首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ischemia/reperfusion (I/R) injury is the main cause of primary graft dysfunction of liver allografts. Cobalt-protoporphyrin (CoPP)–dependent induction of heme oxygenase (HO)-1 has been shown to protect the liver from I/R injury. This study analyzes the apoptotic mechanisms of HO-1-mediated cytoprotection in mouse liver exposed to I/R injury. HO-1 induction was achieved by the administration of CoPP (1.5 mg/kg body weight i.p.). Mice were studied in in vivo model of hepatic segmental (70 %) ischemia for 60 min and reperfusion injury. Mice were randomly allocated to four main experimental groups (n = 10 each): (1) A control group undergoing sham operation. (2) Similar to group 1 but with the administration of CoPP 72 h before the operation. (3) Mice undergoing in vivo hepatic I/R. (4) Similar to group 3 but with the administration of CoPP 72 h before ischemia induction. When compared with the I/R mice group, in the I/R+CoPP mice group, the increased hepatic expression of HO-1 was associated with a significant reduction in liver enzyme levels, fewer apoptotic hepatocytes cells were identified by morphological criteria and by immunohistochemistry for caspase-3, there was a decreased mean number of proliferating cells (positively stained for Ki67), and a reduced hepatic expression of: C/EBP homologous protein (an index of endoplasmic reticulum stress), the NF-κB’s regulated genes (CIAP2, MCP-1 and IL-6), and increased hepatic expression of IκBa (the inhibitory protein of NF-κB). HO-1 over-expression plays a pivotal role in reducing the hepatic apoptotic IR injury. HO-1 may serve as a potential target for therapeutic intervention in hepatic I/R injury during liver transplantation.  相似文献   

2.
3.
This study was designed to use real-time imaging to test the hypothesis that delayed cardiac protection induced by volatile anesthetics inhibits apoptosis. Rats were divided into two groups. One group was exposed to 120 min of 33 % O2 [control group (CON group)] and the other group was exposed to 2.5 % sevoflurane in 33 % O2 for 120 min [sevoflurane group (SEVO group)]. Both groups were allowed to return to their cages for 24 h. After 24 h recovery, all rats underwent 30 min myocardial ischemia by occluding coronary artery followed by 2 h of reperfusion. After reperfusion, technetium-99m-labeled annexin-V was administered intravenously to identify apoptosis. Left ventricular samples were obtained to measure infarct size and radionuclide imaging and caspase-3. Radionuclide imaging indicated that apoptosis was reduced in SEVO group (0.78 % ± 0.82) when compared with the CON group (1.15 % ± 0.61), and the infarct size was also decreased in the SEVO group (40 % ± 7). The transferase dUTP nick end labeling (TUNEL)-positive cardiomyocytes in the SEVO group (16 % ± 6) were significantly decreased in the peri-infarct zone when compared with the CON group (28 % ± 4). After reperfusion, caspase-3 expression was significantly blunted in the SEVO group than in CON group (50 % ± 11 vs. 68 % ± 10, p < 0.05). This study used technetium-99m-labeled annexin-V of real-time imaging to detect cardiomyocyte apoptosis and the results were confirmed by the TUNEL assay and caspase-3 expression. We concluded that delayed volatile anesthetic preconditioning (APC) protects against I/R in vivo. The method of technetium-99m-labeled annexin-V of real-time imaging can be used to detect cardiomyocyte apoptosis in delayed APC during ischemia/reperfusion.  相似文献   

4.
We investigated the protective and therapeutic effects of molsidomine (MOL) in a rat model of whole brain radiotherapy (RT). Forty female rats were divided into five groups of eight: group 1, control; group 2, 15 Gy single dose RT (RT); group 3, 4 mg/kg MOL treated for 5 days (MOL); group 4, 4 mg/kg MOL for 5 days, 10 days after RT treatment (RT + MOL); group 5, 4 mg/kg MOL treatment for 5 days before RT treatment and for 5 days after RT treatment (MOL + RT). All rats were sacrificed on day 16. Neurodegenerative changes in the brain and tissue levels of oxidants and antioxidants were evaluated. The oxidative parameters were increased and antioxidant status was decreased in group RT compared to groups MOL + RT and RT + MOL. Histopathological examination showed that treatment with MOL after RT application and treatment with MOL before RT treatment decreased neuronal degeneration. No difference in neuronal appearance was found between groups RT + MOL and MOL + RT. MOL treatment protected the nervous system of rats and may be a treatment option for preventing RT induced neural injury.  相似文献   

