首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundThe epidemiology of the SARS-CoV-2 B.1.1.7 (or Alpha) variant is insufficiently understood. This study’s objective was to describe the introduction and expansion of this variant in Qatar and to estimate the efficacy of natural infection against reinfection with this variant.Methods and findingsReinfections with the B.1.1.7 variant and variants of unknown status were investigated in a national cohort of 158,608 individuals with prior PCR-confirmed infections and a national cohort of 42,848 antibody-positive individuals. Infections with B.1.1.7 and variants of unknown status were also investigated in a national comparator cohort of 132,701 antibody-negative individuals. B.1.1.7 was first identified in Qatar on 25 December 2020. Sudden, large B.1.1.7 epidemic expansion was observed starting on 18 January 2021, triggering the onset of epidemic’s second wave, 7 months after the first wave. B.1.1.7 was about 60% more infectious than the original (wild-type) circulating variants. Among persons with a prior PCR-confirmed infection, the efficacy of natural infection against reinfection was estimated to be 97.5% (95% CI: 95.7% to 98.6%) for B.1.1.7 and 92.2% (95% CI: 90.6% to 93.5%) for variants of unknown status. Among antibody-positive persons, the efficacy of natural infection against reinfection was estimated to be 97.0% (95% CI: 92.5% to 98.7%) for B.1.1.7 and 94.2% (95% CI: 91.8% to 96.0%) for variants of unknown status. A main limitation of this study is assessment of reinfections based on documented PCR-confirmed reinfections, but other reinfections could have occurred and gone undocumented.ConclusionsIn this study, we observed that introduction of B.1.1.7 into a naïve population can create a major epidemic wave, but natural immunity in those previously infected was strongly associated with limited incidence of reinfection by B.1.1.7 or other variants.

Laith Abu-Raddad and colleagues describe the introduction and expansion of the SARS-CoV-2 B.1.1.7 variant in a national cohort in Qatar.  相似文献   

2.
3.
BackgroundThe COVID-19 pandemic has increased barriers to accessing preventive healthcare. This study identifies populations disproportionately underrepresented in screening and surveillance colonoscopies during the COVID-19 pandemic.MethodsIn this single-center cohort study, colonoscopy procedures were reviewed during 6-month intervals before the pandemic (July 1, 2019 - December 31, 2019) and during the pandemic (July 1, 2020 - December 31, 2020 and January 1, 2021 - June 30, 2021). 7095 patients were categorized based on procedure indication, demographics, Charlson Comorbidity Index and Social Vulnerability Index (SVI). Statistics performed using VassarStats.Results2387 (2019) colonoscopies pre-pandemic and 2585 (2020) and 2123 (2021) during the pandemic were identified. There was a decrease in colonoscopies performed during months when COVID-19 cases peaked. The total number of average CRC risk patients presenting for first colonoscopy declined during the pandemic: 232 (10 %) pre-pandemic to 190 (7 %) in 2020, 145 (7 %) in 2021 (p < 0.001). Fewer of these patients presented from highly vulnerable communities, SVI > 0.8, during the pandemic, 39 in 2019 vs 16 in 2020 and 22 in 2021. Of all screening and surveillance patients, fewer presented from communities with SVI > 0.8 during the pandemic, 106 in 2019 versus 67 in 2020 and 77 in 2021.ConclusionIt is important to address the decline in CRC preventive care during this pandemic among average CRC risk first-time screeners and vulnerable community patients. An emphasis on addressing social determinants of health and establishing patients in gastroenterology clinics is imperative to promote future health in these populations.  相似文献   

