首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A previous paper described a kinetic model for electrogenic sodium-potassium transport in cardiac muscle, combining a thermodynamically-constrained transport model with simple passive permeabilities for sodium and potassium to generate a cardiac action potential (Chapman, Kootsey & Johnson, 1979). The present paper explores the extent to which this simplest of active-passive transport models can account (without further modification) for the electrophysiological behavior of cardiac muscle. The long term (several minutes) changes in the duration of the action potential observed following a change in stimulation rate are predicted by the model through a shift in the steady-state current-voltage relationship caused by small changes in inside ion concentrations. The diastolic hyperpolarization observed following an increase in rate is also predicted, including the linear relationship between the maximum diastolic depolarization and the rate of stimulation. Varying the outside potassium concentration in the model produces changes in the rest potential and current-voltage relationship similar to published data. Deviations from ideal potassium electrode behavior occur at both high and low concentrations because of effects on the pump. The model not only predicts the observed shift of the current-voltage curve in the depolarizing direction with increasing [K+]0, but also the crossing of the curve in normal [K +]0 without having to assume a variation in gK. Anoxia was introduced into the model by changing the concentrations of ATP and ADP, thereby enabling the model to account for the rapid diastolic depolarization observed in myocardial ischemia.  相似文献   

2.
3.
4.
The Na,+ Cl-, and K+ content of toad plasma and the sartorius muscle has been determined. Although the Na+ and Cl- level of the muscles in the living animal varied greatly (0 to 38.0 m.eq. per kg., and 0 to 31.8 m.eq. per kg. respectively) the K+ level was subject to a smaller variation (76.5 to 136 m.eq. per kg.). There was a direct relationship between Na+ and Cl-, which was independent of the K+ level. There is a closely related gain of Na+ and Cl- when muscle is soaked in normal Ringer. These gains are not related to the K+ loss, frequently found on soaking. The relationship between the three ions was studied in a large series of 124 muscles in normal Ringer. As found in vivo, there was a correlation between Na+ and Cl.- This correlation was independent of K+ content, except when this was abnormally low. Alteration of the external NaCl level produced concomitant changes in the internal levels of these ions. Alteration of the external KCl level produced an increase in internal Cl- similar to that found with high NaCl solutions, but the amount of K+ entering the cell was approximately one-third of the external increase. Removal of K+ from the external solution did not result in a loss of K+ from the cell, although there was an adequate amount of Cl- present to accompany it. The results cannot be reconciled with either a Donnan concept for the accumulation of K+, or a linked carrier system. A theory is proposed to account for the ionic differentiation within the cell. The K+ is assumed to be adsorbed onto an ordered intracellular phase. The normal metabolic functioning of the cell is necessary to maintain the specificity of the adsorption sites. There is another intracellular phase, which lacks the structural specificity for K+, and which contains Na+, Cl-, and K+ in equilibrium with the external solution. The dimensions of the free intracellular phase will vary from cell to cell, but it will be smaller in the intact animal, and will increase on soaking in normal Ringer, until it is approximately one-third of the total cellular volume. The increase in this phase may be ascribed to a decrease in the energy available to maintain the ordered phase.  相似文献   

5.
Two isoforms of voltage-dependent Na channels, cloned from rat skeletal muscle, were expressed in Xenopus oocytes. The currents of rSkM1 and rSkM2 differ functionally in 4 properties: (i) tetrodotoxin (TTX) sensitivity, (ii) mu-conotoxin (mu-CTX) sensitivity, (iii) amplitude of single channel currents, and (iv) rate of inactivation. rSkM1 is sensitive to both TTX and mu-CTX. rSkM2 is resistant to both toxins. Currents of rSkM1 have a higher single channel conductance and a slower rate of inactivation than those of rSkM2. We constructed (i) chimeras by interchanging domain 1 (D1) between the two isoforms, (ii) block mutations of 22 amino acids in length that interchanged parts of the loop between transmembrane segments S5 and S6 in both D1 and D4, and (iii) point mutations in the SS2 region of this loop in D1. The TTX sensitivity could be switched between the two isoforms by the exchange of a single amino acid, tyrosine-401 in rSkM1 and cysteine-374 in rSkM2 in SS2 of D1. By contrast most chimeras and point mutants had an intermediate sensitivity to mu-CTX when compared with the wild-type channels. The point mutant rSkM1 (Y401C) had an intermediate single-channel conductance between those of the wild-type isoforms, whereas rSkM2 (C374Y) had a slightly lower conductance than rSkM2. The rate of inactivation was found to be determined by multiple regions of the protein, since chimeras in which D1 was swapped had intermediate rates of inactivation compared with the wild-type isoforms.  相似文献   

