首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究FoxO1与骨骼肌纤维类型之间的关系,本试验以大白猪为实验材料,利用RT-PCR和Western印迹技术,检测了FoxO1与肌纤维类型标志基因MyHCⅠ、MyHCⅡa、MyHCⅡb和MyHCⅡx在特定骨骼肌中的表达规律,以及调控肌纤维类型关键基因Mef2c和NFAT的表达,并用Wortmannin处理原代培养的猪骨骼肌成肌细胞,检测了FoxO1与肌纤维类型相关基因的表达.结果显示,FoxO1在不同骨骼肌类型中mRNA表达差异不显著(P0.05),其蛋白表达与MyHC各亚型显著相关.Wortmannin处理结果显示,在处理的第3和5d,FoxO1蛋白与MyHCⅡb,MyHCⅡx和NFAT表达显著正相关,而与MyHCⅠ,MyHCⅡa和Mef2c表达显著负相关.结果表明,FoxO1通过抑制MyHCⅠ的表达调控肌纤维类型.  相似文献   

2.
This study investigated the effect of arginine on skeletal muscle fiber type transformation in mice and in C2C12 myotubes. Our data showed that dietary supplementation of arginine in mice significantly up-regulated the slow myosin heavy chain (MyHC), troponin I-SS, sirtuin1 (Sirt1) and peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α) protein expressions, as well as significantly down-regulated the fast MyHC protein expression. In C2C12 myotubes, arginine significantly increased the protein level of slow MyHC and the number of slow MyHC-positive cells, as well as significantly decreased the protein level of fast MyHC and the number of fast MyHC-positive cells. We also showed that arginine increased the activities of succinic dehydrogenase and malate dehydrogenase and decreased the activity of lactate dehydrogenase in mice and in C2C12 myotubes. Here we found that AMP-activated protein kinase (AMPK) was activated by arginine in mice and in C2C12 myotubes. However, inhibition of AMPK activity by compound C significantly attenuated the effects of arginine on slow MyHC and fast MyHC expressions in C2C12 myotubes. Finally, we showed that inhibition of Sirt1 expression by EX527 attenuated arginine-induced increase in the protein levels of phospho-AMPK and slow MyHC, the mRNA level of nitric oxide synthase (NOS) and the contents of NOS and NO, as well as decrease in fast MyHC protein level. Together, our findings indicated that arginine promotes skeletal muscle fiber type switching from fast-twitch to slow-twitch via Sirt1/AMPK pathway.  相似文献   

3.
Menopause, the age-related loss of ovarian hormone production, promotes increased adiposity and associated metabolic pathology, but molecular mechanisms remain unclear. We previously reported that estrogen increases skeletal muscle PPARδ expression in vivo, and transgenic mice overexpressing muscle-specific PPARδ are reportedly protected from diet-induced obesity. We thus hypothesized that obesity observed in ovariectomized mice, a model of menopause, may result in part from abrogated expression of muscle PPARδ and/or downstream mediators such as FoxO1. To test this hypothesis, we ovariectomized (OVX) or sham-ovariectomized (SHM) 10-week old female C57Bl/6J mice, and subsequently harvested quadriceps muscles 12 weeks later for gene expression studies. Compared to SHM, muscle from OVX mice displayed significantly decreased expression of PPARδ (3.4-fold), FoxO1 (4.5-fold), PDK-4 (2.3-fold), and UCP-2 (1.8-fold). Consistent with studies indicating PPARδ and FoxO1 regulate muscle fiber type, we observed dramatic OVX-specific decreases in slow isoforms of the contractile proteins myosin light chain (11.1-fold) and troponin C (11.8-fold). In addition, muscles from OVX mice expressed 57% less myogenin (drives type I fiber formation), 2-fold more MyoD (drives type II fiber formation), and 1.6-fold less musclin (produced exclusively by type II fibers) than SHM, collectively suggesting a shift towards less type I oxidative fibers. Finally, and consistent with changes in PPARδ and FoxO1 activity, we observed decreased expression of atrogin-1 (2.3-fold) and MuRF-1 (1.9-fold) in OVX mice. In conclusion, muscles from ovariectomized mice display decreased PPARδ and FoxO1 expression, abrogated expression of downstream targets involved in lipid and protein metabolism, and gene expression profiles indicating less type I oxidative fibers.  相似文献   

