首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intracellular events regulating endothelial cell proliferation and organization into formalized capillaries are not known. We report that the protein kinase C activator beta-phorbol 12,13-dibutyrate (PDBu) suppresses bovine capillary endothelial (BCE) cell proliferation (K50 = 6 +/- 4 nM) and DNA synthesis in response to human hepatoma-derived growth factor, an angiogenic endothelial mitogen. In contrast, PDBu has no effect on the proliferation of bovine aortic endothelial cells and is mitogenic for bovine aortic smooth muscle and BALB/c 3T3 cells. Several observations indicate that the inhibition of human hepatoma-derived growth factor-stimulated BCE cell growth by PDBu is mediated through protein kinase C. Different phorbol compounds inhibit BCE cell growth according to their potencies as protein kinase C activators (12-O-tetradecanoylphorbol 13-acetate greater than PDBu much greater than beta-phorbol 12,13-diacetate much much greater than beta-phorbol; alpha-phorbol 12,13-dibutyrate; alpha-phorbol 12,13-didecanoate). PDBu binds to a single class of specific, saturable sites on the BCE cell with an apparent Kd of 8 nM, in agreement with reported affinities of PDBu for protein kinase C in other systems. Specific binding of PDBu to BCE cells is displaced by sn-1,2-dioctanoylglycerol, a protein kinase C activator and an analog of the putative second messenger activating this kinase in vivo. The weak protein kinase C activator, sn-1,2-dibutyrylglycerol, does not affect PDBu binding. A cytosolic extract from BCE cells contains a calcium/phosphatidylserine-dependent protein kinase that is activated by sn-1,2-dioctanoylglycerol and PDBu, but not by beta-phorbol. These findings indicate that protein kinase C activation can cause capillary endothelial cells to become desensitized to angiogenic endothelial mitogens. This intracellular regulatory mechanism might be invoked during certain phases of angiogenesis, for example when proliferating endothelial cells become differentiated to organize into nongrowing tubes.  相似文献   

2.
Several angiogenic preparations that have been shown to stimulate plasminogen activator (PA) and collagenase production by cultured bovine capillary endothelial (BCE) cells were tested for their ability to stimulate BCE cell motility in the phagokinetic track assay. Bovine retinal extract, medium conditioned by 3T3-F442A differentiated mouse adipocytes, SK HEP-1 human hepatoma cell lysate, mouse sarcoma 180 cell lysate, and medium conditioned by mouse sarcoma 180 cells stimulated motility 68.7%, 48.5%, 140.9%, 56.5%, and 102.1%, respectively, relative to untreated cells. The motility-stimulating activity of these preparations was dose dependent and linear over the 16-h assay period. Several hormones and growth factors were tested for BCE cell motility-stimulating activity, including insulin, vasopressin, fibroblast growth factor, and a partially purified preparation of sarcoma growth factor, and were found to be ineffective. 12-0-tetradecanoyl-phorbol-acetate (TPA), a potent stimulator of both PA and collagenase activities in BCE cells, also did not stimulate motility, indicating that protease production is not sufficient to stimulate BCE cell motility in this assay. Neither SK HEP-1 hepatoma cell lysate nor TPA was effective in stimulating motility in bovine aortic endothelial (BAE) cells. The inability of SK HEP-1 hepatoma cell lysate to stimulate movement in BAE cells is consistent with the observation that angiogenesis occurs by sprouting of capillaries, not large vessels.  相似文献   

3.
N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), a natural inhibitor of pluripotent hematopoietic stem cell proliferation, has been suggested as capable of promoting an angiogenic response. We studied whether Ac-SDKP stimulates endothelial cell proliferation, migration, and tube formation; enhances angiogenic response in the rat cornea after implantation of a tumor spheroid; and increases capillary density in rat hearts with myocardial infarction (MI). In vitro, an immortal BALB/c mouse aortic endothelial 22106 cell line was used to determine the effects of Ac-SDKP on endothelial cell proliferation and migration and tube formation. In vivo, a 9L-gliosarcoma cell spheroid (250-300 microm in diameter) was implanted in the rat cornea and vehicle or Ac-SDKP (800 microg.kg(-1).day(-1) ip) infused via osmotic minipump. Myocardial capillary density was studied in rats with MI given either vehicle or Ac-SDKP. We found that Ac-SDKP 1) stimulated endothelial cell proliferation and migration and tube formation in a dose-dependent manner, 2) enhanced corneal neovascularization, and 3) increased myocardial capillary density. Endothelial cell proliferation and angiogenesis stimulated by Ac-SDKP could be beneficial in cardiovascular diseases such as hypertension and MI. Furthermore, because Ac-SDKP is mainly cleaved by ACE, it may partially mediate the cardioprotective effect of ACE inhibitors.  相似文献   