4.
BackgroundThe first community transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant of concern (VOC) in Guangzhou, China occurred between May and June 2021. Herein, we describe the epidemiological characteristics of this outbreak and evaluate the implemented containment measures against this outbreak.Methodology/Principal findingsGuangzhou Center for Disease Control and Prevention provided the data on SARS-CoV-2 infections reported between 21 May and 24 June 2021. We estimated the incubation period distribution by fitting a gamma distribution to the data, while the serial interval distribution was estimated by fitting a normal distribution. The instantaneous effective reproductive number (Rt) was estimated to reflect the transmissibility of SARS-CoV-2. Clinical severity was compared for cases with different vaccination statuses using an ordinal regression model after controlling for age. Of the reported local cases, 7/153 (4.6%) were asymptomatic. The median incubation period was 6.02 (95% confidence interval [CI]: 5.42–6.71) days and the means of serial intervals decreased from 5.19 (95% CI: 4.29–6.11) to 3.78 (95% CI: 2.74–4.81) days. The incubation period increased with age (P<0.001). A hierarchical prevention and control strategy against COVID-19 was implemented in Guangzhou, with Rt decreasing from 6.83 (95% credible interval [CrI]: 3.98–10.44) for the 7-day time window ending on 27 May 2021 to below 1 for the time window ending on 8 June and thereafter. Individuals with partial or full vaccination schedules with BBIBP-CorV or CoronaVac accounted for 15.3% of the COVID-19 cases. Clinical symptoms were milder in partially or fully vaccinated cases than in unvaccinated cases (odds ratio [OR] = 0.26 [95% CI: 0.07–0.94]).Conclusions/SignificanceThe hierarchical prevention and control strategy against COVID-19 in Guangzhou was timely and effective. Authorised inactivated vaccines are likely to contribute to reducing the probability of developing severe disease. Our findings have important implications for the containment of COVID-19.  相似文献   

5.
《PLoS biology》2021,19(5)
With the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants that may increase transmissibility and/or cause escape from immune responses, there is an urgent need for the targeted surveillance of circulating lineages. It was found that the B.1.1.7 (also 501Y.V1) variant, first detected in the United Kingdom, could be serendipitously detected by the Thermo Fisher TaqPath COVID-19 PCR assay because a key deletion in these viruses, spike Δ69–70, would cause a “spike gene target failure” (SGTF) result. However, a SGTF result is not definitive for B.1.1.7, and this assay cannot detect other variants of concern (VOC) that lack spike Δ69–70, such as B.1.351 (also 501Y.V2), detected in South Africa, and P.1 (also 501Y.V3), recently detected in Brazil. We identified a deletion in the ORF1a gene (ORF1a Δ3675–3677) in all 3 variants, which has not yet been widely detected in other SARS-CoV-2 lineages. Using ORF1a Δ3675–3677 as the primary target and spike Δ69–70 to differentiate, we designed and validated an open-source PCR assay to detect SARS-CoV-2 VOC. Our assay can be rapidly deployed in laboratories around the world to enhance surveillance for the local emergence and spread of B.1.1.7, B.1.351, and P.1.

Surveillance for SARS-CoV-2 variants is very important, but sequencing is not always practical or affordable. This study presents a multiplex qPCR that is able to distinguish among different SARS-CoV-2 variants of concern that are currently circulating.  相似文献   

6.
7.
BackgroundCOVID-19 caused by SARS-CoV-2 ranges from asymptomatic to severe disease and can cause fatal and devastating outcome in many cases. In this study, we have compared the clinical, biochemical and immunological parameters across the different disease spectrum of COVID-19 in Bangladeshi patients.Methodology/Principal findingsThis longitudinal study was conducted in two COVID-19 hospitals and also around the community in Dhaka city in Bangladesh between November 2020 to March 2021. A total of 100 patients with COVID-19 infection were enrolled and classified into asymptomatic, mild, moderate and severe cases (n = 25/group). In addition, thirty age and sex matched healthy participants were enrolled and 21 were analyzed as controls based on exclusion criteria. After enrollment (study day1), follow-up visits were conducted on day 7, 14 and 28 for the cases.Older age, male gender and co-morbid conditions were the risk factors for severe COVID-19 disease. Those with moderate and severe cases of infection had low lymphocyte counts, high neutrophil counts along with a higher neutrophil-lymphocyte ratio (NLR) at enrollment; this decreased to normal range within 42 days after the onset of symptom. At enrollment, D-dimer, CRP and ferritin levels were elevated among moderate and severe cases. The mild, moderate, and severe cases were seropositive for IgG antibody by day 14 after enrollment. Moderate and severe cases showed significantly higher IgM and IgG levels of antibodies to SARS-CoV-2 compared to mild and asymptomatic cases.Conclusion/SignificanceWe report on the clinical, biochemical, and hematological parameters associated with the different severity of COVID-19 infection. We also show different profile of antibody response against SARS-CoV-2 in relation to disease severity, especially in those with moderate and severe disease manifestations compared to the mild and asymptomatic infection.  相似文献   

