首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cystic Fibrosis (CF) is a genetic disease characterised by a deficit in epithelial Cl(-) secretion which in the lung leads to airway dehydration and a reduced Airway Surface Liquid (ASL) height. The endogenous lipoxin LXA(4) is a member of the newly identified eicosanoids playing a key role in ending the inflammatory process. Levels of LXA(4) are reported to be decreased in the airways of patients with CF. We have previously shown that in normal human bronchial epithelial cells, LXA(4) produced a rapid and transient increase in intracellular Ca(2+). We have investigated, the effect of LXA(4) on Cl(-) secretion and the functional consequences on ASL generation in bronchial epithelial cells obtained from CF and non-CF patient biopsies and in bronchial epithelial cell lines. We found that LXA(4) stimulated a rapid intracellular Ca(2+) increase in all of the different CF bronchial epithelial cells tested. In non-CF and CF bronchial epithelia, LXA(4) stimulated whole-cell Cl(-) currents which were inhibited by NPPB (calcium-activated Cl(-) channel inhibitor), BAPTA-AM (chelator of intracellular Ca(2+)) but not by CFTRinh-172 (CFTR inhibitor). We found, using confocal imaging, that LXA(4) increased the ASL height in non-CF and in CF airway bronchial epithelia. The LXA(4) effect on ASL height was sensitive to bumetanide, an inhibitor of transepithelial Cl(-) secretion. The LXA(4) stimulation of intracellular Ca(2+), whole-cell Cl(-) currents, conductances and ASL height were inhibited by Boc-2, a specific antagonist of the ALX/FPR2 receptor. Our results provide, for the first time, evidence for a novel role of LXA(4) in the stimulation of intracellular Ca(2+) signalling leading to Ca(2+)-activated Cl(-) secretion and enhanced ASL height in non-CF and CF bronchial epithelia.  相似文献   

2.
Airway epithelia are confronted with distinct signals emanating from the luminal and/or serosal environments. This study tested whether airway epithelia exhibit polarized intracellular free calcium (Ca(2+)(i)) and anion secretory responses to 5' triphosphate nucleotides (ATP/UTP), which may be released across both barriers of these epithelia. In both normal and cystic fibrosis (CF) airway epithelia, mucosal exposure to ATP/UTP increased Ca(2+)(i) and anion secretion, but both responses were greater in magnitude for CF epithelia. In CF epithelia, the mucosal nucleotide-induced response was mediated exclusively via Ca(2+)(i) interacting with a Ca(2+)-activated Cl(-) channel (CaCC). In normal airway epithelia (but not CF), nucleotides stimulated a component of anion secretion via a chelerythrine-sensitive, Ca(2+)-independent PKC activation of cystic fibrosis transmembrane conductance regulator. In normal and CF airway epithelia, serosally applied ATP or UTP were equally effective in mobilizing Ca(2+)(i). However, serosally applied nucleotides failed to induce anion transport in CF epithelia, whereas a PKC-regulated anion secretory response was detected in normal airway epithelia. We conclude that (1) in normal nasal epithelium, apical/basolateral purinergic receptor activation by ATP/UTP regulates separate Ca(2+)-sensitive and Ca(2+)-insensitive (PKC-mediated) anion conductances; (2) in CF airway epithelia, the mucosal ATP/UTP-dependent anion secretory response is mediated exclusively via Ca(2+)(i); and (3) Ca(2+)(i) regulation of the Ca(2+)-sensitive anion conductance (via CaCC) is compartmentalized in both CF and normal airway epithelia, with basolaterally released Ca(2+)(i) failing to activate CaCC in both epithelia.  相似文献   