4.
5.
6.
Dietary fat plays a major role in obesity, lipid metabolism, and cardiovascular diseases. To determine whether the intake of different types of dietary fats affect the muscle fiber types that govern the metabolic and contractile properties of the skeletal muscle, we fed male Wistar rats with a 15% fat diet derived from different fat sources. Diets composed of soybean oil (n-6 polyunsaturated fatty acids (PUFA)-rich), fish oil (n-3 PUFA-rich), or lard (low in PUFAs) were administered to the rats for 4 weeks. Myosin heavy chain (MyHC) isoforms were used as biomarkers to delineate the skeletal muscle fiber types. Compared with soybean oil intake, fish oil intake showed significantly lower levels of the fast-type MyHC2B and higher levels of the intermediate-type MyHC2X composition in the extensor digitorum longus (EDL) muscle, which is a fast-type dominant muscle. Concomitantly, MyHC2X mRNA levels in fish oil-fed rats were significantly higher than those observed in the soybean oil-fed rats. The MyHC isoform composition in the lard-fed rats was an intermediate between that of the fish oil and soybean oil-fed rats. Mitochondrial uncoupling protein 3, pyruvate dehydrogenase kinase 4, and porin mRNA showed significantly upregulated levels in the EDL of fish oil-fed rats compared to those observed in soybean oil-fed and lard-fed rats, implying an activation of oxidative metabolism. In contrast, no changes in the composition of MyHC isoforms was observed in the soleus muscle, which is a slow-type dominant muscle. Fatty acid composition in the serum and the muscle was significantly influenced by the type of dietary fat consumed. In conclusion, dietary fat affects the expression of genes related to the contractile and metabolic properties in the fast-type dominant skeletal muscle, where the activation of oxidative metabolism is more pronounced after fish oil intake than that after soybean oil intake.  相似文献   

7.
Vascular smooth muscle cell (VSMC) phenotypic switching plays a critical role in the formation of abdominal aortic aneurysms (AAAs). FoxO3a is a key suppressor of VSMC homeostasis. We found that in human and animal AAA tissues, FoxO3a was upregulated, SM22α and α-smooth muscle actin (α-SMA) proteins were downregulated and synthetic phenotypic markers were upregulated, indicating that VSMC phenotypic switching occurred in these diseased tissues. In addition, in cultured VSMCs, significant enhancement of FoxO3a expression was found during angiotensin II (Ang II)-induced VSMC phenotypic switching. In vivo, FoxO3a overexpression in C57BL/6J mice treated with Ang II increased the formation of AAAs, whereas FoxO3a knockdown exerted an inhibitory effect on AAA formation in ApoE−/− mice infused with Ang II. Mechanistically, FoxO3a overexpression significantly inhibited the expression of differentiated smooth muscle cell (SMC) markers, activated autophagy, the essential repressor of VSMC homeostasis, and promoted AAA formation. Our study revealed that FoxO3a promotes VSMC phenotypic switching to accelerate AAA formation through the P62/LC3BII autophagy signaling pathway and that therapeutic approaches that decrease FoxO3a expression may prevent AAA formation.Subject terms: Cell biology, Diseases  相似文献   

8.
This study investigated the effects of resveratrol and miR-22-3p on muscle fiber type conversion in mouse C2C12 myotubes. Here we showed that resveratrol significantly increased the protein level of slow myosin heavy chain (MyHC) and the activities of succinic dehydrogenase and malate dehydrogenase, as well as markedly decreased the protein level of fast MyHC and the activity of lactate dehydrogenase. Immunofluorescence staining showed that resveratrol remarkably upregulated the number of slow MyHC-positive myotubes and downregulated the number of fast MyHC-positive myotubes, suggesting that resveratrol promoted muscle fiber type conversion from fast-twitch to slow-twitch in C2C12 myotubes. We also showed that miR-22-3p had an opposite function on muscle fiber type conversion and resveratrol was able to repress the expression of miR-22-3p. Furthermore, AMP-activated protein kinase (AMPK) inhibitor Compound C and miR-22-3p mimics could attenuate and eliminate muscle fiber type conversion from fast-twitch to slow-twitch cause by resveratrol, respectively. Together, we provided the first evidence that resveratrol promotes muscle fiber type conversion from fast-twitch to slow-twitch via miR-22-3p and AMPK/SIRT1/PGC-1α pathway in C2C12 myotubes.  相似文献   

9.
10.
The rev-erbAalpha orphan protein belongs to the steroid nuclear receptor superfamily. No ligand has been identified for this protein, and little is known of its function in development or physiology. In this study, we focus on 1) the distribution of the rev-erbAalpha protein in adult fast- and slow-twitch skeletal muscles and muscle fibers and 2) how the rev-erbAalpha protein influences myosin heavy chain (MyHC) isoform expression in mice heterozygous (+/-) and homozygous (-/-) for a rev-erbAalpha protein null allele. In the fast-twitch extensor digitorum longus muscle, rev-erbAalpha protein expression was linked to muscle fiber type; however, MyHC isoform expression did not differ between wild-type, +/-, or -/- mice. In the slow-twitch soleus muscle, the link between rev-erbAalpha protein and MyHC isoform expression was more complex than in the extensor digitorum longus. Here, a significantly higher relative amount of the beta/slow (type I) MyHC isoform was observed in both rev-erbAalpha -/- and +/- mice vs. that shown in wild-type controls. A role for the ratio of thyroid hormone receptor proteins alpha1 to alpha2 in modulating MyHC isoform expression can be ruled out because no differences were seen in MyHC isoform expression between thyroid hormone receptor alpha2-deficient mice (heterozygous and homozygous) and wild-type mice. Therefore, our data are compatible with the rev-erbAalpha protein playing an important role in the regulation of skeletal muscle MyHC isoform expression.  相似文献   