8.
《Endocrine practice》2021,27(9):894-902
ObjectivePost-acute sequelae of coronavirus disease 2019 (COVID-19) or long COVID (LC) is an emerging global health issue. Fatigue is a common feature. Whether thyroid function and autoimmunity play a role is uncertain. We aimed to evaluate the prevalence and predictors of LC and the potential role of thyroid function and autoimmunity in LC.MethodsWe included consecutive adults without a known thyroid disorder who were admitted to a major COVID-19 center for confirmed COVID-19 from July to December 2020. Thyroid function tests and antithyroid antibodies were measured for all patients on admission and at follow-up. LC was defined by the presence or persistence of symptoms upon follow-up.ResultsIn total, 204 patients (median age, 55.0 years; 95 men [46.6%]) were reassessed at a median of 89 days (interquartile range, 69-99) after acute COVID-19. Of the 204 patients, 41 (20.1%) had LC. Female sex (adjusted odds ratio, 2.48; P = .018) and severe acute respiratory syndrome coronavirus 2 polymerase chain reaction cycle threshold value of <25 on admission (adjusted odds ratio, 2.84; P = .012) independently predicted the occurrence of LC. Upon follow-up, most abnormal thyroid function tests in acute COVID-19 resolved, and incident thyroid dysfunction was rare. Nonetheless, we observed incident antithyroid peroxidase (anti-TPO) positivity. Although baseline or follow-up thyroid function tests were not associated with the occurrence of LC, among 172 patients with symptomatic acute COVID-19, symptom resolution was more likely in those with positive anti-TPO upon follow-up (P = .043).ConclusionLC is common among COVID-19 survivors, with females and those with higher viral load in acute COVID-19 particularly being vulnerable. The observation of incident anti-TPO positivity warrants further follow-up for thyroid dysfunction. Whether anti-TPO plays a protective role in LC remains to be elucidated.  相似文献   

9.
Background:Between February and June 2021, the initial wild-type strains of SARS-CoV-2 were supplanted in Ontario, Canada, by new variants of concern (VOCs), first those with the N501Y mutation (i.e., Alpha/B1.1.17, Beta/B.1.351 and Gamma/P.1 variants) and then the Delta/B.1.617 variant. The increased transmissibility of these VOCs has been documented, but knowledge about their virulence is limited. We used Ontario’s COVID-19 case data to evaluate the virulence of these VOCs compared with non-VOC SARS-CoV-2 strains, as measured by risk of hospitalization, intensive care unit (ICU) admission and death.Methods:We created a retrospective cohort of people in Ontario who tested positive for SARS-CoV-2 and were screened for VOCs, with dates of test report between Feb. 7 and June 27, 2021. We constructed mixed-effect logistic regression models with hospitalization, ICU admission and death as outcome variables. We adjusted models for age, sex, time, vaccination status, comorbidities and pregnancy status. We included health units as random intercepts.Results:Our cohort included 212 326 people. Compared with non-VOC SARS-CoV-2 strains, the adjusted elevation in risk associated with N501Y-positive variants was 52% (95% confidence interval [CI] 42%–63%) for hospitalization, 89% (95% CI 67%–117%) for ICU admission and 51% (95% CI 30%–78%) for death. Increased risk with the Delta variant was more pronounced at 108% (95% CI 78%–140%) for hospitalization, 235% (95% CI 160%–331%) for ICU admission and 133% (95% CI 54%–231%) for death.Interpretation:The increasing virulence of SARS-CoV-2 VOCs will lead to a considerably larger, and more deadly, pandemic than would have occurred in the absence of the emergence of VOCs.