5.
Cisplatin (CP) is a chemotherapeutic agent used to treat various types of cancer; nephrotoxicity is the most common adverse effect of the drug. We investigated the protective effects of propolis against CP induced kidney injury. Thirty-six male rats were divided into six equal groups: untreated control group, 50 mg/kg/day propolis group, 100 mg/kg/day propolis group, single-dose 7 mg/kg CP group, 7 mg/kg CP + 50 mg/kg/day propolis and 7 mg/kg CP + 100 mg/kg propolis. Rats were sacrificed after 14 days and kidneys were removed for histopathological and biochemical analyses. We used hematoxylin & eosin and periodic acid-Schiff staining to evaluate kidney histopathology and we used the TUNEL technique to assess apoptosis. We also measured total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI), ischemia-modified albumin (IMA) and malondialdehyde (MDA) levels in tissue and blood specimens. Normal morphology was observed in the control, 50 mg/kg/day propolis and 100 mg/kg/day propolis groups by light microscopy. Degeneration of tubule cells, edema and tubule dilation were increased in the CP group compared to the control group. Degeneration of tubule cells and dilation of Bowman’s spaces were decreased in the CP + 50 mg/kg/day propolis and CP + 100 mg/kg/day propolis groups compared to the CP group. Tubule dilation decreased significantly in the CP + 100 mg/kg propolis group compared to the CP group. Also, the 7 mg/kg CP group exhibited altered proximal tubule epithelial cells, loss of brush border and thickening of the parietal layer of Bowman’s capsule in glomeruli and basal laminae of tubules. A normal brush border was observed in the CP + 50 mg/kg/day propolis and CP + 100 mg/kg/day groups. Serum OSI and MDA levels were increased in the CP group compared to the control group. Serum MDA levels decreased significantly in the CP + 50 mg/kg/day propolis and 100 mg/kg CP + propolis groups compared to the CP group. CP caused significant damage to kidney tissue; propolis exhibited dose-dependent prevention of tissue damage.  相似文献   

6.
Acute alcohol administration is harmful especially for the developing nervous system, where it induces massive apoptotic neurodegeneration leading to alcohol-related disorders of newborn infants. Neuroprotection against ethanol-induced apoptosis may save neurons and reduce the consequences of maternal alcohol consumption. Previously we have shown that taurine protects immature cerebellar neurons in the internal granular layer of cerebellum from ethanol-induced apoptosis. Now we describe a similar protective action for taurine in the external layer of cerebellum of 7-day-old mice. The mice were divided into three groups: ethanol-treated, ethanol + taurine-treated and controls. Ethanol (20% solution) was administered subcutaneously at a total dose of 5 g/kg (2.5 g/kg at time 0 h and 2.5 g/kg at 2 h) to the ethanol and ethanol + taurine groups. The ethanol + taurine group also received subcutaneously two injections of taurine (1 g/kg each, 1 h before the first dose of ethanol and 1 h after the second dose of ethanol). To verify apoptosis, immunostaining for activated caspase-3 and TUNEL staining were made in the mid-sagittal sections containing lobules I–X of the cerebellar vermis at 8 h after the first ethanol injection. Ethanol induced apoptosis in the cerebellar external granular layer. Taurine treatment significantly reduced the number of activated caspase-3-immunoreactive and TUNEL-positive cells. Taurine has thus a neuroprotective antiapoptotic action in the external granular layer of the cerebellum, preserving a number of neurons from ethanol-induced apoptosis.  相似文献   

