首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The effect of lipid composition on the rate of cholesterol movement between cellular membranes is investigated using lipid vesicles. The separation of donor and acceptor vesicles required for rate measurement is achieved by differential centrifugation so that the lipid effect can be quantified in the absence of a charged lipid generally used for ion-exchange-based separation. The rate of cholesterol transfer from small unilamellar vesicles (SUVs) containing 50 mol% cholesterol to a common large unilamellar vesicle (LUV) acceptor containing 20 mol% cholesterol decreases with increasing mol% of sphingomyelin in the SUVs, while phosphatidylethanolamine and phosphatidylserine have no appreciable effect at physiologically relevant levels. There is a large decrease in rate when phosphatidylethanolamine constitutes 50 mol% of donor phospholipids. Interestingly, gangliosides which have the same hydrocarbon moiety as sphingomyelin exert an opposite effect. The effect of spingomyelin seems to be mediated by its ability to decrease the fluidity of the lipid matrix, while that of gangliosides may arise from a weakening of phosphatidylcholine-cholesterol interactions or from a more favourable (less polar) microenvironment for the desorption of cholesterol provided by the head-group interactions involving sugar residues. If the effect of asymmetric transbilayer distribution of lipids is taken into consideration, the observed composition-dependent rate changes could partly account for the large difference in the rates of cholesterol desorption from the inner and outer layers of plasma membrane. Such rate differences may be responsible for an unequal steady-state distribution of cholesterol among various cellular membranes and lipoproteins.  相似文献   

2.
The kinetics of the partitioning of lipid vesicles containing acidic phospholipids in aqueous two-phase polymer systems are dependent upon the vesicle size; the larger the vesicles, the more readily they absorb to the interfaces between the two polymer phases and hence are cleared from the top phase as phase separation proceeds. The partitioning of neutral lipid vesicles is principally to the bulk interface and is the same in phase systems of both low and high electrostatic potential difference between the two phases (delta psi). The incorporation of negatively charged lipids has two effects upon partition. First, vesicles with negatively charged lipids exhibit increased bottom phase partitioning in phases of low delta psi due to an enhanced wetting of the charged lipids by the lower phase. Second, the presence of a negatively charged group on the vesicle surface results in increased partition to the interface and top phase in phase systems of high delta psi. Differences observed in the partition of vesicles containing various species of negatively charged lipid thus reflect a competition between these two opposing factors.  相似文献   

3.
The effects of lipid composition on the relaxivity of gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) entrapped in lipid vesicles has been examined for vesicles of different sizes composed of egg phosphatidylcholine and cholesterol in various molar ratios, as well as the stability of those same vesicles in human serum at 37 degrees C. It is found that the incorporation of cholesterol decreases the apparent relaxivity of the entrapped Gd-DTPA, concomitant with an increase in vesicle stability in serum. Cholesterol has little effect on relaxivity when incorporated at ratios up to 20 mole percent, but has an increasing effect at higher mole percentages. These results correlate with the known effects of cholesterol on the osmotic water permeability coefficients of various model membrane systems and suggest that it is the water flux across the vesicle bilayer that is limiting to the T1 relaxivity of the entrapped Gd-DTPA. The incorporation of up to 20 mole percent cholesterol has little effect on the stability of the vesicles in serum, whereas vesicles containing more than 20 mole percent cholesterol show greater increases in stability. It was also found that the stability of vesicles depends upon the size of the vesicles; smaller vesicles are less stable in human serum at 37 degrees C than larger vesicles.  相似文献   