Novel SARS-CoV-2 variants of concern (VOCs), including viral lineages carrying the N501Y (Alpha/B.1.1.7) or both the N501Y and E484K mutations (Beta/B.1.351 and Gamma/P.1), were first identified in Ontario, Canada, in December 2020.1 Although initially uncommon in Ontario, these VOCs outcompeted earlier SARS-CoV-2 lineages and, as of late April 2021, were responsible for almost all new infections in Ontario, with Alpha the most prevalent lineage.1 In April 2021, the B.1.617.2 variant, now known as Delta under the revised nomenclature from the World Health Organization, emerged in the province, outcompeted earlier VOCs and, by July 2021, represented most infections in the province.2,3This serial replacement by emerging variants reflects progressively higher effective reproduction numbers that allow novel variants to outcompete previously dominant strains in the face of identical measures to control spread of infection.46 However, VOCs are also concerning because emerging evidence points to increased virulence, with increased risk of hospitalization, intensive care unit (ICU) admission and death, after adjustment for age and other predictive factors among patients with VOC infections.710 Although the increased virulence of strains with the N501Y mutation relative to strains that lack this mutation has been described,79 only limited information is available on the virulence of infection with the Delta variant, relative to earlier N501Y-positive VOCs (i.e., Alpha, Beta and Gamma).1012 Our objectives were to evaluate the virulence of N501Y-positive variants relative to earlier SARS-CoV-2 lineages and to evaluate the virulence of the Delta variant of SARS-CoV-2 relative to N501Y-positive VOCs using Ontario’s COVID-19 case data.  相似文献   

10.
Vaccines against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have been highly efficient in protecting against Coronavirus Disease 2019 (COVID-19). However, the emergence of viral variants that are more transmissible and, in some cases, escape from neutralizing antibody responses has raised concerns. Here, we evaluated recombinant protein spike antigens derived from wild-type SARS-CoV-2 and from variants B.1.1.7, B.1.351, and P.1 for their immunogenicity and protective effect in vivo against challenge with wild-type SARS-CoV-2 in the mouse model. All proteins induced high neutralizing antibodies against the respective viruses but also induced high cross-neutralizing antibody responses. The decline in neutralizing titers between variants was moderate, with B.1.1.7-vaccinated animals having a maximum fold reduction of 4.8 against B.1.351 virus. P.1 induced the most cross-reactive antibody responses but was also the least immunogenic in terms of homologous neutralization titers. However, all antigens protected from challenge with wild-type SARS-CoV-2 in a mouse model.

This study explores the immune response induced by wild type and variant SARS-CoV-2 spike proteins, and the protection that these immune responses provide against challenge with wild type virus in the mouse model.  相似文献   