7.
We sought to determine the hepatic fibrosis-reversal effects upon simultaneous administration of lithospermate B (LAB), an anti-oxidant, and nivocasan, a caspase inhibitor, to rats compared with each compound alone. Liver fibrosis was induced in Sprague–Dawley rats by thioacetamide (TAA). Rats were treated with TAA and then given LAB and (or) nivocasan. Fibrotic areas were evaluated quantitatively by computerized morphometry. Apoptosis was assessed using a TUNEL assay, and immunohistochemical staining for malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4HNE) was performed to assess oxidative stress levels. Real-time quantitative PCR was used to quantify expression of fibrosis-related genes. The degree of hepatic fibrosis was significantly reduced in rats treated with LAB and nivocasan compared to either treatment alone (P < 0.001). Treatment with each compound significantly decreased expression of fibrosis-related genes, such as type I collagen α1 (col1α1), α-SMA and TGF-β1 (P < 0.05). Co-treatment with LAB and nivocasan further reduced col1α1 expression compared to treatment with either compound. A TUNEL assay revealed that hepatocyte apoptosis was significantly decreased in the group treated with nivocasan compared to other groups (P < 0.01). Immunohistochemistry showed a decrease in MDA and 4HNE, reflecting amelioration of oxidative stress, when LAB or LAB+nivocasan was administered compared to nivocasan alone (P < 0.01). Nivocasan was found to inhibit caspase-1, -3, -7, -9 and gliotoxin-induced death of rat-derived hepatic stellate cells was inhibited by nivocasan administration without overexpression of α-SMA. Conclusions: Co-incidental administration of LAB and nivocasan suppressed oxidative stress and apoptosis, resulting in enhanced reversal of hepatic fibrosis in rat.  相似文献   

8.
This study was aimed to investigate the effect of extremely low-frequency magnetic field (ELF-MF) on apoptosis and oxidative stress values in the brain of rat. Rats were exposed to 100 and 500 µT ELF-MF, which are the safety standards of public and occupational exposure for 2 h/day for 10 months. Brain tissues were immunohistochemically stained for the active (cleaved) caspase-3 in order to measure the apoptotic index by a semi-quantitative scoring system. In addition, the levels of catalase (CAT), malondialdehyde (MDA), myeloperoxidase (MPO), total antioxidative capacity (TAC), total oxidant status (TOS), and oxidative stress index (OSI) were measured in rat brain. Final score of apoptosis and MPO activity were not significantly different between the groups. CAT activity decreased in both exposure groups (p?<?0.05), while TAC was found to be lower in ELF 500 group than those in ELF-100 and sham groups (p?<?0.05). MDA, TOS, and OSI values were found to be higher in ELF-500 group than those in ELF-100 and sham groups (p?<?0.05). In conclusion, apoptosis was not changed by long-term ELF-MF exposure, while both 100 and 500 µT ELF-MF exposure induced toxic effect in the rat brain by increasing oxidative stress and diminishing antioxidant defense system.  相似文献   

9.
Vitamin D, most commonly associated with the growth and remodeling of bone, has been shown to ameliorate ischemia/reperfusion injury (IRI) in some tissues, yet its underlying mechanism remains elusive. This study was designed to examine the protective effect of vitamin D, if any, against hepatic IRI in rats and the underlying mechanism involved. Adult female Wistar rats were randomly divided into control, sham-operated (sham), ischemia/reperfusion (I/R), and ischemic-reperfused vitamin D-treated (vit D) groups. Rats in the I/R and vit D groups were subjected to partial (70 %) hepatic ischemia for 45 min, followed by 1 h of reperfusion. Vitamin D was given to rats orally in a dose of 500 IU/kg daily for 2 weeks before being subjected to I/R. Markers of liver damage, oxidative stress, inflammation and apoptosis were evaluated. Hepatic morphology was also examined. Vit D-treated rats had significantly lower serum levels of alanine aminotransferase, aspartate aminotransferase, and γ glutamyl transferase compared to rats in the I/R group. Also, vit D-treated rats showed a significant decrease in malondialdehyde, interleukin-1 beta, interleukin-6, tumor necrosis factor-α, nuclear factor κB, B cell leukemia/lymphoma 2-associated X protein, cytochrome c, and caspase-3 levels, with higher levels of glutathione peroxidase and B cell lymphoma 2 protein levels in liver tissues compared to I/R rats. Histological examination showed less damaged liver tissues with amelioration of apoptotic signs in the vit D group compared to the I/R group. In conclusion, vitamin D supplementation ameliorates hepatic IRI mostly by alleviating the inflammatory-apoptotic response mediated by the oxidative reperfusion injury insult.  相似文献   

