首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The c-Abl and Arg tyrosine kinases are activated in the cellular response to oxidative stress. The present studies demonstrate that c-Abl and Arg associate with glutathione peroxidase 1 (GPx1) and that this interaction is regulated by intracellular oxidant levels. The c-Abl and Arg SH3 domains bind directly to a proline-rich site in GPx1 at amino acids 132-145. GPx1 also functions as a substrate for c-Abl- and Arg-mediated phosphorylation on Tyr-96. The results further show that c-Abl and Arg stimulate GPx activity and that these kinases contribute to GPx-mediated protection of cells against oxidative stress. Our findings provide the first evidence that GPx1 is regulated by a signaling pathway that is activated in the oxidative stress response.  相似文献   

2.
c-Abl是非受体酪氨酸激酶,它在细胞内被一些基因毒性的、氧化的及其它形式的压力所激活。目前研究证明:应用标记的c-Abl发现其在细胞内可以相互形成同源二聚体,并且一分子c-Abl的N末端区域与相应的另一分子的C末端相互作用形成二聚体。实验进一步表明: cAbl SH3 结构域结合到另一c-Abl 分子富含脯氨酸的C-末端约958-982氨基酸区域。如果去除c-Abl 富含脯氨酸的结构域,就会阻止二聚体的形成。这些结果首先证实了c-Abl在细胞内可以相互形成同源二聚体,并暗示着二聚体的形成可能影响着c-Abl活性的调节。  相似文献   

3.
The Abl family of mammalian non-receptor tyrosine kinases includes c-Abl and Arg. Recent studies have demonstrated that c-Abl and Arg are activated in the response of cells to oxidative stress. This work demonstrates that catalase, a major effector of the cellular defense against H2O2, interacts with c-Abl and Arg. The results show that H2O2 induced binding of c-Abl and Arg to catalase. The SH3 domains of c-Abl and Arg bound directly to catalase at a P293FNP site. c-Abl and Arg phosphorylated catalase at Tyr231 and Tyr386 in vitro and in the response of cells to H2O2. The functional significance of the interaction is supported by the demonstration that cells deficient in both c-Abl and Arg exhibit substantial increases in H2O2 levels. In addition, c-abl-/- arg-/- cells exhibited a marked increase in H2O2-induced apoptosis compared with that found in the absence of either kinase. These findings indicate that c-Abl and Arg regulate catalase and that this signaling pathway is of importance to apoptosis in the oxidative stress response.  相似文献   

4.
The ubiquitously expressed c-Abl tyrosine kinase is activated in the response of cells to genotoxic and oxidative stress. The present study demonstrates that reactive oxygen species (ROS) induce targeting of c-Abl to mitochondria. We show that ROS-induced localization of c-Abl to mitochondria is dependent on activation of protein kinase C (PKC)delta and the c-Abl kinase function. Targeting of c-Abl to mitochondria is associated with ROS-induced loss of mitochondrial transmembrane potential. The results also demonstrate that c-Abl is necessary for ROS-induced depletion of ATP and the activation of a necrosis-like cell death. These findings indicate that the c-Abl kinase targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death.  相似文献   

5.
The ubiquitously expressed c-Abl tyrosine kinase is activated in the apoptotic response of cells to DNA damage. The mechanisms by which c-Abl signals the induction of apoptosis are not understood. Here we show that c-Abl binds constitutively to the mammalian homolog of the Schizosaccharomyces pombe Rad9 cell cycle checkpoint protein. The SH3 domain of c-Abl interacts directly with the C-terminal region of Rad9. c-Abl phosphorylates the Rad9 Bcl-2 homology 3 domain (Tyr-28) in vitro and in cells exposed to DNA-damaging agents. The results also demonstrate that c-Abl-mediated phosphorylation of Rad9 induces binding of Rad9 to the antiapototic Bcl-x(L) protein. The regulation of Rad9 by c-Abl in the DNA damage response is further supported by the demonstration that the interaction between c-Abl and Rad9 contributes to DNA damage-induced apoptosis. These findings indicate that Rad9 is regulated by a c-Abl-dependent mechanism in the apoptotic response to genotoxic stress.  相似文献   

6.
Protein kinase C (PKC) isoforms are phosphorylated on tyrosine in the response of cells to oxidative stress. The present studies demonstrate that treatment of cells with hydrogen peroxide (H(2)O(2)) induces binding of the PKCdelta isoform and the c-Abl protein-tyrosine kinase. The results show that c-Abl phosphorylates PKCdelta in the H(2)O(2) response. We also show that PKCdelta phosphorylates and activates c-Abl in vitro. In cells, induction of c-Abl activity by H(2)O(2) is attenuated by the PKCdelta inhibitor, rottlerin, and by overexpression of the regulatory domain of PKCdelta. These findings support a functional interaction between PKCdelta and c-Abl in the cellular response to oxidative stress.  相似文献   