11.
BackgroundIn order to protect health workers from SARS-CoV-2, there is need to characterise the different types of patient facing health workers. Our first aim was to determine both the infection status and seroprevalence of SARS-CoV-2 in health workers. Our second aim was to evaluate the occupational and demographic predictors of seropositivity to inform the country’s infection prevention and control (IPC) strategy.Methods and principal findingsWe invited 713 staff members at 24 out of 35 health facilities in the City of Bulawayo in Zimbabwe. Compliance to testing was defined as the willingness to uptake COVID-19 testing by answering a questionnaire and providing samples for both antibody testing and PCR testing. SARS-COV-2 antibodies were detected using a rapid diagnostic test kit and SAR-COV-2 infection was determined by real-time (RT)-PCR. Of the 713 participants, 635(89%) consented to answering the questionnaire and providing blood sample for antibody testing while 560 (78.5%) agreed to provide nasopharyngeal swabs for the PCR SARS-CoV-2 testing. Of the 635 people (aged 18–73) providing a blood sample 39.1% reported a history of past COVID-19 symptoms while 14.2% reported having current symptoms of COVID-19. The most-prevalent co-morbidity among this group was hypertension (22.0%) followed by asthma (7.0%) and diabetes (6.0%). The SARS-CoV-2 sero-prevalence was 8.9%. Of the 560 participants tested for SARS-CoV-2 infection, 2 participants (0.36%) were positive for SAR-CoV-2 infection by PCR testing. None of the SARS-CoV-2 antibody positive people were positive for SAR-CoV-2 infection by PCR testing.Conclusion and interpretationIn addition to clinical staff, several patient-facing health workers were characterised within Zimbabwe’s health system and the seroprevalence data indicated that previous exposure to SAR-CoV-2 had occurred across the full spectrum of patient-facing staff with nurses and nurse aides having the highest seroprevalence. Our results highlight the need for including the various health workers in IPC strategies in health centres to ensure effective biosecurity and biosafety.  相似文献   

12.
BackgroundSeveral countries restricted the administration of ChAdOx1 to older age groups in 2021 over safety concerns following case reports and observed versus expected analyses suggesting a possible association with cerebral venous sinus thrombosis (CVST). Large datasets are required to precisely estimate the association between Coronavirus Disease 2019 (COVID-19) vaccination and CVST due to the extreme rarity of this event. We aimed to accomplish this by combining national data from England, Scotland, and Wales.Methods and findingsWe created data platforms consisting of linked primary care, secondary care, mortality, and virological testing data in each of England, Scotland, and Wales, with a combined cohort of 11,637,157 people and 6,808,293 person years of follow-up. The cohort start date was December 8, 2020, and the end date was June 30, 2021. The outcome measure we examined was incident CVST events recorded in either primary or secondary care records. We carried out a self-controlled case series (SCCS) analysis of this outcome following first dose vaccination with ChAdOx1 and BNT162b2. The observation period consisted of an initial 90-day reference period, followed by a 2-week prerisk period directly prior to vaccination, and a 4-week risk period following vaccination. Counts of CVST cases from each country were tallied, then expanded into a full dataset with 1 row for each individual and observation time period. There was a combined total of 201 incident CVST events in the cohorts (29.5 per million person years). There were 81 CVST events in the observation period among those who a received first dose of ChAdOx1 (approximately 16.34 per million doses) and 40 for those who received a first dose of BNT162b2 (approximately 12.60 per million doses). We fitted conditional Poisson models to estimate incidence rate ratios (IRRs). Vaccination with ChAdOx1 was associated with an elevated risk of incident CVST events in the 28 days following vaccination, IRR = 1.93 (95% confidence interval (CI) 1.20 to 3.11). We did not find an association between BNT162b2 and CVST in the 28 days following vaccination, IRR = 0.78 (95% CI 0.34 to 1.77). Our study had some limitations. The SCCS study design implicitly controls for variables that are constant over the observation period, but also assumes that outcome events are independent of exposure. This assumption may not be satisfied in the case of CVST, firstly because it is a serious adverse event, and secondly because the vaccination programme in the United Kingdom prioritised the clinically extremely vulnerable and those with underlying health conditions, which may have caused a selection effect for individuals more prone to CVST. Although we pooled data from several large datasets, there was still a low number of events, which may have caused imprecision in our estimates.ConclusionsIn this study, we observed a small elevated risk of CVST events following vaccination with ChAdOx1, but not BNT162b2. Our analysis pooled information from large datasets from England, Scotland, and Wales. This evidence may be useful in risk–benefit analyses of vaccine policies and in providing quantification of risks associated with vaccination to the general public.