3.
The relationships between airway epithelial Cl(-) secretion-Na(+) absorption balance, airway surface liquid (ASL) homeostasis, and lung disease were investigated in selected transgenic mice. 1) To determine if transgenic overexpression of wild-type (WT) human CFTR (hCFTR) accelerated Cl(-) secretion and regulated Na(+) absorption in murine airways, we utilized a Clara cell secretory protein (CCSP)-specific promoter to generate mice expressing airway-specific hCFTR. Ussing chamber studies revealed significantly (~2.5-fold) elevated basal Cl(-) secretory currents in CCSP-hCFTR transgenic mouse airways. Endogenous murine airway Na(+) absorption was not regulated by hCFTR, and these mice exhibited no lung disease. 2) We tested whether hCFTR, transgenically expressed on a transgenic mouse background overexpressing the β-subunit of the epithelial Na(+) channel (β-ENaC), restored ion transport balance and ASL volume homeostasis and ameliorated lung disease. Both transgenes were active in CCSP-hCFTR/β-ENaC transgenic mouse airways, which exhibited an elevated basal Cl(-) secretion and Na(+) hyperabsorption. However, the airway disease characteristic of β-ENaC mice persisted. Confocal studies of ASL volume homeostasis in cultured tracheal cells revealed ASL autoregulation to a height of ~6 μm in WT and CCSP-hCFTR cultures, whereas ASL was reduced to <4 μm in β-ENaC and CCSP-hCFTR/β-ENaC cultures. We conclude that 1) hCFTR overexpression increases basal Cl(-) secretion but does not regulate Na(+) transport in WT mice and 2) transgenic hCFTR produces increased Cl(-) secretion, but not regulation of Na(+) channels, in β-ENaC mouse airways and does not ameliorate β-ENaC mouse lung disease.  相似文献   

4.
Cystic fibrosis (CF) is caused by mutations in the gene producing the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR functions as a Cl(-) channel. Its dysfunction limits Cl(-) secretion and enhances Na+ absorption, leading to viscous mucus in the airway. Ca2+-activated Cl(-) channels (CaCCs) are coexpressed with CFTR in the airway surface epithelia. Increases in cytosolic Ca(2+) activate the epithelial CaCCs, which provides an alternative Cl(-) secretory pathway in CF. We developed a screening assay and screened a library for compounds that could enhance cytoplasmic Ca2+, activate the CaCC, and increase Cl(-) secretion. We found that spiperone, a known antipsychotic drug, is a potent intracellular Ca2+ enhancer and demonstrated that it stimulates intracellular Ca2+, not by acting in its well-known role as an antagonist of serotonin 5-HT2 or dopamine D2 receptors, but through a protein tyrosine kinase-coupled phospholipase C-dependent pathway. Spiperone activates CaCCs, which stimulates Cl(-) secretion in polarized human non-CF and CF airway epithelial cell monolayers in vitro and in CFTR-knockout mice in vivo. In conclusion, we have identified spiperone as a new therapeutic platform for correction of defective Cl(-) secretion in CF via a pathway independent of CFTR.  相似文献   

5.
Defective transepithelial electrolyte transport is thought to initiate cystic fibrosis (CF) lung disease. Yet, how loss of CFTR affects electrolyte transport remains uncertain. CFTR?(/)? pigs spontaneously develop lung disease resembling human CF. At birth, their airways exhibit a bacterial host defense defect, but are not inflamed. Therefore, we studied ion transport in newborn nasal and tracheal/bronchial epithelia in tissues, cultures, and in vivo. CFTR?(/)? epithelia showed markedly reduced Cl? and HCO?? transport. However, in contrast to a widely held view, lack of CFTR did not increase transepithelial Na(+) or liquid absorption or reduce periciliary liquid depth. Like human CF, CFTR?(/)? pigs showed increased amiloride-sensitive voltage and current, but lack of apical Cl? conductance caused the change, not increased Na(+) transport. These results indicate that CFTR provides the predominant transcellular pathway for Cl? and HCO?? in porcine airway epithelia, and reduced anion permeability may initiate CF airway disease.  相似文献   

6.
Ca(2+) activated Cl(-) transport is found in airways and other organs and is abnormal in cystic fibrosis, polycystic kidney disease and infectious diarrhea. The molecular identity of Ca(2+) activated Cl(-) channels (CaCC) in the airways is still obscure. Bestrophin proteins were described to form CaCC and to regulate voltage gated Ca(2+) channels. The present Ussing chamber recordings on tracheas of bestrophin 1 knockout (vmd2(-/-)) mice indicate a reduced Cl(-) secretion when activated by the purinergic agonist ATP (0.1-1 muM). As two paralogs, best1 and best2, are present in mouse tracheal epithelium, we examined the contribution of each paralog to Ca(2+) activated Cl(-) secretion. In whole cell patch-clamp measurements on primary airway epithelial cells from vmd2(-/-) tracheas, ATP activated Cl(-) currents were reduced by 50%. Additional knockdown of mbest2 in vmd2(-/-) cells by short interfering RNA further suppressed ATP-induced Cl(-) currents down to 20% of that observed in cells from vmd2(+/+) animals. Moreover, RNAi-suppression of both mbest1 and mbest2 reduced CaCC in vmd2(+/+) cells. Direct activation of CaCC by increase of intracellular Ca(2+) was also reduced in whole cell recordings of vmd2(-/-) cells. These results clearly suggest a role of bestrophin 1 and 2 for Ca(2+) dependent Cl(-) secretion in mouse airways.  相似文献   