10.
《Free radical research》2013,47(9):683-691
Abstract

Reactive oxygen metabolites play an important role in the ischemia/reperfusion (I/R)-induced tissue injury. This study was designed to investigate the possible protective effects of quercetin against I/R injury of the rat corpus cavernosum tissue. To induce I/R injury, abdominal aorta was clamped for 30 min and reperfused for 60 min. Quercetin (20 mg/kg) or vehicle was given before ischemia and just after reperfusion in the I/R group and in the sham-operated control group in which clamping was not performed. After decapitation, corpus cavernosum tissues were removed and either placed in organ baths or stored for evaluating biochemical parameters. Oxidative injury was examined by measuring lucigenin chemiluminescence (CL), nitric oxide (NO), malondialdehyde (MDA) and glutathione (GSH) levels, superoxide dismutase (SOD) and myeloperoxidase (MPO) activities and caspase-3 protein levels. In the I/R group, contractile responses to phenylephrine and relaxation responses to carbachol were impaired significantly compared with those in the control groups, while quercetin treatment in I/R group reversed both of the responses. On the other hand, increase in lucigenin CL, NO, MDA levels and MPO and caspase-3 activities and decrease in GSH levels and SOD activity in the cavernosal tissues of the I/R group were also significantly reversed by quercetin treatment. Furthermore, observed distorted morphology with ruptured endothelial cells and vacuolization in the cytoplasm of cavernosal tissues of I/R no longer persisted in the quercetin-treated I/R group. Thus, our results suggested that treatment with quercetin may have some benefits in controlling I/R-induced tissue injury through its anti-inflammatory, anti-apoptotic, and antioxidant effects.  相似文献   

11.
Myocardial ischemia–reperfusion (I/R) represents a clinically relevant problem associated with thrombolysis, angioplasty, and coronary bypass surgery. Radical oxygen species generated during early reperfusion are the primary activator of mitochondrial permeability transition pore (MPTP) opening which finally results in cardiomyocyte death. Nigella sativa (NS) has been shown to have antioxidant properties. The present study aimed to determine whether supplementation with NS can provide sufficient protection for the myocardium against I/R insult and any possible role on mitochondrial MPTP. Adult male Wistar rats were allocated into two groups: control group and NS-treated group receiving NS (800 mg/kg) orally for 12 weeks. Rats' isolated hearts were perfused in Langendorff preparation to determine the baseline heart beating rate, developed peak tension, time to peak tension, rate of tension development, half relaxation time, and myocardial flow rate. Ischemia was then induced by stopping the perfusion fluid for 30 min, followed by 30 min of reperfusion and recording post I/R cardiac functions. Hearts were then used for assessment of malondialdehyde (MDA) and nicotinamide adenine dinucleotide (NAD+), since the hydrolysis of mitochondrial NAD+ directly reflects MPTP opening in situ, and for histological examination. The NS-treated group showed enhanced post I/R contractile and vascular recovery, which was accompanied by elevated NAD+ and decreased MDA compared to the control group. Histological examination showed marked improvement of cardiac musculature compared to the control group. In conclusion, N. sativa afforded substantial recovery of post I/R cardiac functions probably via inhibition of MPTP opening.  相似文献   