In a pooled self-controlled case series study, Steven Kerr and colleagues assess the association between first dose ChAdOx1 and BNT162b2 COVID-19 vaccination with cerebral venous sinus thrombosis in England, Scotland and Wales.  相似文献   

13.
BackgroundDeaths in the first year of the Coronavirus Disease 2019 (COVID-19) pandemic in England and Wales were unevenly distributed socioeconomically and geographically. However, the full scale of inequalities may have been underestimated to date, as most measures of excess mortality do not adequately account for varying age profiles of deaths between social groups. We measured years of life lost (YLL) attributable to the pandemic, directly or indirectly, comparing mortality across geographic and socioeconomic groups.Methods and findingsWe used national mortality registers in England and Wales, from 27 December 2014 until 25 December 2020, covering 3,265,937 deaths. YLLs (main outcome) were calculated using 2019 single year sex-specific life tables for England and Wales. Interrupted time-series analyses, with panel time-series models, were used to estimate expected YLL by sex, geographical region, and deprivation quintile between 7 March 2020 and 25 December 2020 by cause: direct deaths (COVID-19 and other respiratory diseases), cardiovascular disease and diabetes, cancer, and other indirect deaths (all other causes). Excess YLL during the pandemic period were calculated by subtracting observed from expected values. Additional analyses focused on excess deaths for region and deprivation strata, by age-group. Between 7 March 2020 and 25 December 2020, there were an estimated 763,550 (95% CI: 696,826 to 830,273) excess YLL in England and Wales, equivalent to a 15% (95% CI: 14 to 16) increase in YLL compared to the equivalent time period in 2019. There was a strong deprivation gradient in all-cause excess YLL, with rates per 100,000 population ranging from 916 (95% CI: 820 to 1,012) for the least deprived quintile to 1,645 (95% CI: 1,472 to 1,819) for the most deprived. The differences in excess YLL between deprivation quintiles were greatest in younger age groups; for all-cause deaths, a mean of 9.1 years per death (95% CI: 8.2 to 10.0) were lost in the least deprived quintile, compared to 10.8 (95% CI: 10.0 to 11.6) in the most deprived; for COVID-19 and other respiratory deaths, a mean of 8.9 years per death (95% CI: 8.7 to 9.1) were lost in the least deprived quintile, compared to 11.2 (95% CI: 11.0 to 11.5) in the most deprived. For all-cause mortality, estimated deaths in the most deprived compared to the most affluent areas were much higher in younger age groups, but similar for those aged 85 or over. There was marked variability in both all-cause and direct excess YLL by region, with the highest rates in the North West. Limitations include the quasi-experimental nature of the research design and the requirement for accurate and timely recording.ConclusionsIn this study, we observed strong socioeconomic and geographical health inequalities in YLL, during the first calendar year of the COVID-19 pandemic. These were in line with long-standing existing inequalities in England and Wales, with the most deprived areas reporting the largest numbers in potential YLL.

In a registry-based study, Evangelos Kontopantelis and colleagues examine the excess years of life lost to COVID-19 and other causes of death by sex, neighbourhood deprivation and region in England & Wales during 2020.  相似文献   