7.
In cystic fibrosis (CF) airways, abnormal epithelial ion transport likely initiates mucus stasis, resulting in persistent airway infections and chronic inflammation. Mucus clearance is regulated, in part, by activation of apical membrane receptors coupled to intracellular calcium (Ca(2+)(i)) mobilization. We have shown that Ca(2+)(i) signals resulting from apical purinoceptor (P2Y(2)-R) activation are increased in CF compared with normal human airway epithelia. The present study addressed the mechanism for the larger apical P2Y(2)-R-dependent Ca(2+)(i) signals in CF human airway epithelia. We show that the increased Ca(2+)(i) mobilization in CF was not specific to P2Y(2)-Rs because it was mimicked by apical bradykinin receptor activation, and it did not result from a greater number of P2Y(2)-R or a more efficient coupling between P2Y(2)-Rs and phospholipase C-generated inositol 1,4,5-trisphosphate. Rather, the larger apical P2Y(2)-R activation-promoted Ca(2+)(i) signals in CF epithelia resulted from an increased density and Ca(2+) storage capacity of apically confined endoplasmic reticulum (ER) Ca(2+) stores. To address whether the ER up-regulation resulted from ER retention of misfolded DeltaF508 CFTR or was an acquired response to chronic luminal airway infection/inflammation, three approaches were used. First, ER density was studied in normal and CF sweat duct human epithelia expressing high levels of DeltaF508 CFTR, and it was found to be the same in normal and CF epithelia. Second, apical ER density was morphometrically analyzed in airway epithelia from normal subjects, DeltaF508 homozygous CF patients, and a disease control, primary ciliary dyskinesia; it was found to be greater in both CF and primary ciliary dyskinesia. Third, apical ER density and P2Y(2)-R activation-mobilized Ca(2+)(i), which were investigated in airway epithelia in a long term culture in the absence of luminal infection, were similar in normal and CF epithelia. To directly test whether luminal infection/inflammation triggers an up-regulation of the apically confined ER Ca(2+) stores, normal airway epithelia were chronically exposed to supernatant from mucopurulent material from CF airways. Supernatant treatment expanded the apically confined ER, resulting in larger apical P2Y(2)-R activation-dependent Ca(2+)(i) responses, which reproduced the increased Ca(2+)(i) signals observed in CF epithelia. In conclusion, the mechanism for the larger Ca(2+)(i) signals elicited by apical P2Y(2)-R activation in CF airway epithelia is an expansion of the apical ER Ca(2+) stores triggered by chronic luminal airway infection/inflammation. Greater ER-derived Ca(2+)(i) signals may provide a compensatory mechanism to restore, at least acutely, mucus clearance in CF airways.  相似文献   

8.
9.
Electrolyte transport by airway epithelia regulates the quantity and composition of liquid covering the airways. Previous data indicate that airway epithelia can absorb NaCl. At the apical membrane, cystic fibrosis transmembrane conductance regulator (CFTR) provides a pathway for Cl(-) absorption. However, the pathways for basolateral Cl(-) exit are not well understood. Earlier studies, predominantly in cell lines, have reported that the basolateral membrane contains a Cl(-) conductance. However, the properties have varied substantially in different epithelia. To better understand the basolateral Cl(-) conductance in airway epithelia, we studied primary cultures of well-differentiated human airway epithelia. The basolateral membrane contained a Cl(-) current that was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). The current-voltage relationship was nearly linear, and the halide selectivity was Cl(-) > Br(-) > I(-). Several signaling pathways increased the current, including elevation of cellular levels of cAMP, activation of protein kinase C (PKC), and reduction of pH. In contrast, increasing cell Ca(2+) and inducing cell swelling had no effect. The basolateral Cl(-) current was present in both cystic fibrosis (CF) and non-CF airway epithelia. Likewise, airway epithelia from wild-type mice and mice with disrupted genes for ClC-2 or ClC-3 all showed similar Cl(-) currents. These data suggest that the basolateral membrane of airway epithelia possesses a Cl(-) conductance that is not due to CFTR, ClC-2, or ClC-3. Its regulation by cAMP and PKC signaling pathways suggests that coordinated regulation of Cl(-) conductance in both apical and basolateral membranes may be important in controlling transepithelial Cl(-) movement.  相似文献   