12.
Li SY  Yang D  Yeung CM  Yu WY  Chang RC  So KF  Wong D  Lo AC 《PloS one》2011,6(1):e16380
Neuronal cell death, glial cell activation, retinal swelling and oxidative injury are complications in retinal ischemia/reperfusion (I/R) injuries. Lycium barbarum polysaccharides (LBP), extracts from the wolfberries, are good for "eye health" according to Chinese medicine. The aim of our present study is to explore the use of LBP in retinal I/R injury. Retinal I/R injury was induced by surgical occlusion of the internal carotid artery. Prior to induction of ischemia, mice were treated orally with either vehicle (PBS) or LBP (1 mg/kg) once a day for 1 week. Paraffin-embedded retinal sections were prepared. Viable cells were counted; apoptosis was assessed using TUNEL assay. Expression levels of glial fibrillary acidic protein (GFAP), aquaporin-4 (AQP4), poly(ADP-ribose) (PAR) and nitrotyrosine (NT) were investigated by immunohistochemistry. The integrity of blood-retinal barrier (BRB) was examined by IgG extravasations. Apoptosis and decreased viable cell count were found in the ganglion cell layer (GCL) and the inner nuclear layer (INL) of the vehicle-treated I/R retina. Additionally, increased retinal thickness, GFAP activation, AQP4 up-regulation, IgG extravasations and PAR expression levels were observed in the vehicle-treated I/R retina. Many of these changes were diminished or abolished in the LBP-treated I/R retina. Pre-treatment with LBP for 1 week effectively protected the retina from neuronal death, apoptosis, glial cell activation, aquaporin water channel up-regulation, disruption of BRB and oxidative stress. The present study suggests that LBP may have a neuroprotective role to play in ocular diseases for which I/R is a feature.  相似文献   

13.
本研究旨在探讨当归多糖减轻糖尿病缺血再灌注(I/R)诱导大鼠心肌细胞凋亡的作用机制。通过构建糖尿病I/R大鼠模型,再将大鼠随机分为4组(n=10):假手术组(Sham)、糖尿病I/R组(I/R)、I/R+10 mg/kg当归多糖组(I/R+ANG)、I/R+10 mg/kg当归多糖+15μg/kg阿柏西普组(I/R+ANG+AF);通过TTC染色法分析不同实验组大鼠心肌梗死面积差异;使用ELISA试剂盒分析当归多糖干预对I/R大鼠心肌酶水平和氧化应激反应的影响;借助TUNEL/DAPI双重染色分析各组大鼠心肌细胞凋亡情况;通过Western blotting检测当归多糖对血管内皮生长因子A (VEGFA)蛋白表达的影响。TTC染色检测结果表明,与糖尿病I/R组相比,当归多糖可显著减少糖尿病I/R大鼠心肌梗塞面积(p<0.05)。ELISA检测结果显示,与I/R组相比,当归多糖显著降低了糖尿病I/R组大鼠心肌酶--LDH和CK血清水平(p<0.05),并降低TNF-α(p<0.05)、IL-6 (p<0.05)水平,以及上调SOD活性(p<0.05)。TUNEL/DAPI双重染色镜检观察到当归多糖组的TUNEL阳性心肌细胞百分比显著低于I/R组(p<0.05);蛋白免疫印迹分析表明,与假手术组相比,在糖尿病I/R大鼠中检测到p-eNOS蛋白表达下调;而与I/R相比,当归多糖显著减轻了I/R对p-eNOS蛋白表达的抑制作用;与I/R组和阿柏西普组相比,当归多糖处理组的Caspase-3活化水平较低(p<0.05)。而VEGF抑制剂--阿柏西普处理均明显减轻上述当归多糖在糖尿病I/R大鼠中的所有有益作用。当归多糖通过减轻糖尿病I/R大鼠的氧化应激以及炎症反应,以及上调VEGFA表达和抑制Caspase-3活化来减弱糖尿病缺血/再灌注诱导的心肌细胞凋亡,从而在大鼠体内发挥心脏保护作用。  相似文献   

14.
Little is known about the pathogenesis of high fructose corn syrup (HFCS) induced hepatic toxicity. We investigated hepatic lesions induced by chronic HFCS consumption and the protective effects of alpha-lipoic acid (ALA) on liver pathology. We used 24 rats allocated randomly into three groups of eight. The HFCS group was given in drinking water for 10 weeks. The ALA + HFCS group was given the same dose of HFCS and ALA also was administered during the last 6 weeks of the experiment. The control group was untreated. The rats were euthanized at the end of 10 weeks and 24 h after the last ALA administration. A significant increase was observed in the serum aspartate aminotransferase (AST) level of the HFCS group compared to controls. Tissue malondialdehyde (MDA) levels also increased significantly and catalase (CAT) activity decreased significantly in the HFCS group. Caspase-3 expression increased significantly in the HFCS group compared to controls. In the ALA treated group, the levels of MDA, CAT and caspase-3 returned to near control levels. HFCS caused hepatic toxicity by increasing oxidative stress and apoptosis. ALA administration ameliorated the pathological changes.  相似文献   

