首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A monoclonal antibody to the epidermal growth factor (EGF) receptor of A431 cells, denoted 2D1-IgM, was generated after fusion of immunized BALB/c mouse spleen cells with SP2/0-Ag14 myeloma cells. Specific binding of 2D1-IgM to the A431 cell-surface receptor for EGF was demonstrated by indirect immunofluorescence, immunoprecipitation, and immunoblot analysis. Scatchard analysis of 125I-EGF binding to A431 cells demonstrated that 2D1-IgM treatment did not change the number of EGF receptors, but caused an increase in the affinity of EGF receptors from a population of low affinity to a uniform population of high affinity. Like EGF, 2D1-IgM induced phosphorylation of EGF receptors and EGF receptor clustering. As in the case of EGF, a biphasic growth response with stimulation of DNA synthesis at low and inhibition at high concentrations of 2D1-IgM was evident in A431 cells. The intrinsic "EGF-like" bioactivity of 2D1-IgM was enhanced by the presence of EGF. These results suggest that the binding of 2D1-IgM to the EGF receptor at a different site from that to which EGF binds can initiate an effective EGF-like biological response; and the EGF-like biological effects of 2D1-IgM may be mediated by a population of high affinity EGF receptors which may be involved in the control of cellular growth.  相似文献   

2.
Epidermal growth factor (EGF)-induced c-fos and c-jun expression is strongly suppressed in microgravity. We investigate here whether this is due to inhibition of processes occurring during the initiation of EGF-induced signal transduction. For this purpose, EGF-induced receptor clustering is used as a marker. The lateral distribution of EGF receptors is directly visualized at an ultrastructural level by the label-fracture method. Quantification of the receptor distributions shows that EGF-induced receptor redistribution is similar under normal and microgravity conditions. This suggests that microgravity influences EGF-induced signal transduction downstream of EGF binding and EGF receptor redistribution, but upstream of early gene expression in human A431 cells.  相似文献   

3.
The relation between the concentration of epidermal growth factor (EGF) receptor/kinase and effects of EGF on cell proliferation has been studied using variant A431 cells and antagonist anti-EGF receptor monoclonal antibodies. Clonal A431 cell variants selected for escape from the EGF-mediated growth inhibition of parental A431 cells all have reduced concentrations of EGF receptor/kinase; Harvey sarcoma virus-transformed A431 cells, which have escaped from EGF-mediated growth inhibition, also have reduced EGF receptors. Three clonal variants which have reacquired EGF-mediated growth inhibition have 2- to 4-fold more EGF receptor than their respective parent variant. A biphasic response with stimulation at low and inhibition at high concentrations of EGF was especially evident in revertants of clone 29. Three separate antagonist monoclonal anti-EGF receptor antibodies block the growth inhibitory effects of EGF and uncover EGF-mediated growth stimulation. These studies indicate that in A431 cell variants a continuum of ligand-activated EGF receptors determines proliferative responses from low concentrations of active receptors under basal conditions to intermediate concentrations causing growth stimulation to high concentrations, causing inhibition of cell proliferation.  相似文献   

4.
Epidermoid carcinoma A431 cells exhibit two classes of epidermal growth factor (EGF) receptors as deduced from Scatchard analysis. Steady-state binding of EGF to isolated A431 membranes indicated, however, the presence of only one class of EGF binding sites. The apparent dissociation constant (Kd) of these sites was approx. 0.45 nM which is similar to that of the high-affinity receptor of intact A431 cells. These results suggest that the vesicle receptor population consists only of high-affinity receptors. However, further studies indicated that the binding sites were similar to the low-affinity class, since binding of EGF could be blocked entirely by 2E9, a monoclonal anti-EGF receptor antibody which is able to inhibit specifically EGF binding to low-affinity receptors in A431 cells. The difference in affinity of the receptors in membrane vesicles as compared to intact cells may be explained by differences in biophysical parameters such as diffusion-limited EGF binding and receptor distribution. Based upon these considerations, it is concluded that membrane vesicles of A431 cells contain one class of EGF receptors which are apparently identical to the low-affinity receptors of intact cells.  相似文献   