4.
Neovascular responses induced by cultured aortic endothelial cells   总被引:7,自引:0,他引:7  
Neovascularization was studied in the chorioallantoic membrane of the chick embryo after implantation of bovine aortic endothelial and smooth muscle cells, Swiss and BALB/c 3T3 cells and human diploid fibroblasts cultured separately on microcarrier beads. Quantitative analysis of neovascularization indicated a 3 1/2-fold increase in the number of blood vessels responding to endothelial cells while smooth muscle cells induced a twofold increase when compared to the response of beads without cells. Skin fibroblasts and Swiss 3T3 cells did not elicit a comparable response. The marked angiogenic response induced by endothelial cells was characterized by a 137% increase in total vessel length and a 35% increase in average vessel area when compared to controls. Two of the properties required for an angiogenesis factor--stimulation of cellular migration and proliferation--can also be demonstrated using endothelial cell-conditioned medium in cell culture systems. Medium from cultured bovine aortic endothelium stimulates DNA synthesis, proliferation, and migration of smooth muscle cells. In addition, conditioned media from both endothelial cells and smooth muscle cells produced an angiogenic response in the chorioallantoic membrane assay, which was comparable to that produced by intact cells growing on microcarrier beads. Similar responses were not evident with medium conditioned by other cell types. These results indicate the potential importance of endothelial cells and endothelial cell products in regulating blood vessel growth.  相似文献   

5.
Components of the extracellular matrix have been shown to modulate the interaction of endothelial cells with their microenvironment. Here we report that thrombospondin (TSP), an extracellular matrix component, induces adhesion and spreading of murine lung capillary (LE-II) and bovine aortic (BAEC) endothelial cells. This TSP-induced spreading was inhibited by heparin and fucoidan, known to bind the amino-terminal globular domain of the molecule. In addition, endothelial cells were induced to migrate by a gradient of soluble TSP (chemotaxis). The chemotactic response was inhibited by heparin and fucoidan, as well as by the mAb A2.5, which also binds to the amino-terminal domain. These data are in agreement with our previous observation that the TSP aminoterminal heparin binding region is responsible for the induction of tumor cell spreading and chemotactic motility. The inhibition of chemotaxis and spreading by antibodies against the beta 3 but not the beta 1 chain of the integrin receptor points to a role for the integrins in the interaction of endothelial cells with TSP. We also found that TSP modulates endothelial cell growth. When added to quiescent LE-II cells, it inhibited the mitogenic effects of serum and the angiogenic factor bFGF, in a dose-dependent manner. The inhibition of DNA synthesis detected in the mitogenic assay resulted in a true inhibition of BAEC and LE-II cell growth, as assessed by proliferation assay. This work indicates that TSP affects endothelial cell adhesion, spreading, motility and growth. TSP, therefore, has the potential to modulate the angiogenic process.  相似文献   

6.
Three preparations known to be angiogenic in vivo and which stimulate production of latent collagenase by cultured bovine capillary endothelial (BCE) cells were tested for their ability to stimulate production of latent collagenase by cultured human umbilical vein endothelial (HUVE) cells. Bovine retinal extract and murine adipocyte-conditioned medium had no effect on production of latent collagenase by HUVE cells at concentrations that were effective in stimulating production of latent collagenase by BCE cells. However, with higher concentrations of bovine retinal extract, production of latent collagenase by HUVE cells was stimulated. Human hepatoma cell sonicate stimulated production of latent collagenase by HUVE cells in a dose-dependent manner. The concentration of human hepatoma cell sonicate which stimulated production of latent collagenase by HUVE cells was lower than the concentration that was effective for the stimulation of production of latent collagenase by BCE cells. Plasminogen activator production by HUVE cells was unaffected by human hepatoma cell sonicate. Varying the concentration of serum in HUVE cultures did not affect the stimulation of latent collagenase production by human hepatoma cell sonicate, suggesting that serum components neither block nor stimulate the action of the collagenase-inducing factor. Although human hepatoma cell sonicate is reported to stimulate endothelial cell multiplication, purified and partially purified endothelial cell mitogens had no effect on production of latent collagenase. Thus, at least two preparations which contain angiogenic activity will stimulate production of latent collagenase by HUVE cells.  相似文献   