15.
We evaluated the effects of melatonin on acetylsalicylic acid (ASA) induced gastroduodenal and jejunal mucosal injury. We used 40 postpubertal rats divided randomly into five groups of eight animals. The control group consisted of untreated animals. The Mel group was injected intraperitoneally (i.p.) with 5 mg/kg melatonin. The ASA group was injected i.p. with 200 mg/kg ASA. The ASA + Mel group was injected i.p. with 5 mg/kg melatonin 45 min after administering 200 mg/kg ASA i.p. The Mel + ASA group was injected i.p. with 5 mg/kg melatonin 45 min before administering 200 mg/kg ASA i.p. We found no statistically significant differences in mean histopathological scores in the ASA + Mel group compared to the ASA group. ASA caused shortened villi and loss of the apical villus in the duodenum. The histopathological score was increased and villus height was decreased in the ASA group compared to untreated controls. Treatment with melatonin attenuated the histological damage. In the ASA group, occasional areas showed erosion of villi in the jejunum; however, differences in mean histopathological score in ASA group compared to the other groups were not statistically significant. Malondialdehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD) activities were measured in stomach, duodenal and jejunum tissue. We found increased MDA activity in both stomach and duodenal tissues in the ASA group compared to the control group (< 0.05). We found no statistically significant changes in MDA levels in jejunal tissue in the ASA group compared to the control group. We found no change in SOD activity in either stomach or duodenal tissues in the ASA group compared to the control group. We observed decreased SOD activity in jejunal tissue in the ASA group compared to the control group (< 0.05). We detected no change in GSH activity in stomach, duodenal or jejunal tissues in the ASA group compared to the control group. The stomach damage was less in melatonin treated groups, but the lesions were not completely eliminated. The jejunum in the ASA group retained a nearly normal appearance. We found that melatonin exhibited some healing effects on ASA induced duodenal mucosal injury.  相似文献   

16.
Evidence suggests that inactivation of cell-damaging mechanisms and/or activation of cell-survival mechanisms may provide effective preventive or therapeutic interventions to reduce cerebral ischemia/reperfusion (I/R) injuries. Docosahexaenoic acid (DHA) is an essential polyunsaturated fatty acid in the central nervous system that has been shown to possess neuroprotective effects. We examined whether different preadministrative protocols of DHA have effects on brain injury after focal cerebral I/R and investigated the potential neuroactive mechanisms involved. Sprague–Dawley rats were intraperitoneally pretreated with DHA once 1 h or 3 days being subjected to focal cerebral I/R or daily for 6 weeks before being subjected to focal cerebral I/R. Reduction of brain infarction was found in all three DHA-pretreated groups. The beneficial effect of DHA on the treatment groups was accompanied by decreases in blood–brain barrier disruption, brain edema, malondialdehyde (MDA) production, inflammatory cell infiltration, interleukin-6 (IL-6) expression and caspase-3 activity. Elevation of antioxidative capacity, as evidenced by decreased MDA level and increased superoxide dismutase activity and glutathione level, was detected only in the chronic daily-administration group. The two single-administration groups showed increased phosphorylation of extracellular-signal-regulated kinase (ERK). Elevation of Bcl-2 expression was detected in the chronic daily-administration and 3-day-administration groups. In vitro study demonstrated that DHA attenuated IL-6 production from stimulated glial cells involving nuclear factor κB inactivation. Therefore, the data suggest that the neuroprotective mechanisms of DHA pretreatment are, in part, mediated by attenuating damaging mechanisms through reduction of cytotoxic factor production and by strengthening survival mechanisms through ERK-mediated and/or Bcl-2-mediated prosurvival cascade.  相似文献   