5.
A monoclonal antibody, EGR/ G49 , raised against the receptor for epidermal growth factor (EGF) present in A431 cells inhibits EGF binding by decreasing the affinity of the major population of low affinity receptors while leaving the minor high affinity population relatively unperturbed. The antibody, which binds to a carbohydrate determinant at a site distinct from the EGF binding site, induces clustering and internalisation of the receptor without stimulating the EGF receptor-kinase or affecting its ability to undergo stimulation by EGF. It is toxic to A431 cells and induces morphological changes similar to those seen when these cells are challenged with EGF in the concentration range 1-10 nM. These results suggest that high and low affinity EGF receptors can be distinguished and that they may serve different functions.  相似文献   

6.
Epidermal growth factor (EGF) and an EGF-like transforming growth factor (eTGF) from retrovirally transformed cells bind to a common receptor type in A431 cells. We have investigated the effects of the tumor promoter phorbol myristate acetate [PMA] on EGF/eTGF receptors in intact A431 cells. Treatment with PMA at 37 degrees C induces a complete loss of high-affinity (Kd = 35-50 pM) binding sites for eTGF and EGF on the cell surface of A431 cells. This effect is half-maximal at 0.1 nM PMA, exhibits rapid kinetics, and persists for at least 4 hr in the presence of PMA. eTGF and PMA added to intact A431 cells induce the phosphorylation of immunoprecipitable 170kd EGF/eTGF receptors. The EGF/eTGF receptor isolated from control cells was found to contain phosphoserine and phosphothreonine. PMA and eTGF caused a marked increase in the level of these two phosphoamino acids. In addition, eTGF but not PMA caused the appearance of phosphotyrosine in the EGF/eTGF receptor in vivo. We conclude that the tumor-promoting phorbol diester regulates both the affinity and phosphorylation state of the A431 cell receptor for the type alpha transforming growth factors, eTGF and EGF.  相似文献   

7.
We have used resonance energy transfer to monitor epidermal growth factor (EGF) receptor micro-aggregation at the surface of intact human epidermoid carcinoma (A431) cells. EGF molecules labeled with fluorescein isothiocyanate and eosin isothiocyanate were demonstrated to bind tightly to cellsurface receptors, to elicit immediate changes in cytosolic free [Ca2+], and to undergo endocytosis. Under conditions which maintain the integrity of the cell, we observed no energy transfer between the donor fluorescein isothiocyanate-labeled EGF molecules and the acceptor eosin isothiocyanate-labeled growth factors bound to receptors. However, after disruption of cells by Dounce homogenization, a significant degree of energy transfer was observed (approximately 10-20%) with membranes, indicative of receptor aggregation. These results suggest that EGF does not cause micro-aggregation of the majority of its receptors on the surface of intact A431 cells within the time period of the early events associated with growth factor action. Moreover, it appears that the A431 cells contain some component which imparts a constraint on the ability of EGF receptors to aggregate, and that some of this component is lost upon the disruption of cells.  相似文献   

8.
The transferrin (Tf) receptor is a major transmembrane protein which provides iron for normal and malignant cell growth. Epidermal growth factor (EGF) has been reported to rapidly and transiently alter the number of surface Tf receptors in normal and transformed epithelial cells. To investigate mechanisms of EGF-induced changes in surface Tf display, EGF effects on surface Tf receptors were compared in two cell lines which differ in their number of EGF receptors and growth responses to EGF. In cloned A431 cells with high receptor numbers which are growth-inhibited by EGF, EGF caused a 50% decrease in Tf receptor expression after 30 min. In contrast, EGF induced a rapid, transitory increase (within 5 min) in the number of surface Tf receptors on KB carcinoma cells which returned to basal levels by 15 min. The observed changes in Tf receptor display were due to altered receptor distribution and not changes in ligand affinity or total cellular transferrin receptor pools. Anti-EGF receptor monoclonal antibody blocked effects of EGF on transferrin receptor expression. Since the antibody is internalized and causes EGF receptor down-regulation, effects on transferrin receptor expression were independent of these events. EGF-induced alterations in Tf receptor display occurred even when cells were pretreated with colchicine, suggesting that changes in surface Tf binding were not mediated by cytoskeletal components. Na orthovanadate, which mimics some early cellular effects of EGF, duplicated EGF's effects on A431 Tf receptors, but had no effect on KB cells, suggesting these responses occur by differing mechanisms. To determine whether EGF caused changes in Tf receptor phosphorylation, 32P-labelled Tf receptors were immunoprecipitated after EGF treatment. After exposure to EGF, A431 cells showed no change in Tf phosphorylation, but KB cells showed a transient, 6-fold increase in transferrin receptor phosphorylation on serine residues. In both A431 and KB cells, phorbol ester (PMA) also increased phosphorylation on transferrin receptors, but had little effect on surface Tf receptor expression. In malignant cell lines, EGE induces rapid, variable changes in transferrin receptor expression and phosphorylation which differ from the effects of PMA. These early responses to EGF appear to differ with the cell type and correlate poorly with alterations in Tf receptor phosphorylation. These results suggest Tf receptor phosphorylation does not regulate Tf receptor display in all cells.  相似文献   