7.
8.
Endothelin is a potent vasoconstrictory endothelial-derived peptide which can induce smooth muscle proliferation and therefore may be proatherogenic. Platelet-derived growth factor is also a potent mitogenic vasoconstrictory protein which is proatherogenic. We report that neither endothelin nor PDGF stimulate superoxide production, or monocyte adhesion to porcine aortic endothelial cell monolayers; additionally endothelin is not a chemoattractant factor for monocytes. If endothelin and PDGF are important in atherogenesis it is unlikely that a monocyte response to these mediators is involved.  相似文献   

9.
Cultured bovine aortic endothelial cells synthesize growth factors which markedly differ in the regulation of their storage and secretion. Endothelial cell lysates, but not conditioned medium, contain a growth factor activity that appears to be basic fibroblast growth factor (FGF) by the following criteria: (1) it elutes from heparin-Sepharose at 1.4-1.6 M NaCl; (2) it is mitogenic for bovine aortic and capillary endothelial cells; (3) it is heat sensitive but stable to dithiothreitol; (4) it has a molecular weight of about 18,000 daltons; and (5) it cross-reacts with antiserum directed against basic FGF. In contrast, endothelial cell conditioned medium, but not lysates, contains a growth factor activity that (1) elutes from heparin-Sepharose at 0.4-0.5 M NaCl; (2) is mitogenic for fibroblasts and vascular smooth muscle cells but not for capillary endothelial cells; (3) is heat stable and dithiothreitol sensitive; and (4) competes with platelet-derived growth factor (PDGF) for binding to fibroblasts. From these criteria, it appears that endothelial cells secrete into the medium growth factors some of which are PDGF-like, but secrete little if any basic FGF. It is suggested that endothelial cell-associated basic FGF acts in an autocrine fashion to stimulate endothelial cell proliferation in response to endothelial cell perturbation or injury. On the other hand, the endothelial cell-secreted growth factors which are smooth muscle cell but not endothelial cell mitogens might exert a paracrine function on neighboring cells of the vessel wall.  相似文献   

10.
Endothelioma cells expressing the polyoma virus middle T oncogene induced hemangiomas in mice by the recruitment of nonproliferating endothelial cells from host blood vessels (Williams et al. 1989). I now report that SPARC, a Ca(2+)-binding glycoprotein that perturbs cell-matrix interactions and inhibits the endothelial cell cycle, is produced by endothelioma cells and is in part responsible for the alterations in the morphology and growth that occur when nontransformed bovine aortic endothelial cells are cocultured with endothelioma cells. Normal endothelial cells cocultured with two different middle T-positive endothelial cell lines, termed End cells, exhibited changes in shape that were accompanied by the formation of cell clusters. Media conditioned by End cells repressed proliferation of normal endothelial cells, but enhanced that of an established line of murine capillary endothelium. Radiolabeling studies revealed no apparent differences in the profile of proteins secreted by aortic or capillary cells cultured in End cell conditioned media. Characterization of proteins produced by End cells led to the identification of type IV collagen, laminin, entactin, and SPARC as major secreted products. Although SPARC did not affect the morphology of End or capillary cells, it was associated with overt changes in the shape of aortic endothelial cells. Moreover, SPARC and a synthetic peptide from SPARC domain II inhibited the incorporation of [3H]thymidine by aortic cells, but had minimal to no effect on the capillary endothelial cell line. The inhibition of growth exhibited by aortic endothelial cells cultured in End cell conditioned media could be partially reversed by antibodies specific for SPARC and SPARC peptides. These studies indicate a potential role for SPARC in the generation of hemangiomas by End cells in vivo, a process that requires normal (host) endothelial cells to disengage from the extracellular matrix, withdraw from the cell cycle, migrate, and reassociate into the disorganized cellular networks that comprise cavernous and capillary hemangiomas.  相似文献   