10.
Dysfunction of CFTR in cystic fibrosis (CF) airway epithelium perturbs the normal regulation of ion transport, leading to a reduced volume of airway surface liquid (ASL), mucus dehydration, decreased mucus transport, and mucus plugging of the airways. CFTR is normally expressed in ciliated epithelial cells of the surface and submucosal gland ductal epithelium and submucosal gland acinar cells. Critical questions for the development of gene transfer strategies for CF airway disease are what airway regions require CFTR function and how many epithelial cells require CFTR expression to restore normal ASL volume regulation and mucus transport to CF airway epithelium? An in vitro model of human CF ciliated surface airway epithelium (CF HAE) was used to test whether a human parainfluenza virus (PIV) vector engineered to express CFTR (PIVCFTR) could deliver sufficient CFTR to CF HAE to restore mucus transport, thus correcting the CF phenotype. PIVCFTR delivered CFTR to >60% of airway surface epithelial cells and expressed CFTR protein in CF HAE approximately 100-fold over endogenous levels in non-CF HAE. This efficiency of CFTR delivery fully corrected the basic bioelectric defects of Cl and Na+ epithelial ion transport and restored ASL volume regulation and mucus transport to levels approaching those of non-CF HAE. To determine the numbers of CF HAE surface epithelial cells required to express CFTR for restoration of mucus transport to normal levels, different amounts of PIVCFTR were used to express CFTR in 3%–65% of the surface epithelial cells of CF HAE and correlated to increasing ASL volumes and mucus transport rates. These data demonstrate for the first time, to our knowledge, that restoration of normal mucus transport rates in CF HAE was achieved after CFTR delivery to 25% of surface epithelial cells. In vivo experimentation in appropriate models will be required to determine what level of mucus transport will afford clinical benefit to CF patients, but we predict that a future goal for corrective gene transfer to the CF human airways in vivo would attempt to target at least 25% of surface epithelial cells to achieve mucus transport rates comparable to those in non-CF airways.  相似文献   

11.
Dysfunction of CFTR in cystic fibrosis (CF) airway epithelium perturbs the normal regulation of ion transport, leading to a reduced volume of airway surface liquid (ASL), mucus dehydration, decreased mucus transport, and mucus plugging of the airways. CFTR is normally expressed in ciliated epithelial cells of the surface and submucosal gland ductal epithelium and submucosal gland acinar cells. Critical questions for the development of gene transfer strategies for CF airway disease are what airway regions require CFTR function and how many epithelial cells require CFTR expression to restore normal ASL volume regulation and mucus transport to CF airway epithelium? An in vitro model of human CF ciliated surface airway epithelium (CF HAE) was used to test whether a human parainfluenza virus (PIV) vector engineered to express CFTR (PIVCFTR) could deliver sufficient CFTR to CF HAE to restore mucus transport, thus correcting the CF phenotype. PIVCFTR delivered CFTR to >60% of airway surface epithelial cells and expressed CFTR protein in CF HAE approximately 100-fold over endogenous levels in non-CF HAE. This efficiency of CFTR delivery fully corrected the basic bioelectric defects of Cl and Na+ epithelial ion transport and restored ASL volume regulation and mucus transport to levels approaching those of non-CF HAE. To determine the numbers of CF HAE surface epithelial cells required to express CFTR for restoration of mucus transport to normal levels, different amounts of PIVCFTR were used to express CFTR in 3%–65% of the surface epithelial cells of CF HAE and correlated to increasing ASL volumes and mucus transport rates. These data demonstrate for the first time, to our knowledge, that restoration of normal mucus transport rates in CF HAE was achieved after CFTR delivery to 25% of surface epithelial cells. In vivo experimentation in appropriate models will be required to determine what level of mucus transport will afford clinical benefit to CF patients, but we predict that a future goal for corrective gene transfer to the CF human airways in vivo would attempt to target at least 25% of surface epithelial cells to achieve mucus transport rates comparable to those in non-CF airways.  相似文献   