4.
Cholesterol readily exchanges between human skin fibroblasts and unilamellar phospholipid vesicles. Only a fraction of the exchangeable cholesterol and only 10–15% of the total cellular free cholesterol is available for net movement or depletion to cholesterol-free phosphatidylcholine vesicles. [14C]Cholesterol introduced into the fibroblast plasma membrane by exchange from lipid vesicles does not readily equilibrate with fibroblast cholesterol labelled endogenously from [3H]mevalonic acid. While endogenously-synthesized [3H]cholesterol readily becomes incorporated into a pool of esterified cholesterol, little, if any, of the [14C]cholesterol introduced into the fibroblast plasma membrane by exchange from lipid vesicles becomes available for esterification. We interpret these findings as suggesting that: (1) net cholesterol movement from fibroblasts to an acceptor membrane is limited to a small percentage of the plasma membrane cholesterol, and (2) separate pools of cholesterol exist in human skin fibroblasts, one associated with the plasma membrane and the second associated with intracellular membranes, and equilibration of cholesterol between the two pools is a very limited process.  相似文献   

5.
The kinetics and mechanism of transfer of 14C-labeled human apolipoproteins A-I, A-II and C-III1 between small unilamellar vesicles (SUV) have been investigated. Ion exchange chromatography was used for rapid separation of negatively charged egg phosphatidylcholine (PC)/dicetyl phosphate donor SUV containing bound 14C-labeled apoprotein from neutral egg PC acceptor SUV present in 10-fold molar excess. The transfer kinetics of these apolipoproteins at 37 degrees C are consistent with the existence of fast, slow and apparently 'nontransferrable' pools of SUV-associated lipoprotein: the transfers from these pools occur on timescales of seconds (or less), minutes/hours and days/weeks, respectively. For donor SUV containing about 15 apoprotein molecules per vesicle and at a donor SUV concentration of 0.15 mg phospholipid/ml incubation mixture, the sizes of the fast kinetic pools for apolipoproteins A-I, A-II and C-III1 associated with donor SUV are 2, 10 and 11%, respectively. The sizes of the slow kinetic pools for these apolipoproteins are 16, 71 and 50%, respectively. The transfer of the various apolipoproteins from the slow kinetic pool follows first order kinetics and the half-time (t1/2) values are in the order: apo C-III1 less than apo A-I. Increasing the number of apoprotein molecules per donor SUV enlarges the size of the fast pool and increases the t1/2 of slow transfer. The differences in the kinetics of apolipoprotein transfer between SUV are consequences of the variations in the primary and secondary structures of the apolipoprotein molecules. The slow transfer of apoprotein molecules is mediated by collisions between donor and acceptor SUV; the rate is dependent on the apoprotein molecular weight with larger molecules transferring more slowly from donor SUV containing the same lipid/protein molar ratio. The hydrophobicity of the apoprotein molecule is also significant with less hydrophobic molecules transferring more rapidly. Further understanding of the differences in the kinetics of transfer of these apolipoproteins will require more knowledge of their secondary and tertiary structures.  相似文献   

6.
Recently, new and improved methods have been developed to measure translocation of membrane-active peptides (antimicrobial, cytolytic, and amphipathic cell-penetrating peptides) across lipid bilayer membranes. The hypothesis that translocation of membrane-active peptides across a lipid bilayer is determined by the Gibbs energy of insertion of the peptide into the bilayer is re-examined in the light of new experimental tests. The original hypothesis and its motivation are first revisited, examining some of the specific predictions that it generated, followed by the results of the initial tests. Translocation is understood as requiring two previous steps: binding and insertion in the membrane. The problem of peptide binding to membranes, its prediction, measurement, and calculation are addressed. Particular attention is given to understanding the reason for the need for amphipathic structures in the function of membrane-active peptides. Insertion into the membrane is then examined. Hydrophobicity scales are compared, and their influence on calculations is discussed. The relation between translocation and graded or all-or-none peptide-induced flux from or into lipid vesicles is also considered. Finally, the most recent work on translocation is examined, both experimental and from molecular dynamics simulations. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   