11.
Capillary growth in skeletal muscle occurs via the dissimilar processes of abluminal sprouting or longitudinal splitting, which can be initiated by muscle stretch and elevated shear stress, respectively. The distinct morphological hallmarks of these types of capillary growth suggest that discrete sets of angiogenic mediators play a role in each situation. Because proteolysis and proliferation are two key steps associated with capillary growth, we tested whether differences in the regulation of matrix metalloproteinases (MMPs) or VEGF may be associated with the two types of capillary growth. We found significant increases in MMP-2 total protein and percent activation, and membrane type-1 MMP mRNA levels, compared with controls after muscle stretch but not after shear stress stimulation. In contrast, VEGF protein and endothelial cell proliferation increased after either angiogenic stimulus. We observed that MMP-2 regulation occurs independent of VEGF signaling, because VEGF did not induce MMP-2 production or activation in isolated endothelial cells. Our data suggest that the involvement of MMPs in capillary growth is dependent on the nature of the angiogenic stimulus.  相似文献   

12.
Angiogenesis, new blood vessel formation, is a multistep process, precisely regulated by pro-angiogenic cytokines, which stimulate endothelial cells to migrate, proliferate and differentiate to form new capillary microvessels. Excessive vascular development and blood vessel remodeling appears in psoriasis, rheumatoid arthritis, diabetic retinopathy and solid tumors formation. Thalidomide [alpha-(N-phthalimido)-glutarimide] is known to be a potent inhibitor of angiogenesis, but the mechanism of its inhibitory action remains unclear. The aim of the study was to investigate the potential influence of thalidomide on the several steps of angiogenesis, using in vitro models. We have evaluated the effect of thalidomide on VEGF secretion, cell migration, adhesion as well as in capillary formation of human endothelial cell line EA.hy 926. Thalidomide at the concentrations of 0.01 microM and 10 microM inhibited VEGF secretion into supernatants, decreased the number of formed capillary tubes and increased cell adhesion to collagen. Administration of thalidomide at the concentration of 0.01 microM increased cell migration, while at 10 microM, it decreased cell migration. Thalidomide in concentrations from 0.1 microM to 10 microM did not change cell proliferation of 72-h cell cultures. We conclude that anti-angiogenic action of thalidomide is due to direct inhibitory action on VEGF secretion and capillary microvessel formation as well as immunomodulatory influence on EA.hy 926 cells migration and adhesion.  相似文献   

13.
The CD44 inhibitor Lutheran [In(Lu)]-related p80 molecule has recently been shown to be identical to the Hermes-1 lymphocyte homing receptor and to the human Pgp-1 molecule. We have determined the effect of addition of CD44 antibodies to in vitro activation assays of PBMC. CD44 antibodies did not induce PBMC proliferation alone, but markedly enhanced PBMC proliferation induced by a mitogenic CD2 antibody pair or by CD3 antibody. CD44 antibody addition had no effect upon PBMC activation induced by PHA or tetanus toxoid. CD44 antibody enhancement of CD2 antibody-induced T cell activation was specific for mature T cells as thymocytes could not be activated in the presence of combinations of CD2 and CD44 antibodies. CD44 antibody enhancement of CD2-mediated T cell triggering occurred if CD44 antibody was placed either on monocytes or on T cells. In experiments with purified monocyte and T cell suspensions, CD44 antibodies A3D8 and A1G3 augmented CD2-mediated T cell activation by three mechanisms. First, CD44 antibody binding to monocytes induced monocyte IL-1 release, second, CD44 antibodies enhanced the adhesion of T cells and monocytes in CD2 antibody-stimulated cultures, and third, CD44 antibodies augmented T cell IL-2 production in response to CD2 antibodies. Thus, ligand binding to CD44 molecules on T cells and monocytes may regulate numerous events on both cell types that are important for T cell activation. Given that recent data suggest that the CD44 molecule may bind to specific ligands on endothelial cells (vascular addressin) and within the extracellular matrix (collagen, fibronectin), these data raise the possibility that binding of T cells to endothelial cells or extracellular matrix proteins may induce or up-regulate T cell activation in inflammatory sites.  相似文献   