12.
There is controversy over whether abnormalities in the salt concentration or volume of airway surface liquid (ASL) initiate cystic fibrosis (CF) airway disease. In vivo studies of CF mouse nasal epithelia revealed an increase in goblet cell number that was associated with decreased ASL volume rather than abnormal [Cl(-)]. Aerosolization of osmolytes in vivo failed to raise ASL volume. In vitro studies revealed that osmolytes and pharmacological agents were effective in producing isotonic volume responses in human airway epithelia but were typically short acting and less effective in CF cultures with prolonged volume hyperabsorption and mucus accumulation. These data show that (1) therapies can be designed to normalize ASL volume, without producing deleterious compositional changes in ASL, and (2) therapeutic efficacy will likely depend on development of long-acting pharmacologic agents and/or an increased efficiency of osmolyte delivery.  相似文献   

13.
Hyperinflammatory responses to infection have been postulated as a component of cystic fibrosis (CF) lung disease. Studies have linked intracellular calcium (Ca(2+)(i)) mobilization with inflammatory responses in several systems. We have reported that the pro-inflammatory mediator bradykinin (BK) promotes larger Ca(2+)(i) signals in CF compared with normal bronchial epithelia, a response that reflects endoplasmic reticulum (ER)/Ca(2+) store expansion induced by chronic luminal airway infection/inflammation. The present study investigated whether CF airway epithelia were hyperinflammatory and, if so, whether the hyperinflammatory CF phenotype was linked to larger Ca(2+) stores in the ER. We found that DeltaF508 CF bronchial epithelia were hyperinflammatory as defined by an increased basal and mucosal BK-induced interleukin (IL)-8 secretion. However, the CF hyperinflammation expressed in short-term (6-11-day-old) primary cultures of DeltaF508 bronchial epithelia was lost in long-term (30-40-day-old) primary cultures of DeltaF508 bronchial epithelia, indicating this response was independent of mutant cystic fibrosis transmembrane conductance regulator. Exposure of 30-40-day-old cultures of normal airway epithelia to supernatant from mucopurulent material (SMM) from CF airways reproduced the increased basal and mucosal BK-stimulated IL-8 secretion of short-term CF cultures. The BK-triggered increased IL-8 secretion in SMM-treated cultures was mediated by an increased Ca(2+)(i) mobilization consequent to an ER expansion associated with increases in protein synthesis (total, cytokines, and antimicrobial factors). The increased ER-dependent, Ca(2+)(i)-mediated hyperinflammatory epithelial response may represent a general beneficial airway epithelial adaptation to transient luminal infection. However, in CF airways, the Ca(2+)(i)-mediated hyperinflammation may be ineffective in promoting the eradication of infection in thickened mucus and, consequently, may have adverse effects in the lung.  相似文献   

14.
Mucociliary transport in the airways significantly depends on the liquid and mucin components of the airway surface liquid (ASL). The regulation of ASL water and mucin content during pathological conditions is not well understood. We hypothesized that airway epithelial mucin production and liquid transport are regulated in response to inflammatory stimuli and tested this hypothesis by investigating the effects of the pleiotropic, early-response cytokine, IL-1beta, on cultured primary human bronchial epithelial and second-passage, normal human tracheo-bronchial epithelial (NHTBE) cell cultures. Fully differentiated NHTBE cultures secreted two major airway mucins, MUC5AC and MUC5B. IL-1beta, in a dose- and time-dependent manner, increased the secretion of MUC5AC, but not MUC5B. MUC5AC mRNA levels were only transiently increased at 1 and 4 h after the start of IL-1beta treatment and returned to control levels thereafter, even though MUC5AC mucin production remained elevated for at least 72 h. Synchronous with elevated MUC5AC secretion, ASL volume increased, its percentage of solid was reduced, and the pH/[HCO(3)(-)] of the ASL was elevated. ASL volume changes reflected altered ion transport, including an upregulation of Cl(-) secretory currents (via CFTR and Ca(2+)-activated Cl(-) conductance) and an inhibition of epithelial sodium channel (ENaC)-mediated absorptive Na(+) currents. IL-1beta increased CFTR mRNA levels without affecting those for ENaC subunits. The synchronous regulation of ASL mucin and liquid metabolism triggered by IL-1beta may be an important defense mechanism of the airway epithelium to enhance mucociliary clearance during airway inflammation.  相似文献   