9.
A431 cells have been used as an immunogen for generating monoclonal antibodies against the epidermal growth factor (EGF) receptor. Two immunoglobulin M and eight immunoglobulin G3 anti-EGF receptor antibodies were cloned. All ten antibodies immunoprecipitated biosynthetically labeled mature A431 cell EGF receptor and were able to recognize the receptor in Western blotting. However, none of the antibodies immunoprecipitated precursor polypeptides of the A431 cell EGF receptor, neither did they recognize EGF receptors from human foreskin fibroblasts, human placenta, nor a human-mouse hybrid cell expressing EGF receptor. The antibodies were found to bind to glycolipids from A431 cells and it was shown that the determinant involved was the blood group A antigen. It appears that this determinant is present on both the EGF receptor and glycolipids of A431 cells but is not expressed on EGF receptors from other human cells tested. One of the monoclonal antibodies raised was used for immunoaffinity purification of the EGF receptor. The procedure took advantage of the carbohydrate nature of the antigenic determinant by employing sugar-specific elution. The mild conditions permitted the purification of A431 cell EGF receptor (70-80% pure) that possessed an intrinsic EGF-stimulated tyrosine kinase activity with a specific activity of about 20 nmol/min/mg.  相似文献   

10.
In this paper we describe our investigations on the association of receptors for the epidermal growth factor (EGF) with the cytoskeleton of A431 cells. In order to determine which filamentous system the EGF receptors are associated to, the cytoskeletal fraction to which these receptors bind was isolated. Second, the possible colocalization of EGF receptors with different cytoskeletal elements was examined in A431 cells. By selective extractions of the A431 cytoskeletons, it is shown that more than 90% of the cytoskeleton-associated EGF receptors are removed from the cytoskeletons together with the actin filamentous system. During several cycles of poly- and depolymerization of actin isolated from A431 cells, the EGF receptor precipitates together with the actin containing filaments, indicating that EGF receptors are able to bind in vitro to actin filaments. With immunofluorescence studies we show that EGF receptors especially colocalize with actin filaments. These results demonstrate that the EGF receptor is associated specifically with actin filaments in A431 cells.  相似文献   

11.
Monoclonal antibodies against phosphotyrosine were used to study tyrosine phosphorylation in human epidermal carcinoma A431 cells in vivo. Incubation of A431 cells with the epidermal growth factor (EGF) leads to tyrosine phosphorylation of the EGF receptor; the phosphotyrosine content in cellular EGF receptors increases 50-100-fold in the presence of the growth factor. The maximum level of the receptor autophosphorylation is reached on the 5th min and is then held constant during 90-min incubation with EGF. After preincubation of A431 cells with phorbol-12-myristoyl-13-acetate (PMA) or calcium ionophore A23187 the receptor autophosphorylation decreases significantly. After addition of A23187 and EGTA to the preincubation medium the phosphotyrosine content in cellular EGF receptors stimulated by the growth factor reaches the control level i.e., that observed in the absence of the ionophore. After preincubation of cells in the presence of phorbol ester and H-7 (protein kinase C inhibitor) the level of EGF receptor autophosphorylation does not practically differ from that of control.  相似文献   