14.
We have previously shown that capillary endothelial cells grown on the surface of three-dimensional collagen gels can be induced to invade the underlying fibrillar matrix and to form capillary-like tubular structures in response to tumor-promoting phorbol esters or the angiogenic agent fibroblast growth factor (FGF). Since both phorbol esters and FGF stimulate phosphorylation of tyrosine residues, we treated endothelial cells with vanadate, an inhibitor of phosphotyrosine-specific phosphatases, to determine whether this agent could induce the expression of an angiogenic phenotype in these cells. We show here that vanadate stimulates endothelial cells to invade collagen matrices and to organize into characteristic tubules resembling those induced by FGF or phorbol esters. We have further observed that vanadate concomitantly stimulates endothelial cells to produce plasminogen activators (PAs), proteolytic enzymes which are induced by phorbol esters and FGF, and which have been implicated in the neovascular response; this stimulation can be accounted for by an increase in the levels of urokinase-type PA and tissue type PA mRNA. These results suggest a role for tyrosine phosphorylation in the regulation of the angiogenic phenotype in capillary endothelial cells.  相似文献   

15.
Our previous studies have indicated that hypoxia-induced mitogenic factor (HIMF) has angiogenic properties in an in vivo matrigel plug model and HIMF upregulates expression of vascular endothelial growth factor (VEGF) in mouse lungs and cultured lung epithelial cells. However, whether HIMF exerts angiogenic effects through modulating endothelial cell function remains unknown. In this study, mouse aortic rings cultured with recombinant HIMF protein resulted in enhanced vascular sprouting and increased endothelial cell spreading as confirmed by Dil-Ac-LDL uptake, von Willebrand factor and CD31 staining. In cultured mouse endothelial cell line SVEC 4-10, HIMF dose-dependently enhanced cell proliferation, in vitro migration and tubulogenesis, which was not attenuated by SU1498, a VEGFR2/Flk-1 receptor tyrosine kinase inhibitor. Moreover, HIMF stimulation resulted in phosphorylation of Akt, p38 and ERK1/2 kinases in SVEC 4-10 cells. Treatment of mouse aortic rings and SVEC 4-10 cells with LY294002, but not SB203580, PD098059 or U0126, abolished HIMF-induced vascular sprouting and angiogenic responses. In addition, transfection of a dominant-negative mutant of phosphatidylinositol 3-kinase (PI-3K), Deltap85, blocked HIMF-induced phosphorylation of Akt, endothelial activation and tubulogenesis. These results indicate that HIMF enhances angiogenesis by promoting proliferation and migration of endothelial cells via activation of the PI-3K/Akt pathways.  相似文献   

16.
Micromolar concentrations of sodium orthovanadate stimulated the proliferation of bovine capillary endothelial cells, but not bovine aortic endothelial cells. Vanadate was equally potent at inducing protein tyrosine phosphorylation and changes in morphology in both types of cells. However, vanadate treatment lead to an inhibition of protein tyrosine kinase activity in the aortic endothelial cells, but not the capillary endothelial cells. In capillary endothelial cells, the effect of vanadate was additive with basic FGF (bFGF) at low concentrations of bFGF. There was no interaction between bFGF and vanadate in aortic endothelial cells. TGF-beta, which inhibits the induction of endothelial cell proliferation by bFGF, appeared to shift the dose response curve to vanadate in capillary endothelial cells, increasing the proliferative effect of vanadate at low vanadate concentrations, but decreasing the proliferative effect at higher vanadate concentrations.  相似文献   

17.
The anti-angiogenic activity of pigment epithelium-derived factor (PEDF) has recently been discovered on the basis of its inhibition of ischemia-induced retinal neovascularization in an animal model of retinopathy of the premature. Moreover PEDF inhibits the migration and proliferation of various endothelial cells maintained in culture with FGF(2). Since vascular endothelial growth factor (VEGF) is the main angiogenic factor expressed in hypervascularized retinas, we investigated the functions of PEDF on retinal endothelial cells whose angiogenic phenotype is controlled or not by long term exposure to VEGF as observed in human pathologies such as diabetic retinopathy. Here, we observed that PEDF exerts opposite effects on endothelial cells depending on their phenotype. We determined that when PEDF inhibits endothelial cell growth, it inhibits VEGF-induced MAPK activation. However, in endothelial cells cultured with VEGF, PEDF has a synergistic action on cell proliferation with VEGF, and this corresponds to increased MAPK activation.  相似文献   