7.
IGFBP-3 interacts with the retinoid X receptor-alpha (RXRalpha) and retinoic acid receptor-alpha (RARalpha) and thereby interferes with the formation of RXR:RAR heterodimers. Here we identify the domains in RXRalpha and IGFBP-3 that participate in this interaction. When different regions of RXRalpha were expressed independently, we found that only the DNA-binding domain (C-domain) bound IGFBP-3. Residues in the second Zn-finger loop (Gln49, Arg52), which contribute to C-domain dimerization on DR1 response elements, proved essential to IGFBP-3 binding. In complementary studies, we found that residues within the N-terminal domain of IGFBP-3 (Thr58, Arg60) and motifs in its C-terminal domain ((220)LysLysLys, (228)LysGlyArgLysArg) were required for interaction with RXRalpha and RARalpha. Unlike wild-type IGFBP-3, the non-retinoid receptor-binding mutants of IGFBP-3 were unable to attenuate all-trans-retinoic acid-induced transactivation of the RAR response element by RXR:RAR heterodimers. We conclude that residues in both the N- and C-terminal domains of IGFBP-3 are involved in binding the retinoid receptors, and that this interaction is essential to the modulation of RAR-signaling by IGFBP-3.  相似文献   

8.
Cao C  Leng Y  Liu X  Yi Y  Li P  Kufe D 《Biochemistry》2003,42(35):10348-10353
Catalase is a major effector in the defense of aerobic cells against oxidative stress. Recent studies have shown that catalase activity is stimulated by the c-Abl and Arg tyrosine kinases. Little, however, is otherwise known about the mechanisms responsible for catalase regulation. The present work demonstrates that mouse cells deficient in both c-Abl and Arg exhibit increased catalase stability. The results also show that catalase is subject to ubiquitination and degradation by the 26S proteosome. Significantly, ubiquitination of catalase is dependent on c-Abl- and Arg-mediated phosphorylation of catalase on both Y231 and Y386. In concert with these results, human 293 cells expressing catalase mutated at Y231 and Y386 exhibit attenuated levels of reactive oxygen species when exposed to hydrogen peroxide. These findings indicate that, in addition to stimulating catalase activity, c-Abl and Arg promote catalase degradation in the oxidative stress response.  相似文献   

9.
Activation of the cytoplasmic c-Abl tyrosine kinase by reactive oxygen species   总被引:10,自引:0,他引:10  
The ubiquitously expressed c-Abl protein tyrosine kinase localizes to both the nucleus and cytoplasm. The nuclear form of c-Abl is activated in the cellular response to genotoxic stress. Here we show that cytoplasmic c-Abl is activated by oxidative stress. The results also demonstrate that mitochondrial cytochrome c is released in the cellular response to H(2)O(2) and that this effect is mediated by a c-Abl-dependent mechanism. In concert with these results, we show that H(2)O(2)-induced apoptosis is attenuated in c-Abl-deficient cells. These findings demonstrate that cytoplasmic c-Abl is involved in the apoptotic response of cells to oxidative stress.  相似文献   

10.
The Abl family of mammalian nonreceptor tyrosine kinases consists of c-Abl and ARG (Abl-related gene). Certain insights are available regarding the involvement c-Abl in the response of cells to stress. ARG, however, has no known function in cell signaling. The present studies demonstrate that ARG associates with the proapoptotic Siva-1 protein. The functional significance of the ARG-Siva-1 interaction is supported by the finding that ARG is activated by oxidative stress and that this response involves ARG-mediated phosphorylation of Siva-1 on Tyr(48). The proapoptotic effects of Siva-1 are accentuated in cells stably expressing ARG and are inhibited in ARG-deficient cells. Moreover, the proapoptotic effects of Siva-1 are abrogated by mutation of the Tyr(48) site. We also show that the apoptotic response to oxidative stress is attenuated in ARG-deficient cells and that this defect is corrected by reconstituting ARG expression. These findings support a model in which the activation of ARG by oxidative stress induces apoptosis by a Siva-1-dependent mechanism.  相似文献   

