首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Centrosomes function primarily as microtubule-organizing centres and play a crucial role during mitosis by organizing the bipolar spindle. In addition to this function, centrosomes act as reaction centers where numerous key regulators meet to control cell cycle progression. One of these factors involved in genome stability, the checkpoint kinase CHK2, was shown to localize at centrosomes throughout the cell cycle.

Results

Here, we show that CHK2 only localizes to centrosomes during mitosis. Using wild-type and CHK2?/? HCT116 human colon cancer cells and human osteosarcoma U2OS cells depleted for CHK2 with small hairpin RNAs we show that several CHK2 antibodies are non-specific and cross-react with an unknown centrosomal protein(s) by immunofluorescence. To characterize the localization of CHK2, we generated cells expressing inducible GFP-CHK2 and Flag-CHK2 fusion proteins. We show that CHK2 localizes to the nucleus in interphase cells but that a fraction of CHK2 associates with the centrosomes in a Polo-like kinase 1-dependent manner during mitosis, from early mitotic stages until cytokinesis.

Conclusion

Our findings demonstrate that a subpopulation of CHK2 localizes at the centrosomes in mitotic cells but not in interphase. These results are consistent with previous reports supporting a role for CHK2 in the bipolar spindle formation and the timely progression of mitosis.
  相似文献   

2.
The tumor suppressor protein p53 is a phosphoprotein and has growth and transformation suppression functions. Phosphorylation of wild-type p53 is known to modulate its function. To investigate the role of phosphorylation in modulating the functions of mutant p53, we constructed a series of phosphorylation site mutants based on mutant p53 Ala143 (p53-143) and p53 His175 (p53-175). When transfected into p53-negative Saos-2 cells, parental mutant p53-143 and p53-175 abolished both growth suppression and induction of apoptosis. However, DNA-activated protein kinase (DNA-PK) or cyclin-dependent kinase (cdks) phosphorylation site double mutants partially restored the growth suppression and induction of apoptosis and recovered the p53-specific DNA binding activity. We also observed a difference in sensitivity to calpain from parental mutants p53-175 and p53-175/15 or p53-175/315. These results suggest that the lack of phosphorylation at either the DNA-PK or cdks site in p53 mutants partially restores the wild-type functions by altering their conformation.  相似文献   

3.
Cadmium induces phosphorylation of p53 at serine 15 in MCF-7 cells   总被引:8,自引:0,他引:8  
When MCF-7 cells were incubated with 10 or 20 microM CdCl(2), p53 protein level increased after 18 h. Among serines in p53 protein immunoprecipitated from cells treated with CdCl(2), only Ser 15 was phosphorylated. No clear phosphorylation was found on Ser 6, 9, 20, 37, and 392. Accumulation of p53 protein phosphorylated at Ser 15 was also found after 18 h exposure. While phosphorylation of extracellular signal-regulated protein kinase, c-Jun NH2-terminal kinase and p38 was found in cells treated with CdCl(2), treatment with U0126, LL-Z1640-2, or SB203580 did not suppress Ser 15 phosphorylation. On the other hand, treatment with wortmannin or caffeine suppressed CdCl(2)-induced Ser 15 phosphorylation and accumulation of p53 protein. The present results showed that cadmium induces phosphorylation of p53 at Ser 15 in MCF-7 cells depending on phosphatidylinositol 3-kinase related kinases, but not on mitogen-activated protein kinases.  相似文献   

4.
5.
6.
Inhibitor-2 (I-2) is a regulator of protein phosphatase type-1 (PP1), known to be phosphorylated in vitro by multiple kinases. In particular Thr72 is a Thr-Pro phosphorylation site conserved from yeast to human, but there is no evidence that this phosphorylation responds to any physiological signals. Here, we used electrophoretic mobility shift and immunoblotting with a site-specific phospho-Thr72 antibody to establish Thr72 phosphorylation in HeLa cells and show a 25-fold increase in phosphorylation during mitosis. Mass spectrometry demonstrated I-2 in actively growing HeLa cells was also phosphorylated at three other sites, Ser120, Ser121, and an additional Ser located between residues 70 and 90. In vitro kinase assays using recombinant I-2 as a substrate showed that the Thr72 kinase(s) was activated during mitosis, and sensitivity to kinase inhibitors indicated that the principal I-2 Thr72 kinase was not GSK3 but instead a member of the cyclin-dependent protein kinase family. Immunocytochemistry confirmed Thr72 phosphorylation of I-2 during mitosis, with peak intensity at prophase, and revealed subcellular concentration of the phospho-Thr72 I-2 at centrosomes. Together, the data show dynamic changes in I-2 phosphorylation during mitosis and localization of phosphorylated I-2 at centrosomes, suggesting involvement in mammalian cell division.  相似文献   