12.
Transforming growth factor beta (TGF-beta) increased the phosphorylation of the epidermal growth factor (EGF) receptor and inhibited the growth of A431 cells. Incubation with TGF-beta induced maximal EGF receptor phosphorylation to levels 1.5-fold higher than controls. Phosphorylation increased more prominently (4-5-fold) on tyrosine residues as determined by phosphoamino acid analysis and antiphosphotyrosine antibody immunoblotting. The kinase activity of EGF receptor was also elevated 2.5-fold when cells were cultured in the presence of TGF-beta. The antiproliferative effect of TGF-beta on A431 cells was accompanied by prolongation of G0-G1 phase and by morphological changes. TGF-beta augmented the growth inhibition of A431 cells which could be induced by EGF. In parallel, the specific EGF-induced increase in total phosphorylation of the EGF receptor was also augmented in the presence of TGF-beta. In cells cultured with TGF-beta, the phosphorylation of EGF receptor tyrosines induced by 20-min exposure to EGF was further increased 2-3-fold, suggesting additive effects upon receptor phosphorylation. EGF receptor activation by TGF-beta is characterized by kinetics quite distinct from that induced by EGF and therefore appears to take place through an independent mechanism. The TGF-beta-induced elevation in the phosphorylation of the EGF receptor may have a role in the augmented growth inhibition of A431 cells observed in the presence of EGF and TGF-beta.  相似文献   

13.
Proliferation of some cultured human tumor cell lines bearing high numbers of epidermal growth factor (EGF) receptors is paradoxically inhibited by EGF in nanomolar concentrations. In the present study, we have investigated the biochemical mechanism of growth inhibition in A431 human squamous carcinoma cells exposed to exogenous EGF. In parallel, we studied a selected subpopulation, A431-F, which is resistant to EGF-mediated growth inhibition. We observed a marked reduction in cyclin-dependent kinase-2 (CDK2) activity when A431 and A431-F cells were cultured with 20 nM EGF for 4 h. After further continuous exposure of A431 cells to EGF, the CDK2 activity remained at a low level and was accompanied by persistent G1 arrest. In contrast, the early reduced CDK2 activity and G1 accumulation in A431-F cells was only transient. We found that, at early time points (4-8 h), EGF induces p21Cip1/WAF1 mRNA and protein expression in both EGF-sensitive A431 cells and EGF-resistant A431-F cells. But only in A431 cells, was p21Cip1/WAF1 expression sustained at a significantly increased level for up to 5 d after addition of EGF. Induction of p21Cip1/WAF1 by EGF could be inhibited by a specific EGF receptor tyrosine kinase inhibitor, tyrphostin AG1478, suggesting that p21Cip1/WAF1 induction was a consequence of receptor tyrosine kinase activation by EGF. We also demonstrated that the increased p21Cip1/WAF1 was associated with both CDK2 and proliferating cell nuclear antigen (PCNA). Taken together, our results demonstrate that p21Cip1/WAF1 is an important mediator of EGF-induced G1 arrest and growth inhibition in A431 cells.  相似文献   

14.
While a cAMP-dependent protein kinase (protein kinase A) has been suggested to phosphorylate epidermal growth factor (EGF) receptor in vitro, both intrinsic and EGF- or potent phorbol tumor promoter-induced phosphorylation of EGF receptor were found to be depressed in human epidermoid carcinoma A431 cells by prior incubation of the cells with various protein kinase A activators (e.g. cholera toxin, forskolin, cAMP analogues, or a combination of prostaglandin E1 and 3-isobutyl-1-methylxanthine). Protein kinase A activators did not change significantly either the number of EGF receptors or their affinity for EGF. The tryptic phosphopeptide map of EGF receptors from cells treated with cholera toxin alone or cholera toxin followed by EGF revealed unique peptides whose serine phosphorylation was preferentially depressed. However, the catalytic subunit of protein kinase A phosphorylated no threonine and little serine in the EGF receptors in the plasma membranes of isolated A431 cells in vitro, while serine residues in an unidentified 170-kDa membrane protein(s) other than EGF receptor were heavily phosphorylated. Pretreatment of the cells with forskolin blocked 1,2-diacylglycerol induction by EGF; growth inhibition by nanomolar levels of EGF could be partially restored by the presence of forskolin. These results indicate that an increase in intracellular cAMP modulates the EGF receptor signal transduction system by reducing EGF-induced production of diacylglycerol without direct phosphorylation of EGF receptors by protein kinase A in A431 cells.  相似文献   