7.
J A Ibdah  M C Phillips 《Biochemistry》1988,27(18):7155-7162
To better understand the factors controlling the binding of apolipoprotein molecules at the surfaces of serum lipoprotein particles, the adsorption of human apolipoprotein A-I to phospholipid monolayers has been studied. The influence of lipid packing was investigated by spreading the monolayers at various initial surface pressures (pi i) and by using various types of lipid. The adsorption of 14C-methylated apolipoprotein A-I was monitored by simultaneously following the surface radioactivity (which could be converted to the surface concentration of protein, gamma) and the change in surface pressure (delta pi). In general, increasing the pi i of lipid monolayers reduces the adsorption of apolipoprotein A-I; for expanded egg phosphatidylcholine (PC) monolayers at pi i greater than or equal to 32 dyn/cm, gamma and delta pi are zero. The degree of adsorption of the apolipoprotein is also influenced by the physical state of the lipid monolayers. Thus, at a given pi i, apolipoprotein A-I adsorbs more to expanded monolayers than to condensed monolayers so that, at a given subphase concentration of protein, gamma of apolipoprotein A-I with various phospholipid monolayers decreases in the order egg PC greater than egg sphingomyelin greater than distearoyl-PC. The plot of gamma against pi i for adsorption of apolipoprotein A-I to dipalmitoylphosphatidylcholine (DPPC) monolayers shows an inflection at pi i = 8 dyn/cm; at this pi, the DPPC monolayer undergoes a phase transition from liquid (expanded) to solid (condensed) state. Addition of cholesterol generally decreases the adsorption of apolipoprotein A-I to egg PC monolayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A probability concept about size distributions of sonicated lipid vesicles   总被引:1,自引:0,他引:1  
The sonication procedure of preparation of small unilamellar vesicles is modelled as a process of uniform random fragmentation of the lipid aggregates. The vesicle size distribution evolving in this process is shown to be identical with the Weibull extremal probability distribution. Size histograms of sonicated small vesicles of various phospholipid composition were obtained by using electron microscopy (negative staining). Their successful simulation with Weibull curves shows that theory agrees with experiment. A similarly good agreement is found also with size histograms obtained by freeze-fracture of phosphatidylcholine-cholesterol vesicles (Van Veneti?, R., Leunissen-Bijvelt, J., Verkleij, A.J. and Ververgaert, P.H.J.T. (1980) J. Microsc. 118, 401-408). This analysis allows a refinement of some earlier conclusions about the effect of cholesterol on the size of the sonicated vesicles. It follows from the theoretical model that the only intrinsic characteristic of the sonicated vesicles is the lower limit of their size. The other characteristics of the size distribution such as expectancy, dispersion, position and height of the maximum depend on the intensity of fragmentation. It is concluded that the size distribution of sonicated small vesicles is completely determined by the procedure of their preparation and, therefore, the condition of thermodynamic equilibrium between aggregated and monomeric lipid is irrelevant in this case.  相似文献   

9.
The production of vesicles, spherical shells formed from lipid bilayers, is an important aspect of their recent application to drug delivery technologies. One popular production method involves pushing a lipid suspension through cylindrical pores in polycarbonate membranes. However, the actual mechanism by which the polydisperse, multilamellar lipid suspension breaks up into a relatively monodisperse population of vesicles is not well understood. To learn about factors influencing this process, we have characterized vesicles produced under different extrusion parameters and from different lipids. We find that extruded vesicles are only produced above a certain threshold extrusion pressure and have sizes that depend on the extrusion pressure. The minimum pressure appears to be associated with the lysis tension of the lipid bilayer rather than any bending modulus of the system. The flow rate of equal concentration lipid solutions through the pores, after being corrected for the viscosity of water, is independent of lipid properties.  相似文献   

10.
Microvillus membrane vesicles from pig small intestine were isolated by a method based on hypotonic lysis, Mg2+ aggregation of contaminants and differential centrifugation. The purity of the membrane vesicles were established by measuring the activity of marker enzymes and the RNA and DNA content. The membranes were found free of contamination by other subcellular membrane fragments, except for a minor contamination with basolateral plasma membranes. The lipid composition was established and, based on weight percentage, the membrane contained neutral lipids, phospholipids, neutral glycolipids and gangliosides in the weight ratio of 18:50:29:2%. The amount of individual phospholipids and glycolipids were quantitated. Phosphatidylethanolamine, -choline, -serine, -inositol and sphingomyelin made up 17,17,6,5 and 5%, respectively of the total lipid. The major glycolipids were two monohexosylceramides containing glucose and galactose as the carbohydrate component, a dihexosylceramide containing galactose as the only carbohydrate component and two pentahexosylceramides containing fucose, galactose, glucose and hexosamine (either N-acetylglucosamine or N-acetylgalactosamine) in the molar ratio of 1:2:1:1.  相似文献   