11.
12.
Ott V  Koch J  Späte K  Morbach S  Krämer R 《Biochemistry》2008,47(46):12208-12218
The glycine betaine carrier BetP from Corynebacterium glutamicum responds to changes in external osmolality by regulation of its transport activity, and the C-terminal domain was previously identified to be involved in this process. Here we investigate the structural requirements of the C-terminal domain for osmoregulation as well as interacting domains that are relevant for intramolecular signal transduction in response to osmotic stress. For this purpose, we applied a proline scanning approach and amino acid replacements other than proline in selected positions. To analyze the impact of the surrounding membrane, BetP mutants were studied in both C. glutamicum and Escherichia coli, which strongly differ in their phospholipid composition. A region of approximately 25 amino acid residues within the C-terminal domain with a high propensity for alpha-helical structure was found to be essential in terms of its conformational properties for osmodependent regulation. The size of this region was larger in E. coli membranes than in the highly negatively charged C. glutamicum membranes. As a novel aspect of BetP regulation, interaction of the C-terminal domain with one of the cytoplasmic loops as well as with the N-terminal domain was shown to be involved in osmosensing and/or osmoregulation. These results support a functional model of BetP activation that involves the C-terminal domain shifting from interaction with the membrane to interaction with intramolecular domains in response to osmotic stress.  相似文献   

13.
The anti-apoptotic protein HAX-1 has been proposed to modulate mitochondrial membrane potential, calcium signaling and actin remodeling. HAX-1 mutation or deficiency results in severe congenital neutropenia (SCN), loss of lymphocytes and neurological impairments by largely unknown mechanisms. Here, we demonstrate that the activation of c-Abl kinase in response to oxidative or genotoxic stress is dependent on HAX-1 association. Cellular reactive oxygen species (ROS) accumulation is inhibited by HAX-1-dependent c-Abl activation, which greatly contributes to the antiapoptotic role of HAX-1 in stress. HAX-1 (Q190X), a loss-of-function mutant responsible for SCN, fails to bind with and activate c-Abl, leading to dysregulated cellular ROS levels, damaged mitochondrial membrane potential and eventually apoptosis. The extensive apoptosis of lymphocytes and neurons in Hax-1-deficient mice could also be remarkably suppressed by c-Abl activation. These findings underline the important roles of ROS clearance in HAX-1-mediated anti-apoptosis by c-Abl kinase activation, providing new insight into the pathology and treatment of HAX-1-related hereditary disease or tumorigenesis.Subject terms: Apoptosis, Kinases  相似文献   

14.
15.
The adaptor protein Shb has previously been shown to regulate apoptosis in response to cytokines and inhibitors of angiogenesis although the mechanisms governing these effects have remained obscure. We currently demonstrate interactions between Shb and c-Abl and that Shb regulates c-Abl kinase activity. The data suggest that c-Abl binds to tyrosine phosphorylated Shb via a concerted effort involving both the c-Abl SH3 and SH2 domains. The biological significance of the Shb/c-Abl interaction was presently tested in overexpression experiments and was found to promote hydrogen peroxide-induced cell death. We also show by Shb knockdown experiments that Shb regulates c-Abl activity and modulates cell death in response to the genotoxic agent cisplatin and the endoplasmic reticulum stress-inducer tunicamycin. The findings are in agreement with the notion of Shb playing a pivotal role in modulating c-Abl pro-apoptotic signaling in response to various stress stimuli.  相似文献   

16.
17.
Dunnigan-type familial partial lipodystrophy (FPLD) is a laminopathy characterized by an aberrant fat distribution and a metabolic syndrome for which oxidative stress has recently been suggested as one of the disease-causing mechanisms. In a family affected with FPLD, we identified a heterozygous missense mutation c.1315C>T in the LMNA gene leading to the p.R439C substitution. Cultured patient fibroblasts do not show any prelamin A accumulation and reveal honeycomb-like lamin A/C formations in a significant percentage of nuclei. The mutation affects a region in the C-terminal globular domain of lamins A and C, different from the FPLD-related hot spot. Here, the introduction of an extra cysteine allows for the formation of disulphide-mediated lamin A/C oligomers. This oligomerization affects the interaction properties of the C-terminal domain with DNA as shown by gel retardation assays and causes a DNA-interaction pattern that is distinct from the classical R482W FPLD mutant. Particularly, whereas the R482W mutation decreases the binding efficiency of the C-terminal domain to DNA, the R439C mutation increases it. Electron spin resonance spectroscopy studies show significantly higher levels of reactive oxygen species (ROS) upon induction of oxidative stress in R439C patient fibroblasts compared to healthy controls. This increased sensitivity to oxidative stress seems independent of the oligomerization and enhanced DNA binding typical for R439C, as both the R439C and R482W mutants show a similar and significant increase in ROS upon induction of oxidative stress by H2O2.  相似文献   