18.
Proliferation of endothelial cells is regulated by angiogenic and antiangiogenic factors whose actions are mediated by complex interactions of multiple signaling pathways. Both vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) stimulate cell proliferation and activate the mitogen-activated protein kinase (MAPK) cascade in bovine brain capillary endothelial (BBE) cells. We have extended these findings to show that both mitogens activate MAPK via stimulation of Raf-1. Activation of Raf/MAPK is inhibited by increasing intracellular cAMP levels pharmacologically or via stimulation of endogenously expressed β-adrenergic receptors. Both VEGF- and bFGF-induced Raf-1 activity are blocked in the presence of forskolin or 8-bromo-cAMP by 80%. The actions of increased cAMP appear to be mediated by cAMP-dependent protein kinase (PKA), since treatment with H-89, a the specific inhibitor of PKA, reversed the inhibitory effect of elevated cAMP levels on mitogen-induced cell proliferation and Raf/MAPK activation. Moreover, elevations in cAMP/PKA activity inhibit mitogen-induced cell proliferation. These findings demonstrate, in cultured endothelial cells, that the cAMP/PKA signaling pathway is potentially an important physiological inhibitor of mitogen activation of the MAPK cascade and cell proliferation. J. Cell. Biochem. 67:353–366, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
The serpin protease nexin-1 (PN-1) is expressed by vascular cells and secreted by platelets upon activation, and it is known to interact with several modulators of angiogenesis, such as proteases, matrix proteins, and glycosaminoglycans. We therefore investigated the impact of PN-1 on endothelial cell angiogenic responses in vitro and ex vivo and in vivo in PN-1-deficient mice. We found that PN-1 is antiangiogenic in vitro: it inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell responses, including proliferation, migration, and capillary tube formation, and decreased cell spreading on vitronectin. These effects do not require the antiprotease activity of PN-1 but involve PN-1 binding to glycosaminoglycans. In addition, our results indicated that PN-1 does not act by blocking VEGF binding to its heparan sulfate proteoglycan coreceptors. The results obtained in vitro were supported ex vivo in PN-1-deficient mice, where the microvascular network sprouting from aortic rings was significantly enhanced. Moreover, in vivo, neovessel formation was promoted in the Matrigel plug assay in PN-1-deficient mice compared to wild-type mice, and these effects were reversed by the addition of recombinant PN-1. Taken together, our results demonstrate that PN-1 has direct antiangiogenic properties and is a yet-unrecognized player in the angiogenic balance.  相似文献   

20.
We have examined the role of platelet-derived growth factor (PDGF) ligand and receptor genes in the angiogenic process of the developing human placenta. In situ hybridization analysis of first trimester placentae showed that most microcapillary endothelial cells coexpress the PDGF-B and PDGF beta-receptor genes. This observation indicates that PDGF-B may participate in placental angiogenesis by forming autostimulatory loops in capillary endothelial cells to promote cell proliferation. Endothelial cells of macro blood vessels maintained high PDGF-B expression, whereas PDGF beta-receptor mRNA was not detectable. In contrast, PDGF beta-receptor mRNA was readily detectable in fibroblast-like cells and smooth muscle cells in the surrounding intima of intermediate and macro blood vessels. Taken together, these data suggest that the PDGF-B signalling pathway appears to switch from an autocrine to a paracrine mechanism to stimulate growth of surrounding PDGF beta-receptor-positive mesenchymal stromal cells. Smooth muscle cells of the blood vessel intima also expressed the PDGF-A gene, the protein product of which is presumably targeted to the fibroblast-like cells of the mesenchymal stroma as these cells were the only ones expressing the PDGF alpha-receptor. PDGF-A expression was also detected in columnar cytotrophoblasts where it may have a potential role in stimulating mesenchymal cell growth at the base of the growing placental villi. We discuss the possibility that the regulation of the PDGF-B and beta-receptor gene expression might represent the potential targets for primary angiogenic factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号