6.
7.
8.
Activities (a) of intracellular K and Na in rabbit ventricular papillary muslces were determined with cation-selectivve glass microelectrodes and concentrations (C) were estimated with flame photometry. The CK and aK of the muscles were 134.9 +/- 3.1 mM (mean value +/- SE) and 82.6 mM, respectively, at 25 degrees C. The corresponding CNa and aNa were 32.7 +/- 2.7 and 5.7, respectively. The apparent intracellular activity coefficients for K (gammaK) and Na (gammaNa) were 0.612 and 0.175, respectively. Similar results were obtained at 35 +/- 1 degree C. gammaK was substantially lower than the activity coefficient (0.745) of extracellular fluid (Tyrode's solution), which might be expected on the basis of a different intracellular ionic strength. gammaNa was much lower than that of extracellular fluid, and suggest that much of the Na was compartmentalized or sequestered. For external K concentrations greater than 5 mM, the resting membrane potentials agreed well with the potential differences calculated from the K activity gradients across the cell membrane as a potassium electrode. These results emphasize that potassium equilibrium potentials in heart muscle should be calculated by activities rather than concentrations.  相似文献   

9.
10.
11.
12.
The membrane potential (Em) of sartorius muscle fibers was made insensitive to [K+] by equilibration in a 95 mM K+, 120 mM Na+ Ringer solution. Under these conditions a potassium-activated, ouabain-sensitive sodium efflux was observed which had characteristics similar to those seen in muscles with Em sensitive to [K+]. In addition, in the presence of 10 mM K+, these muscles were able to produce a net sodium extrusion against an electrochemical gradient which was also inhibited by 10?4 M ouabain. This suggests that the membrane potential does not play a major role in the potassium activation of the sodium pump in muscles.  相似文献   

13.
14.
After a 20 min initial washout, the rate of loss of radioactively labeled sodium ions from sodium-enriched muscle cells is sensitive to the external sodium and potassium ion concentrations. In the absence of external potassium ions, the presence of external sodium ions increases the sodium efflux. In the presence of external potassium ions, the presence of external sodium ions decreases the sodium efflux. In the absence of external potassium ions about one-third of the Na+ efflux that depends upon the external sodium ion concentration can be abolished by 10-5 M glycoside. The glycoside-insensitive but external sodium-dependent Na+ efflux is uninfluenced by external potassium ions. In the absence of both external sodium and potassium ions the sodium efflux is relatively insensitive to the presence of 10-5 M glycoside. The maximal external sodium-dependent sodium efflux in the absence of external potassium ions is about 20% of the magnitude of the maximal potassium-dependent sodium efflux. The magnitude of the glycoside-sensitive sodium efflux in K-free Ringer solution is less than 10% of that observed when sodium efflux is maximally activated by potassium ions. The inhibition of the potassium-activated sodium efflux by external sodium ions is of the competitive type. Reducing the external sodium ion concentration displaces the plots of sodium extrusion rate vs. [K]o to the left and upwards.  相似文献   

15.
16.
17.
Heparinized blood was centrifuged repeatedly in Eppendorf's test tubes at 7,500 g in the Unipan microcentrifuge type 320. Packed red cells were hemolysed, then sodium and potassium were determined by means of the flame photometer. The percentage of trapped plasma determined with indocyanine green amounted to on average 1 per cent. There was a good precision of the method controlled on 20 aliquots of the same blood sample. Results of red cell sodium and potassium in 80 healthy volunteers were 10.42 +/- 1.56 mmol/l and 87.8 +/- 4.03 mmol/l respectively. No significant changes in the red cell sodium and potassium concentration were observed in heparinized blood during 5 hours storage at room temperature. The method cannot be used interchangeably with the method of Helbock and Brown, since the correlation coefficients were too low in parallel examinations.  相似文献   

18.
The ultrastructural localization of sodium and potassium ions in the longitudinal flight muscle of Pieris brassicae was carried out in situ and after incubation in various media. The results indicate a relatively high sodium and a low potassium content of the lumen of the transverse tubular system. Incubation in a propionate saline results in an accumulation of potassium ions in the mitochondria and a decrease in concentration in the myoplasm.  相似文献   

19.
The membrane potential (Em) of sartorius muscle fibers was made insensitive to [K+] by equilibration in a 95 mM K+, 120 mM Na+ Ringer solution. Under these conditions a potassium-activated, ouabain-sensitive sodium efflux was observed which had characteristics similar to those seen in muscles with Em sensitive to [K+]. In addition, in the presence of 10 mM K+, these muscles were able to produce a net sodium extrusion against an electrochemical gradient which was also inhibited by 10- minus 4 M oubain. This suggests that the membrane potential does not play a major role in the potassium activation of the sodium pump in muscles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号