17.
18.
We investigated the cytotoxic and apoptotic effects of a methanol extract of Centaurea nerimaniae, a plant endemic in Turkey, on HeLa and MDA-MB-231 cells. Eight concentrations of C. nerimaniae extract were applied to cells, and cytotoxic effects were measured using the xCELLigence system. The TUNEL assay was used to assess apoptotic cell death and immunohistochemistry was used to determine active caspase-3 using the effective cytotoxic doses of the extract. Doses of 1.42 mg/ml C. nerimaniae inhibited the growth of HeLa cells and 3.67 mg/ml C. nerimaniae inhibited the growth of MDA-MB-231 cells in a dose- and time-dependent manner. The apoptotic indexes for HeLa and MDA-MB-231 cells were increased significantly compared to control groups. Immunohistochemistry showed that the number of caspase-3 immunostained cells increased in the extract treatment groups for both HeLa and MDA-MB-231 cells. In the MDA-MB-231 cell line, caspase-3 immunostaining was observed in nuclei and/or cytoplasm in the extract treated group. Caspase-3 activation was greater in HeLa cells than in MDA-MB-231 cells. We found that the extract of C. nerimaniae had a strong antiproliferative effect and induced apoptosis via caspase-3; MDA-MB-231 cancer cells were more resistant than HeLa cells.  相似文献   

19.
To investigate the damaging effect and action mechanism of the food additive citric acid (CA) on mouse liver, 40 healthy male Kunming mice were randomly divided into control group (0.9 % saline), low CA dose (120 mg/kg), middle dose (240 mg/kg) and high dose groups (480 mg/kg). All experimental mice have received peritoneal injection of the corresponding reagent each week for 3 weeks. After 7 days since the third injection, morphological changes were observed by light microscope; activities of T-SOD, glutathione peroxidase (GSH-Px), caspase-3, and contents of hydrogen peroxide (H2O2) and malonyldialdehyde (MDA) in the liver were evaluated using the corresponding assay kits; DNA fragmentation was assayed using agarose gel electrophoresis. Microscopical detection showed a series of hispathological changes in mouse livers treated with CA, such as indiscriminate liver cell cord, blood clot in central veins, and lymphocyte infiltrating. Biochemical examination suggested the gradually but moderately reduced T-SOD activity and elevated H2O2 level with the increase of CA dose (P > 0.05), and the gradually reduced GSH-Px activity and increased MDA content depending on graded doses with a significant difference (P < 0.05) between the high dose group and the control group. According to cell apoptosis assays, caspase-3 activity were significantly higher in all treatment groups than in the control (P < 0.05) in a dose-dependent manner. Contrasting to the control, characteristic DNA laddering was observed when injected with any of the three graded doses. It can be concluded that certain concentrations of CA cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities, thus resulting in MDA level elevation and DNA fragmentation inducing active caspase-3.  相似文献   

20.
The aim of the present study was to evaluate the protective effects of the NF-кB inhibition with pyrrolidine-dithiocarbamate (PDTC) in ischemia–reperfusion (I/R) injury in the rat bladder. Twenty-four Sprague-Dawley male rats were divided into three groups. Group I; (n = 8) control, group II; (n = 8) I/R group; group III (n = 8) I/R and PDTC treatment. Superoxide dismutase (SOD), catalase (CAT), and gluatathione-S-transferase (GST) enzymes was studied in bladder tissue. Lipid peroxidation (as TBARS) levels in tissue homogenate were measured with thiobarbituric acid reaction. All the slides were stained with NF-кB, p53 and HSP60 immunohistochemistry for detection genome destruction and tissue stress, respectively. Our results show that the mean TBARS levels were significantly higher in group II (p < 0.05). The TBARS levels were significantly decreased in group III compared with the group II (p < 0.05). CAT, SOD and GST activities were decreased in group II, but these enzymes levels were significantly increased in group III according to the group II (p < 0.05). Under microscopic evaluation NF-кB expression increased significantly in group II compared to the group I (p < 0.05) and then decreased in group III (p < 0.05). HSP60 and p53 expression in group II was increased significantly compared with group I. Under microscopic evaluation we detected that HSP60 and p53 expression was increased significantly in group II compared with group I. In group III PDTC administration was decreased the HSP60 and p53 expression, this difference was statistically significant (p < 0.05). The results of the present study have demonstrated that NF-кB inhibition with PDTC protects and provides beneficial effects on ischemia/reperfusion stress related bladder tissue destruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号