activation was not inhibited by wortmannin. DIF-1 exhibited no marked effect on the activation of PKCalpha, beta, and gamma, which were activated by PMA. These results indicate that DIF-1 activates Akt/PKB possibly via cytosolic calcium and subsequent activation of PI3-kinase and also that PMA activates Akt/PKB in a PI3-kinase-independent manner.  相似文献   

17.
The differentiation inducing factor (DIF) is essential for stalk cell formation in monolayers of Dictyostelium discoideum and is necessary for the expression of several prestalk cell-specific genes. DIF activity has been fractionated into a major species, designated DIF-1, and several minor species, including DIF-2. Although DIF-1 is an excellent inducer of stalk cell formation from vegetative cells, it is a poor inducer of stalk cell formation from prestalk cells. In contrast, DIF-2 is more active for the conversion of prestalk cells into stalk cells, than for the conversion of vegetative cells to stalk cells. The same results were obtained regardless of whether chemically synthesized or naturally occurring components were utilized. In addition, stalk cell formation was three- to fourfold higher when vegetative cells were incubated with DIF-1 for a suboptimal period and then subsequently incubated with DIF-2, than when cells were incubated with DIF-2 first and then subsequently with DIF-1. These results indicate a distinct role for DIF-2 during stalk cell formation and suggest the possibility that DIF-1 and DIF-2 act sequentially.  相似文献   

18.
By the use of a prestalk- and stalk-specific monoclonal antibody, production of prestalk antigen was examined with non-glucose grown [G(-)] and glucose grown [G(+)] cells of Dictyostelium discoideum AX2. Unlike wild type (NC4), some growth phase cells of AX2 were reactive with the antibody. However, G(-) cells contained much more antigen than G(+) cells and the difference between the two remained during the preaggregation period. Besides glucose, the addition of metabolizable, but not nonmetabolizable sugars to both growth phase and preaggregation cells suppressed the production of the prestalk antigen on the one hand and stimulated the accumulation of glycogen on the other hand. When mixed, G(-) cells which produced more prestalk antigen during the preaggregation period remained prestalk cells after aggregation, while G(+) cells which produced less antigen were converted to prespore cells. G(+) cells collected at the stationary phase [G(+)st] were stronger in prestalk sorting tendency than G(+) cells but weaker than G(-) cells. The prestalk antigen content of G(+)st cells prior to aggregation was an intermediate between those of G(-) and G(+) cells. These lead to the conclusion that the prestalk antigen content of preaggregation cells reflect the tendency of the cells toward either prestalk or prespore differentiation after aggregation.  相似文献   

19.
20.
117 antigen is a glycoprotein expressed on the surface of D. discoideum cells at aggregation. It then disappears and is later re-expressed on the surface of a subpopulation of cells at culmination, the terminal differentiation stage (Sadeghi et al. 1987). A cDNA clone was used to show that the appearance of cell surface 117 antigen accurately reflects the expression of the 117 gene as measured by mRNA levels. It was also shown that during multicellular development there is a reciprocal relationship between the levels of 117 mRNA and the mRNA which codes for prespore surface glycoprotein, PsA. Dual parameter flow cytometry was used to demonstrate that the 117 antigen is found on the surface of maturing prespore cells after the PsA glycoprotein disappears, but that it is not found on mature spores. Using three monoclonal antibodies which identify respectively 117 antigen, PsA, and MUD3 antigen (a spore coat glycoprotein--probably Sp96), two new stages of final spore maturation were defined. These results indicate that there is a recapitulation of at least one aggregative cell surface glycoprotein in the prespore subpopulation of cells as they rise up the stalk during final spore development. This raises the possibility that culmination, which involves complex three dimensional morphogenetic movements not unlike those observed during animal embryogenesis, involves components of the two-dimensional pattern seen during aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号