11.
12.
The effect of specific lipids on the functional properties of the acetylcholine receptor were examined in reconstituted membranes prepared from purified Torpedo californica acetylcholine receptor and various defined lipids. Cholesterol and negatively charged lipids greatly enhanced the ion influx response of the vesicles as measured by the effect of a receptor agonist on cation translocation across the vesicles. Part of the lipid-dependent effects could be attributed to alterations in the average size of the vesicles. All lipid mixtures used permitted complete incorporation of receptor and retention of ligand binding properties. Quantitative differences in ion flux properties suggest a modulating role for specific lipids in acetylcholine receptor function.  相似文献   

13.
Microfluidic jetting is a promising method to produce giant unilamellar phospholipid vesicles for mimicking living cells in biomedical studies. We have investigated the chemical composition of membranes of vesicles prepared using this approach by means of Raman scattering spectroscopy. The membranes of all jetted vesicles are found to contain residuals of the organic solvent decane used in the preparation of the initial planar membrane. The decane inclusions are randomly distributed over the vesicle surface area and vary in thickness from a few to several tens of nanometers. Our findings point out that the membrane properties of jetted vesicles may differ considerably from those of vesicles prepared by other methods and from those of living cells. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Band 3 protein has been incorporated into lipid vesicles consisting of 94:6 (molar ratio) egg phosphatidylcholine-bovine heart phosphatidylserine or total erythrocyte lipids by means of a Triton X-100 Bio-Beads method, with an additional sonication step prior to the removal of the detergent. This methods results, for both types of band 3 lipid vesicles, in rather homogeneous vesicles with comparable protein content and vesicle trap. Freeze-fracture electron microscopy revealed that band 3-egg phosphatidylcholine-bovine heart phosphatidylserine vesicles have considerably more intramembrane particles as compared to the band 3-erythrocyte lipid vesicles. The dimensions of the nonspecific permeation pathways present in the band 3-lipid vesicles were measured using an influx assay procedure for nonelectrolytes of different size, in which the vesicles were sampled and subsequently freed from nonenclosed labeled permeant by means of gel-filtration. The band 3-egg phosphatidylcholine-bovine heart phosphatidylserine vesicles have nonspecific permeation pathways (pores), with diameters of up to 60 A. In contrast, the band 3-total erythrocyte lipid vesicles are more homogeneous and show much smaller nonspecific permeation pathways, having a diameter of about 12 A. These results suggest that the nonspecific permeability of the band 3-lipid vesicles is strongly lipid-dependent. Increase in specific anion permeability expected as a consequence of the presence of band 3 in the erythrocyte lipid vesicles was found to be very limited. However, stereospecific, phloretin-inhibitable D-glucose permeability could clearly be demonstrated in these vesicles. The difference of the nonspecific permeability of the band 3-egg phosphatidylcholine-bovine heart phosphatidylserine vesicles and band 3-erythrocyte lipid vesicles, is discussed in the light of the presence of defects at the lipid/protein interface and protein aggregation, which may induce formation of pores.  相似文献   