15.
We have studied the effect of enhanced expression of epithelial Na(+)channels (ENaC) on the ATP-induced Cl(-)secretion in the mouse epithelium using short-circuit current (I(SC)) and RT-PCR techniques. The amiloride sensitivity of basal current (I(b)) across the cultured endometrial epithelia was found to vary with the magnitude of the I(b), the higher the I(b)the greater its sensitivity to amiloride, indicating possible elevation of ENaC. However, the magnitude of ATP-induced I(SC), previously demonstrated to be mediated by Ca(2+)-activated chloride channel (CaCC), decreased as the amiloride sensitivity of the I(b)increased, suggesting a possible inhibitory effect of elevated expression of ENaC on ATP-mediated chloride secretion. The Matrigel treatment for culturing the endometrial epithelia affected the amiloride sensitivity of the I(b)as well as the ATP-induced I(SC)reversedly. Competitive RT-PCR demonstrated that the expression of both ENaC gamma subunits and CaCC was enhanced in Matrigel-treated cultures. However, the observed reduction in the ATP-induced or CaCC-mediated I(SC)could not be explained by the CaCC expression pattern. These data suggest that inhibition of CaCC function is due to enhanced ENaC expression. Therefore, in addition to interacting with CFTR, ENaC also appears to interact with CaCC in the mouse endometrial epithelium. Physiologically the present findings indicate that enhanced expression of ENaC leads to suppression of other Cl(-)channels, such as CFTR and CaCC, thereby preconditioning the endometrium in favour of overall salt and water absorption as observed during embryo implantation.  相似文献   

16.
Previous reports point out to a functional relationship of the cystic fibrosis transmembrane conductance regulator (CFTR) and Ca(2+) activated Cl(-) channels (CaCC). Recent findings showing that TMEM16A forms the essential part of CaCC, prompted us to examine whether CFTR controls TMEM16A. Inhibition of endogenous CaCC by activation of endogenous CFTR was found in 16HBE human airway epithelial cells, which also express TMEM16A. In contrast, CFBE airway epithelial cells lack of CFTR expression, but express TMEM16A along with other TMEM16-proteins. These cells produce CaCC that is inhibited by overexpression and activation of CFTR. In HEK293 cells coexpressing TMEM16A and CFTR, whole cell currents activated by IMBX and forskolin were significantly reduced when compared with cells expressing CFTR only, while the halide permeability sequence of CFTR was not changed. Expression of TMEM16A, but not of TMEM16F, H or J, produced robust CaCC, which that were inhibited by CaCCinh-A01 and niflumic acid, but not by CFTRinh-172. TMEM16A-currents were attenuated by additional expression of CFTR, and were completely abrogated when additionally expressed CFTR was activated by IBMX and forskolin. On the other hand, CFTR-currents were attenuated by additional expression of TMEM16A. CFTR and TMEM16A were both membrane localized and could be coimmunoprecipitated. Intracellular Ca(2+) signals elicited by receptor-stimulation was not changed during activation of CFTR, while ionophore-induced rise in [Ca(2+)](i) was attenuated after stimulation of CFTR. The data indicate that both CFTR and TMEM16 proteins are separate molecular entities that show functional and molecular interaction.  相似文献   

17.
In many cells, increase in intracellular calcium ([Ca(2+)](i)) activates a Ca(2+)-dependent chloride (Cl(-)) conductance (CaCC). CaCC is enhanced in cystic fibrosis (CF) epithelial cells lacking Cl(-) transport by the CF transmembrane conductance regulator (CFTR). Here, we show that in freshly isolated nasal epithelial cells of F508del-homozygous CF patients, expression of TMEM16A and bestrophin 1 was unchanged. However, calcium signaling was strongly enhanced after induction of expression of F508del-CFTR, which is unable to exit the endoplasmic reticulum (ER). Since receptor-mediated [Ca(2+)](i) increase is Cl(-) dependent, we suggested that F508del-CFTR may function as an ER chloride counter-ion channel for Ca(2+). This was confirmed by expression of the double mutant F508del/G551D-CFTR, which remained in the ER but had no effects on [Ca(2+)](i). Moreover, F508del-CFTR could serve as a scavenger for inositol-1,4,5-trisphosphate [IP3] receptor binding protein released with IP(3) (IRBIT). Our data may explain how ER-localized F508del-CFTR controls intracellular Ca(2+) signaling.  相似文献   