18.
The nonreceptor c-Abl tyrosine kinase binds to cytosolic 14-3-3 proteins and is targeted to the nucleus in the apoptotic response to DNA damage. The MUC1 oncoprotein is overexpressed by most human carcinomas and blocks the induction of apoptosis by genotoxic agents. Using human carcinoma cells with gain and loss of MUC1 function, we show that nuclear targeting of c-Abl by DNA damage is abrogated by a MUC1-dependent mechanism. The results demonstrate that c-Abl phosphorylates MUC1 on Tyr-60 and forms a complex with MUC1 by binding of the c-Abl SH2 domain to the pTyr-60 site. Binding of MUC1 to c-Abl attenuates phosphorylation of c-Abl on Thr-735 and the interaction between c-Abl and cytosolic 14-3-3. We also show that expression of MUC1 with a mutation at Tyr-60 (i) disrupts the interaction between MUC1 and c-Abl, (ii) relieves the MUC1-induced block of c-Abl phosphorylation on Thr-735 and binding to 14-3-3, and (iii) attenuates the MUC1 antiapoptotic function. These findings indicate that MUC1 sequesters c-Abl in the cytoplasm and thereby inhibits apoptosis in the response to genotoxic anticancer agents.  相似文献   

19.
Brokx SJ  Talbot J  Georges F  Waygood EB 《Biochemistry》2000,39(13):3624-3635
Enzyme I mutants of the Salmonella typhimurium phosphoenolpyruvate:sugar phosphotransferase system (PTS), which show in vitro intragenic complementation, have been identified as Arg126Cys (strain SB1690 ptsI34), Gly356Ser (strain SB1681 ptsI16), and Arg375Cys (strain SB1476 ptsI17). The mutation Arg126Cys is in the N-terminal HPr-binding domain, and complements Gly356Ser and Arg375Cys enzyme I mutations located in the C-terminal phosphoenolpyruvate(PEP)-binding domain. Complementation results in the formation of unstable heterodimers. None of the mutations alters the K(m) for HPr, which is phosphorylated by enzyme I. Arg126 is a conserved residue; the Arg126Cys mutation gives a V(max) of 0.04% wild-type, establishing a role in phosphoryl transfer. The Gly356Ser and Arg375Cys mutations reduce enzyme I V(max) to 4 and 2%, respectively, and for both, the PEP K(m) is increased from 0.1 to 3 mM. It is concluded that this activity was from the monomer, rather than the dimer normally found in assays of wild-type. In the presence of Arg126Cys enzyme, V(max) for Gly356Ser and Arg375Cys enzymes I increased 6- and 2-fold, respectively; the K(m) for PEP decreased to <10 microM, but the K(m) became dependent upon the stability of the heterodimer in the assay. Gly356 is conserved in enzyme I and pyruvate phosphate dikinase, which is a homologue of enzyme I, and this residue is part of a conserved sequence in the subunit interaction site. Gly356Ser mutation impairs enzyme I dimerization. The mutation Arg375Cys also impairs dimerization, but the equivalent residue in pyruvate phosphate dikinase is not associated with the subunit interaction site. A 37 000 Da, C-terminal domain of enzyme I has been expressed and purified; it dimerizes and complements Gly356Ser and Arg375Cys enzymes I proving that the association/dissociation properties of enzyme I are a function of the C-terminal domain.  相似文献   

20.
非受体酪氨酸激酶c-Abl广泛表达于各组织细胞中,其序列高度保守,它的亚细胞定位与其功能密切相关。c-Abl借助其C端的3个核定位信号(NLS)和1个核输出信号(NES)完成细胞核一细胞质问的穿梭过程。关于c-Abl核-质穿梭的详细机制还不清楚。通过酵母双杂交系统,以人类Ib型c-Abl作为诱饵蛋白进行HeLa细胞eDNA文库的筛选,获得了可能在c-Abl核-质穿梭过程中具有调控怍用核孔蛋白p62。核孔复合物(NPC)是大分子物质进行核-质运输的惟一通道,p62是NPC的重要组成部分,它位于中央通道内侧,在许多物质的核-质穿梭过程中具有调节作用。免疫共沉淀和体外结合实验证实,c-Abl和p62之间具有相互作用,而且这种相互作用是通过c-Abl的SH3结构域与p62的P299位点之间的结合实现的;p62可被c-Abl部分磷酸化此外,在293和DKO细胞株中共转染c-Abl和p62,发现核内的c-Abl分布增多。以上结果表明,p62具有促进e-Abl进入细咆核的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号