7.
Microinjection of the restriction endonuclease HaeIII, which causes DNA double-strand breaks with blunt ends, induces nuclear accumulation of p53 protein in normal and xeroderma pigmentosum (XP) primary fibroblasts. In contrast, this induction of p53 accumulation is not observed in ataxia telangiectasia (AT) fibroblasts. HaeIII-induced p53 protein in normal fibroblasts is phosphorylated at serine 15, as determined by immunostaining with an antibody specific for phosphorylated serine 15 of p53. This phosphorylation correlates well with p53 accumulation. Treatment with lactacystin (an inhibitor of the proteasome) or heat shock leads to similar levels of p53 accumulation in normal and AT fibroblasts, but the p53 protein lacks a phosphorylated serine 15. Following microinjection of HaeIII into lactacystin-treated normal fibroblasts, lactacystin-induced p53 protein is phosphorylated at serine 15 and stabilized even in the presence of cycloheximide. However, neither stabilization nor phosphorylation at serine 15 is observed in AT fibroblasts under the same conditions. These results indicate the significance of serine 15 phosphorylation for p53 stabilization after DNA double-strand breaks and an absolute requirement for ATM in this phosphorylation process.  相似文献   

8.
9.
Cells eventually exit from mitosis during sustained arrest at the spindle checkpoint, without sister chromatid separation and cytokinesis. The resulting tetraploid cells are arrested in the subsequent G1 phase in a p53-dependent manner by the regulatory function of the postmitotic G1 checkpoint. Here we report how the nucleolus plays a critical role in activation of the postmitotic G1 checkpoint. During mitosis, the nucleolus is disrupted and many nucleolar proteins are translocated from the nucleolus into the cytoplasm. Among the nucleolar factors, Myb-binding protein 1a (MYBBP1A) induces the acetylation and accumulation of p53 by enhancing the interaction between p300 and p53 during prolonged mitosis. MYBBP1A-dependent p53 activation is essential for the postmitotic G1 checkpoint. Thus, our results demonstrate a novel nucleolar function that monitors the prolongation of mitosis and converts its signal into activation of the checkpoint machinery.  相似文献   

10.
11.
Although cells can exit mitotic block aberrantly by mitotic slippage, they are prevented from becoming tetraploids by a p53-dependent postmitotic checkpoint. Intriguingly, disruption of the spindle-assembly checkpoint also compromises the postmitotic checkpoint. The precise mechanism of the interplay between these two pivotal checkpoints is not known. We found that after prolonged nocodazole exposure, the postmitotic checkpoint was facilitated by p53. We demonstrated that although disruption of the mitotic block by a MAD2-binding protein promoted slippage, it did not influence the activation of p53. Both p53 and its downstream target p21(CIP1/WAF1) were activated at the same rate irrespective of whether the spindle-assembly checkpoint was enforced or not. The accelerated S phase entry, as reflected by the premature accumulation of cyclin E relative to the activation of p21(CIP1/WAF1), is the reason for the uncoupling of the postmitotic checkpoint. In support of this hypothesis, forced premature mitotic exit with a specific CDK1 inhibitor triggered DNA replication without affecting the kinetics of p53 activation. Finally, replication after checkpoint bypass was boosted by elevating the level of cyclin E. These observations indicate that disruption of the spindle-assembly checkpoint does not directly influence p53 activation, but the shortening of the mitotic arrest allows cyclin E-CDK2 to be activated before the accumulation of p21(CIP1/WAF1). These data underscore the critical relationship between the spindle-assembly checkpoint and the postmitotic checkpoint in safeguarding chromosomal stability.  相似文献   