11.
Ren X  Li Y  Ma X  Zheng L  Xu Y  Wang J 《Life sciences》2007,81(2):89-96
  相似文献   

12.
A feeding trial for 91 days was conducted to investigate effects of active immunization against porcine Sox6 (pSox6) on meat quality and myosin heavy chain (MyHC) isoform expression in growing-finishing pigs. Twenty-four castrated Duroc?×?Landrace?×?Yarkshire pigs were randomly divided into three groups: (1) Control group; (2) 1?mg/head pSox6 active immunity group; (3) 4?mg/head pSox6 active immunity group (4?mg/head group). The results showed that pigs in 4?mg/head group had a greater a* (Redness) and a higher marbling score, while no significant effect was observed in L* (Lightness), b* (Yellowness), intramuscular fat and cooking loss. Muscle succinic dehydrogenase activity in pSox6 active immunization groups was significantly increased, and muscle lactate dehydrogenase activity was significantly reduced. Meanwhile, active immunization against pSox6 upregulated the mRNA expression of MyHC I, while no effect was observed on the mRNA expressions of MyHC IIa, MyHC IIx, MyHC IIb. In addition, pigs in the 4?mg/head group exhibited lower Sox6 mRNA level and higher MyHC I protein level, while no significant influence was observed on MyHC IIb protein level. Together, our data imply that active immunization against pSox6 could improve the pork quality and promote the MyHC I expression in growing-finishing pigs.  相似文献   

13.
14.
15.
摘要 目的:揭示肌细胞增强因子2C(MEF2C)在湿性年龄相关性黄斑变性(AMD)中的表达及其对脉络膜新生血管(CNV)和巨噬细胞极化的影响。方法:通过qRT-PCR法检测30例湿性AMD患者(AMD组)和30例健康体检者(健康对照组)的血清MEF2C水平。将MEF2C过表达慢病毒(MEF2C-LV组)和阴性对照过表达慢病毒(NC-LV组)转染至恒河猴脉络膜血管内皮细胞系(RF/6A)。转染后,将RF/6A细胞分为常氧组(Normoxia组)、低氧组(Hypoxia组)、低氧+NC-LV组(Hypoxia+NC-LV组)、低氧+MEF2C-LV组(Hypoxia+MEF2C-LV组)。转染及缺氧处理后,分别测定各组细胞进行Matrigel小管。通过激光诱导CNV C57BL/6J小鼠模型,将建模成功的C57BL/6J小鼠随机分为模型组、NC-LV组和MEF2C-LV组,每组10只,未建模的小鼠作为对照组。然后对NC-LV组和MEF2C-LV组小鼠玻璃体腔注射NC-LV或MEF2C-LV,对照组和模型组小鼠不进行治疗。治疗7 d后进行眼底荧光血管造影(FFA)和眼球苏木精伊红(HE)染色。通过qRT-PCR和Western blot检测MEF2C、VEGFA、VEGFR2、IL-12p35、IL-12p40和IL-10的mRNA和蛋白表达。结果:与Healthy组相比,AMD组患者的血清MEF2C水平显著降低(1.00±0.23 vs 0.48±0.29,t=7.689,P<0.001)。与Normoxia组相比,Hypoxia组的闭合管腔数量增加(P<0.05)。与Hypoxia组相比,Hypoxia+MEF2C-LV组的闭合管腔数量减少(P<0.05)。与模型组相比,MEF2C-LV组视网膜和脉络膜病变程度减轻,结构基本恢复正常,脉络膜组织厚度降低,血管生成减少。与模型组相比,MEF2C-LV组的CNV相对荧光强度降低,脉络膜组织中MEF2C、VEGFA和VEGFR2的mRNA和蛋白表达水平均降低(P<0.05)。与模型组相比,MEF2C-LV组脉络膜组织中IL-12p35和IL-12p40的mRNA和蛋白表达水平均升高,IL-10均降低(P<0.05)。结论:MEF2C在湿性AMD患者血清中低表达,上调MEF2C可抑制脉络膜血管生成,并促进巨噬细胞从M2型向M1型的转换。  相似文献   

16.
17.
18.
Selenium-enriched exopolysaccharides (EPS) produced by Enterobacter cloacae Z0206 have been proven to possess effect on reducing blood glucose level in diabetic mice. To investigate the specific mechanism, we studied the effects of oral supply with EPS on skeletal muscle glucose transportation and consumption in high-fat-diet-induced diabetic KKAy mice. We found that EPS supplementation increased expressions of glucose transporter 4 (Glut4), hexokinase 2 (hk2), phosphorylation of AMP-activated kinase subunit α2 (pAMPKα2), and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), and increased expression of characteristic protein of oxidative fibers such as troponin I and cytochrome c (Cytc). Furthermore, we found that EPS increased glucose uptake and expressions of pAMPKα2 and PGC-1α in palmitic acid (PA)-induced C2C12 cells. However, while EPS inhibited AMPKα2 with interference RNA (iRNA), effects of EPS on the improvement of glucose uptake diminished. These results indicated that EPS may improve skeletal muscle glucose uptake of diabetic KKAy mice through AMPKα2-PGC-1α pathway.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号