15.
The present study is an application of an approach recently developed by the authors for describing the structure of the hydrocarbon chains of lipid-bilayer membranes (LBMs) around embedded protein inclusions ( Biophys. J. 79:2867-2879). The approach is based on statistical mechanical integral equation theories developed for the study of dense liquids. First, the configurations extracted from molecular dynamics simulations of pure LBMs are used to extract the lateral density-density response function. Different pure LBMs composed of different lipid molecules were considered: dioleoyl phosphatidylcholine (DOPC), palmitoyl-oleoyl phosphatidylcholine (POPC), dipalmitoyl phosphatidylcholine (DPPC), and dimyristoyl phosphatidylcholine (DMPC). The results for the lateral density-density response function was then used as input in the integral equation theory. Numerical calculations were performed for protein inclusions of three different sizes. For the sake of simplicity, protein inclusions are represented as hard smooth cylinders excluding the lipid hydrocarbon core from a small cylinder of 2.5 A radius, corresponding roughly to one aliphatic chain, a medium cylinder of 5 A radius, corresponding to one alpha-helix, and a larger cylinder of 9 A radius, representing a small protein such as the gramicidin channel. The lipid-mediated interaction between protein inclusions was calculated using a closed-form expression for the configuration-dependent free energy. This interaction was found to be repulsive at intermediate range and attractive at short range for two small cylinders in POPC, DPPC, and DMPC bilayers, whereas it oscillates between attractive and repulsive values in DOPC bilayers. For medium size cylinders, it is again repulsive at intermediate range and attractive at short range, but for every model LBM considered here. In the case of a large cylinder, the lipid-mediated interaction was shown to be repulsive for both short and long ranges for the DOPC, POPC, and DPPC bilayers, whereas it is again repulsive and attractive for DMPC bilayers. The results indicate that the packing of the hydrocarbon chains around protein inclusions in LBMs gives rise to a generic (i.e., nonspecific) lipid-mediated interaction which favors the association of two alpha-helices and depends on the lipid composition of the membrane.  相似文献   

16.
Solid state NMR techniques have been used to investigate the effect that two serotonin receptor 1a agonists (quipazine and LY-165,163) have on the phase behavior of, and interactions within, cholesterol/phosphocholine lipid bilayers. The presence of agonist, and particularly LY-165,163, appears to widen the phase transitions, an effect that is much more pronounced in the presence of cholesterol. It was found that both agonists locate close to the cholesterol, and their interactions with the lipids are modulated by the lipid phases. As the membrane condenses into mixed liquid-ordered/disordered phases, quipazine is pushed up toward the surface of the bilayer, whereas LY-165,163 moves deeper into the lipid chain region. In light of our results, we discuss the role of lipid/drug interactions on drug efficacy.  相似文献   

17.
Microvillus membrane vesicles from pig small intestine were isolated by a method based on hypotonic lysis, Mg2+-aggregation of contaminants and differential centrifugation. The purity of the membrane vesicles were established by measuring the activity of marker enzymes and the RNA and DNA content. The membranes were found free of contamination by other subcellular membrane fragments, except for a minor contamination with basolateral plasma membranes. The lipid composition was established and, based on weight percentage, the membrane contained neutral lipids, phospholipids, neutral glycolipids and gangliosides in the weight ratio of 18 : 50 : 29 : 2%. The amount of individual phospholipids and glycolipids were quantitated. Phosphatidylethanolamine, -choline, -serine, -inositol and sphingomyelin made up 17, 17, 6, 5 and 5%, respectively of the total lipid. The major glycolipids were two monohexosylceramides containing glucose and galactose as the carbohydrate component, a dihexosylceramide containing galactose as the only carbohydrate component and two pentahexosylceramides containing fucose, galactose, glucose and hexosamine (either N-acetylglucosamine or N-acetylgalactosamine) in the molar ratio of 1 : 2 : 1 : 1.  相似文献   