12.
13.
14.
We have reported that the three serine residues in alphaB-crystallin are phosphorylated under various stress conditions. We prepared affinity-purified antibodies recognizing each of the phosphorylated serine residues (Ser-19, Ser-45, and Ser-59, respectively) in alphaB-crystallin with peptides (p19S, p45S, or p59S) that contained the corresponding phosphorylated serine residue. Immunocytochemically anti-p45S antibodies stained the cytoplasm of mitotic cells (J. Biol. Chem. 273, 28,346-28,354). We have now found that the anti-p59S antibodies recognize centrosomes and midbodies of dividing cells. alphaB-Crystallin was the only protein recognized by the anti-p59S antibodies in Western blot analyses of isolated centrosome fractions. alphaB-Crystallin phosphorylated at Ser-59 was localized at the microtubule organizing centers by means of double staining with anti-beta-tubulin antibody in aster formation analysis and was co-localized with gamma-tubulin in centrosomes. Gamma-Tubulin was co-immunoprecipitated with alphaB-crystallin in U373 glioma cell extracts. On the other hand, the location of the phosphorylated alphaB-crystallin deviated from that of alpha-tubulin or gamma-tubulin in the midbody region. Taken together with the evidences that several chaperones are distributed to centrosomes, these results suggest that alphaB-crystallin as a chaperone might be also involved in the quality control of proteins.  相似文献   

15.
Dumaz N  Milne DM  Meek DW 《FEBS letters》1999,454(3):312-316
Human telomerase might be associated with malignant tumor development and could be a highly selective target for antitumor drug design. Antisense phosphodiester (ODNs) and phosphorothioate (S-ODNs) oligonucleotides were investigated for their abilities to inhibit telomerase activity in the HeLa cell line. The ODNs and S-ODNs were designed to be complementary to nucleotides within the RNA active site of telomerase. As a transfection reagent, FuGENE6 was used to enhance the cellular uptake of oligonucleotides in cell cultures. The results showed that S-ODN-3 (19-mer) encapsulated with FuGENE6 clearly inhibited the telomerase activity in HeLa cells, and the inhibitory efficiency increased with an increase in the S-ODN-3. However, free S-ODN-3 showed no inhibitory activity. On the other hand, ODN-3 encapsulated with FuGENE6 had no detectable inhibitory activity. The encapsulated S-ODNs exhibited higher inhibitory activities than the free S-ODNs, and showed sequence specific inhibition. Thus, the activities of the S-ODNs were effectively enhanced by using the transfection reagent. The transfection reagent, FuGENE6, may thus be a potentially useful delivery vehicle for oligonucleotide-based therapeutics and transgenes, and is appropriate for use in vitro and in vivo.  相似文献   

16.
Upon genotoxic stress and during normal S phase, ATM phosphorylates the checkpoint clamp protein Rad9 in a manner that depends on Ser272. Ser272 is the only known ATM-dependent phosphorylation site in human Rad9. However, Ser272 phosphorylation is not required for survival or checkpoint activation after DNA damage. The physiological function of Ser272 remains elusive. Here, we show that ATM-dependent Rad9Ser272 phosphorylation requires the MRN complex and controls repair pathways. Furthermore, the mutant cells accumulate large numbers of chromosome breaks and induce gross chromosomal rearrangements. Our findings establish a new and unexpected role for ATM: it phosphorylates the checkpoint clamp in order to control repair pathways, thereby maintaining genomic integrity during unperturbed cell cycle and upon DNA damage.  相似文献   

17.
Upon genotoxic stress and during normal S phase, ATM phosphorylates the checkpoint clamp protein Rad9 in a manner that depends on Ser272. Ser272 is the only known ATM-dependent phosphorylation site in human Rad9. However, Ser272 phosphorylation is not required for survival or checkpoint activation after DNA damage. The physiological function of Ser272 remains elusive. Here, we show that ATM-dependent Rad9Ser272 phosphorylation requires the MRN complex and controls repair pathways. Furthermore, the mutant cells accumulate large numbers of chromosome breaks and induce gross chromosomal rearrangements. Our findings establish a new and unexpected role for ATM: it phosphorylates the checkpoint clamp in order to control repair pathways, thereby maintaining genomic integrity during unperturbed cell cycle and upon DNA damage.  相似文献   

18.
Checkpoint kinase 2 (Chk2), a DNA damage-activated protein kinase, is phosphorylated at Thr-68 by ataxia telangiectasia mutated leading to its activation by phosphorylation at several additional sites. Using mass spectrometry we identified a new Chk2 phosphorylation site at Ser-456. We show that phosphorylation of Ser-456 plays a role in the regulation of Chk2 stability particularly after DNA damage. Mutation of Ser-456 to alanine results in hyperubiquitination of Chk2 and dramatically reduced Chk2 stability. Furthermore, cells expressing S456A Chk2 show a reduction in the apoptotic response to DNA damage. These findings suggest a mechanism for stabilization of Chk2 in response to DNA damage via phosphorylation at Ser-456 and proteasome-dependent turnover of Chk2 protein via dephosphorylation of the same residue.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号