18.
Rectal biopsies from cystic fibrosis (CF) patients show defective cAMP-activated Cl(-) secretion and an inverse response of the short-circuit current (I(sc)) toward stimulation with carbachol (CCh). Alternative Cl(-) channels are found in airway epithelia and have been attributed to residual Cl(-) secretion in CF colon. The aim of the present study was to investigate ion conductances causing reversed I(sc) upon cholinergic stimulation. Furthermore, the putative role of an alternative Ca(2+)-dependent Cl(-) conductance in human distal colon was examined. Cholinergic ion secretion was assessed in the absence and presence of cAMP-dependent stimulation. Transepithelial voltage and I(sc) were measured in rectal biopsies from non-CF and CF individuals by means of a perfused micro-Ussing chamber. Under baseline conditions, CCh induced a positive I(sc) in CF rectal biopsies but caused a negative I(sc) in non-CF subjects. The CCh-induced negative I(sc) in non-CF biopsies was gradually reversed to a positive response by incubating the biopsies in indomethacin. The positive I(sc) was significantly enhanced in CF and was caused by activation of a luminal K(+) conductance, as shown by the use of the K(+) channel blockers Ba(2+) and tetraethylammonium. Moreover, a cAMP-dependent luminal K(+) conductance was detected in CF individuals. We conclude that the cystic fibrosis transmembrane conductance regulator is the predominant Cl(-) channel in human distal colon. Unlike human airways, no evidence was found for an alternative Cl(-) conductance in native tissues from CF patients. Furthermore, we demonstrated that both Ca(2+)- and cAMP-dependent K(+) secretion are present in human distal colon, which are unmasked in rectal biopsies from CF patients.  相似文献   

19.
Cystic fibrosis (CF) is an autosomal recessive disease caused by CFTR mutations. It is characterized by high NaCl concentration in sweat and the production of a thick and sticky mucus, occluding secretory ducts, intestine and airways, accompanied by chronic inflammation and infections of the lungs. This causes a progressive and lethal decline in lung function. Therefore, finding the mechanisms driving the high susceptibility to lung infections has been a key issue. For decades the prevalent hypothesis was that a reduced airway surface liquid (ASL) volume and composition, and the consequent increased mucus concentration (dehydration), create an environment favoring infections. However, a few years ago, in a pig model of CF, the Na+/K+ concentrations and the ASL volume were found intact. Immediately a different hypothesis arose, postulating a reduced ASL pH as the cause for the increased susceptibility to infections, due to a diminished bicarbonate secretion through CFTR. Noteworthy, a recent report found normal ASL pH values in CF children and in cultured primary airway cells, challenging the ASL pH hypothesis. On the other hand, recent evidences revitalized the hypothesis of a reduced ASL secretion. Thus, the role of the ASL pH in the CF is still a controversial matter. In this review we discuss the basis that sustain the role of CFTR in modulating the extracellular pH, and the recent results sustaining the different points of view. Finding the mechanisms of CFTR signaling that determine the susceptibility to infections is crucial to understand the pathophysiology of CF and related lung diseases.  相似文献   

20.
Evidence of absorptive or secretory ion transport in different respiratory regions of the mouse was sought by assessing the regional distribution of alpha-, beta-, and gamma-epithelial sodium channel (ENaC; Na(+) absorptive), cystic fibrosis transmembrane conductor regulator (CFTR), and Na(+)-K(+)-2Cl(-) cotransporter mRNAs. High levels of ENaC subunit expression were found in nasal surface epithelium and gland ducts. CFTR was expressed in both superficial nasal respiratory epithelium and glands. These results are consistent with basal amiloride-sensitive Na(+) absorption and cAMP-dependent Cl(-) secretion in murine nasal epithelia. Expression of all three ENaC subunits increased progressively from trachea to terminal bronchioles. Intermediate levels of CFTR and cotransporter expression in bronchial epithelium diminished in bronchioles. The low abundance of CFTR mRNA throughout murine pulmonary epithelium is consistent with functional data that attributes Cl(-) secretion predominantly to an alternative Cl(-) channel. alpha-ENaC as the only mRNA found in all regions of airway epithelia is consistent with the alpha-subunit as requisite for Na(+) absorption, and the increased expression of alpha-, beta-, and gamma-ENaC in distal airways suggests a greater absorptive capability in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号