18.
Gudheti MV  Lee SP  Danino D  Wrenn SP 《Biochemistry》2005,44(19):7294-7304
We report the combined effects of phospholipase C (PLC), a pronucleating factor, and apolipoprotein A-I (apo A-I), an antinucleating factor, in solutions of model bile. Results indicate that apo A-I inhibits cholesterol nucleation from unilamellar lecithin vesicles by two mechanisms. Initially, inhibition is achieved by apo A-I shielding of hydrophobic diacylglycerol (DAG) moieties so as to prevent vesicle aggregation. Protection via shielding is temporary. It is lost when the DAG/apo A-I molar ratio exceeds a critical value. Subsequently, apo A-I forms small ( approximately 5-15 nm) complexes with lecithin and cholesterol that coexist with lipid-stabilized (400-800 nm) DAG oil droplets. This microstructural transition from vesicles to complexes avoids nucleation of cholesterol crystals and is a newly discovered mechanism by which apo A-I serves as an antinucleating agent in bile. The critical value at which a microstructural transition occurs depends on binding of apo A-I and so varies with the cholesterol mole fraction of vesicles. Aggregation of small, unilamellar, egg lecithin vesicles (SUVs) with varying cholesterol composition (0-60 mol %) was monitored for a range of apo A-I concentrations (2 to 89 microg/mL). Suppression of aggregation persists so long as the DAG-to-bound-apo A-I molar ratio is less than 100. A fluorescence assay involving dansylated lecithin shows that the suppression is an indirect effect of apo A-I rather than a direct inhibition of PLC enzyme activity. The DAG-to-total apo A-I molar ratio at which suppression is lost increases with cholesterol because of differences in apo A-I binding. Above this value, a microstructural transition to DAG droplets and lecithin/cholesterol A-I complexes occurs, as evidenced by sudden increases in turbidity and size and enhancement of Forster resonance energy transfer; structures are confirmed by cryo TEM.  相似文献   

19.
Fatty acid desaturation regulates membrane function and fat storage in animals. To determine the contribution of stearoyl-CoA desaturase (SCD) activity on fat storage and development in the nematode Caenorhabditis elegans, we analyzed the lipid composition and lipid droplet size in the fat-6;fat-7 desaturase mutants independently and in combination with mutants disrupted in conserved lipid metabolic pathways. C. elegans with impaired SCD activity displayed both reduced fat stores and decreased lipid droplet size. Mutants in the daf-2 (insulin-like growth factor receptor), rsks-1 (homolog of p70S6kinase, an effector of the target of rapamycin signaling pathway), and daf-7 (transforming growth factor β) displayed high fat stores, the opposite of the low fat observed in the fat-6;fat-7 desaturase mutants. The metabolic mutants in combination with fat-6;fat-7 displayed low fat stores, with the exception of the daf-2;fat-6;fat-7 triple mutants, which had increased de novo fatty acid synthesis and wild-type levels of fat stores. Notably, SCD activity is required for the formation of large-sized lipid droplets in all mutant backgrounds, as well as for normal ratios of phosphatidylcholine (PC) to phosphatidylethanolamine (PE). These studies reveal previously uncharacterized roles for SCD in the regulation of lipid droplet size and membrane phospholipid composition.  相似文献   

20.
Two related 18-amino acid, class A, amphipathic helical peptides termed 3F-2 and 3F14 were chosen for this study. Although they have identical amino acid compositions and many similar biophysical properties, 3F-2 is more potent than 3F14 as an apolipoprotein AI mimetic peptide. The two peptides exhibit similar gross conformational properties, forming structures of high helical content on a membrane surface. However, the thermal denaturation transition of 3F-2 is more cooperative, suggesting a higher degree of oligomerization on the membrane. Both 3F-2 and 3F14 promote the segregation of cholesterol in membranes containing phosphatidylcholine and cholesterol, but 3F-2 exhibits a greater selectivity for partitioning into cholesterol-depleted regions of the membrane. Magic angle spinning/NMR studies indicate that the aromatic residues of 3F-2 are stacked in the presence of lipid. The aromatic side chains of this peptide also penetrate more deeply into membranes of phosphatidylcholine with cholesterol compared with 3F14. Using the fluorescent probe, 1,3-dipyrenylpropane, we monitored the properties of the lipid hydrocarbon environment. 3F-2 had a greater effect in altering the properties of the hydrocarbon region of the membrane. The results are consistent with our proposed model of the effect of peptide shape on the nature of the difference in peptide insertion into the bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号