15.
Mouse monoclonal antibodies to the human epidermal growth factor (EGF) receptor were raised by immunizing with plasma membrane vesicles prepared from A431 cells. This paper describes the characterization of one of the IgG anti-receptor monoclonal antibodies generated and its use to probe the role of transforming growth factor (TGF) in the autonomous growth of a melanoma cell line in culture. This antibody blocks: 1) the binding of 125I-EGF to the A431 EGF receptor; 2) the EGF stimulation of the EGF-dependent protein kinase in vitro; and 3) human fibroblast DNA synthesis and proliferation in culture. It can precipitate the EGF receptor from metabolically labeled A431 cells and human fibroblasts and these receptors have indistinguishable peptide maps. No EGF receptor could be detected by immunoprecipitation after fibroblasts were treated with EGF or conditioned medium from the melanoma cells which secrete EGF-like TGF (alpha TGF). The antibody itself did not down-regulate the receptor but could block down-regulation caused by EGF and alpha TGF. Despite its ability to block EGF-stimulated growth and down-regulation in fibroblasts, the antibody was unable to block the growth and soft agar colony formation of alpha TGF-secreting melanoma cells, nor could the antibody detect EGF receptor in these cells under the conditions developed to prevent down-regulation and lysosomal degradation of the EGF receptor. These studies suggest that these melanoma cells do not have the intact EGF receptor and that the secretion of alpha TGF by these cells plays no role in their growth in culture. The absence of receptor cannot be explained by down-regulation by secreted alpha TGF.  相似文献   

16.
The rotational diffusion of the complexes of epidermal growth factor (EGF) with its specific receptor on plasma membrane vesicles prepared from human epidermoid carcinoma A431 cells was studied using the time-resolved polarization of phosphorescence of erythrosin-labeled hormone. The measured rotational correlation times of 16-20 microseconds at 4 degrees C are consistent with monomeric freely diffusing EGF receptor. Upon increasing the temperature to 37 degrees C, the rate of rotational diffusion slows down as evidenced by an increase in the correlation time to 75 microseconds. This finding suggests that small clusters of the occupied EGF receptor (microaggregation) form at the higher temperature, a property we have reported previously for occupied receptors on living A431 cells. Subsequent cooling of the membranes leads to a partial reversal of the microaggregation. We conclude that clustering of occupied EGF receptors can proceed at 37 degrees C in the absence of metabolic energy and external interactions, e.g. with components of the cytoskeleton, and thus reflects inherent properties of the receptor protein in its natural environment. A lag phase in the time course of microaggregation observed with the isolated membrane preparations may reflect cooperativity in the process of receptor association.  相似文献   

17.
Tumor promoters cause a variety of effects in cultured cells, at least some of which are thought to result from activation of the Ca2+-phospholipid-stimulated protein kinase C. One action of tumor promoters is the modulation of the binding and phosphorylation of the epidermal growth factor (EGF) receptor in A431 cells. To determine if these compounds act on the EGF receptor by substituting for the endogenous activator of C kinase, diacylglycerol, we compared the effects of the potent tumor promoter 12-O-tetradecanoyl phorbol 13-acetate (TPA) with those of the synthetic diacylglycerol analog 1-oleyl 2-acetyl diglycerol (OADG). When A431 cells were treated with TPA, the subcellular distribution of C kinase activity shifted from a predominantly cytosolic location to a membrane-associated state; OADG also caused the disappearance of cytosolic C kinase activity. The shift in the subcellular distribution of C kinase, caused by TPA or OADG, correlated with changes in binding and phosphorylation of the EGF receptor. OADG, like TPA, caused loss of binding to an apparent high affinity class of receptors, blocked EGF-induced tyrosine phosphorylation of the EGF receptor, and stimulated phosphorylation of the EGF receptor at both serine and threonine residues. No difference between the phosphopeptide maps of receptors from cells treated with OADG or TPA was observed. Thus, it appears that tumor promoters can exert their effects on the EGF receptors by substituting for diacylglycerol, presumably by activating protein kinase C. Further, these results suggest that endogenously produced diacylglycerol may have a role in normal growth regulatory pathways.  相似文献   

18.
Recently, we have obtained evidence in favor of a structural interaction between the epidermal growth factor (EGF) receptor and the Triton X-100-insoluble cytoskeleton of epidermoid carcinoma A431 cells. Here we present a further analysis of the properties of EGF receptors attached to the cytoskeleton. Steady-state EGF binding studies, analyzed according to the Scatchard method, showed that A431 cells contain two classes of EGF-binding sites: a high-affinity site with an apparent dissociation constant (KD) of 0.7 nM (7.5 x 10(4) sites per cell) and a low-affinity site with a KD of 8.5 nM (1.9 x 10(6) sites per cell). Non-equilibrium binding studies revealed the existence of two kinetically distinguishable sites: a fast-dissociating site, with a dissociation rate constant (k-1) of 1.1 x 10(-3) s-1 (1.0-1.3 x 10(6) sites per cell) and a slow-dissociating site, with a k-1 of 3.5 x 10(-5) s-1 (0.6-0.7 x 10(6) sites per cell). The cytoskeleton of A431 cells was isolated by Triton X-100 extraction. Scatchard analysis revealed that approximately 5% of the original number of receptors were associated with the cytoskeleton predominantly via high-affinity sites (KD = 1.5 nM). This class of receptors is further characterized by the presence of a fast-dissociating component (k-1 = 2.0 x 10(-3) s-1) and a slow-dissociating component (k-1 = 9.1 x 10(-5) s-1). The distribution between fast and slow sites of the cytoskeleton was similar to that of intact cells (65% fast and 35% slow sites). Incubation of A431 cells for 2 h at 4 degrees C in the presence of EGF resulted in a dramatic increase in the number of EGF receptors associated to the cytoskeleton. These newly cytoskeleton-associated receptors appeared to represent low-affinity binding sites (KD = 7 nM). Dissociation kinetics also revealed an increase of fast-dissociating sites. These results indicate that at 4 degrees C EGF induces the binding of low-affinity, fast-dissociating sites to the cytoskeleton of A431 cells.  相似文献   

19.
We have previously reported that antibodies to phosphotyrosine recognize the phosphorylated forms of platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) receptors (Zippel et al., Biochim. Biophys. Acta 881:54-61, 1986, and Sturani et al., Biochem. Biophys. Res. Commun. 137:343-350, 1986). In this report, the time course of receptor phosphorylation is investigated. In normal human fibroblasts, ligand-induced phosphorylation of PDGF and EGF receptors is followed by rapid dephosphorylation. However, in A431 cells the tyrosine-phosphorylated form of EGF receptor persists for many hours after EGF stimulation, allowing a detailed analysis of the conditions affecting receptor phosphorylation and dephosphorylation. In A431 cells, the number of receptor molecules phosphorylated on tyrosine was quantitated and found to be about 10% of total EGF receptors. The phosphorylated receptor molecules are localized on the cell surface, and they are rapidly dephosphorylated upon removal of EGF from binding sites by a short acid wash of intact cells and upon a mild treatment with trypsin. ATP depletion also results in rapid dephosphorylation, indicating that continuous phosphorylation-dephosphorylation reactions occur in the ligand-receptor complex at steady state. Phorbol 12-myristate 13-acetate added shortly before EGF reduces the rate and the final extent of receptor phosphorylation. Moreover, it also reduces the amount of phosphorylated receptors if it is added after EGF. Down-regulation of protein kinase C by chronic treatment with phorbol dibutyrate increases the receptor phosphorylation induced by EGF, suggesting a homologous feedback regulation of EGF receptor functions.  相似文献   

20.
J Schlessinger 《Biopolymers》1983,22(1):347-353
The clustering and internalization of epidermal growth factor (EGF)–receptor complexes on human tumor cells are temperature-sensitive processes that are completely inhibited at 4°C. The rotational diffusion of EGF–receptor is limited by the viscosity of the lipid matrix, while additional constraints limit the lateral diffusion of the receptor molecule. Although the lateral and rotational diffusion of the occupied receptors are temperature sensitive, they do not provide a rate-determining factor for the clustering and subsequent internalization of the EGF–receptor. Even at 4°C the occupied receptors move quickly enough to allow the formation of EGF–receptor clusters. The lack of internalization at 4°C must be due to the inhibition of interactions other than a temperature effect on receptor mobility. EGF-induced receptor clustering involves the formation of microclusters composed of 10–50 receptor molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号