14.
The COVID-19 pandemic has accelerated the need to identify new antiviral therapeutics at pace, including through drug repurposing. We employed a Quadratic Unbounded Binary Optimization (QUBO) model, to search for compounds similar to Remdesivir, the first antiviral against SARS-CoV-2 approved for human use, using a quantum-inspired device. We modelled Remdesivir and compounds present in the DrugBank database as graphs, established the optimal parameters in our algorithm and resolved the Maximum Weighted Independent Set problem within the conflict graph generated. We also employed a traditional Tanimoto fingerprint model. The two methods yielded different lists of lead compounds, with some overlap. While GS-6620 was the top compound predicted by both models, the QUBO model predicted BMS-986094 as second best. The Tanimoto model predicted different forms of cobalamin, also known as vitamin B12. We then determined the half maximal inhibitory concentration (IC50) values in cell culture models of SARS-CoV-2 infection and assessed cytotoxicity. We also demonstrated efficacy against several variants including SARS-CoV-2 Strain England 2 (England 02/2020/407073), B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.2 (Delta). Lastly, we employed an in vitro polymerization assay to demonstrate that these compounds directly inhibit the RNA-dependent RNA polymerase (RdRP) of SARS-CoV-2. Together, our data reveal that our QUBO model performs accurate comparisons (BMS-986094) that differed from those predicted by Tanimoto (different forms of vitamin B12); all compounds inhibited replication of SARS-CoV-2 via direct action on RdRP, with both models being useful. While Tanimoto may be employed when performing relatively small comparisons, QUBO is also accurate and may be well suited for very complex problems where computational resources may limit the number and/or complexity of possible combinations to evaluate. Our quantum-inspired screening method can therefore be employed in future searches for novel pharmacologic inhibitors, thus providing an approach for accelerating drug deployment.  相似文献   

15.
16.
目的:评价新型冠状病毒(SARS-CoV-2)重组S1蛋白和S蛋白疫苗对SARS-CoV-2的免疫保护效果。方法:将SARS-CoV-2重组S1蛋白和S蛋白分别联合氢氧化铝佐剂以0.1 μg/只、1 μg/只、5 μg/只、10 μg/只不同剂量接种6~8周BALB/c纯系健康雌性小鼠。第二次免疫后采血通过酶联免疫吸附试验(ELISA)检测血清中IgG抗体效价,通过假病毒中和试验比较免疫小鼠血清对SARS-CoV-2野生型株(WT)、英国株(B.1.1.7)、巴西株(P.1)、印度株(B.1.617.2)、Mu毒株(B.1.621)和南非株(501Y.V2-1)六种假病毒毒株中和活性效价,取脾细胞通过酶联免疫斑点技术(ELISpot)检测免疫小鼠的细胞免疫水平。结果:SARS-CoV-2重组S和S1蛋白都能诱导小鼠产生较强的IgG抗体水平。免疫S1蛋白的小鼠血清对SARS-CoV-2野生型株、英国株、巴西株有明显的中和活性,免疫S蛋白的小鼠血清除了对SARS-CoV-2野生型株、英国株、巴西株有明显中和活性之外,对印度株也有明显的中和活性,两种蛋白质免疫的小鼠血清均对野生型株中和效果最强。S蛋白免疫的小鼠脾细胞能够显著诱导出γ干扰素(IFN-γ)和白介素-4(IL-4)的产生。S蛋白诱导产生的IgG抗体、中和抗体、细胞免疫水平均高于S1。结论:SARS-CoV-2重组S蛋白疫苗能够诱导产生较强的保护性免疫应答。  相似文献   

17.
In 2021, the genetics and genomics community needs to communicate to policymakers how the field of human genetics and genomics is transforming biomedical research and medicine, including its essential role in combatting COVID-19. This is important for ensuring that policies enable a thriving scientific enterprise and provide resources for research advances.

In 2021, the genetics and genomics community needs to communicate to policymakers how the field of human genetics and genomics is transforming biomedical research and medicine, including its essential role in combatting COVID-19. This is important for ensuring that policies enable a thriving scientific enterprise and provide resources for research advances.  相似文献   

18.
BackgroundThe US Centers for Disease Control and Prevention has repeatedly called for Coronavirus Disease 2019 (COVID-19) vaccine equity. The objective our study was to measure equity in the early distribution of COVID-19 vaccines to healthcare facilities across the US. Specifically, we tested whether the likelihood of a healthcare facility administering COVID-19 vaccines in May 2021 differed by county-level racial composition and degree of urbanicity.Methods and findingsThe outcome was whether an eligible vaccination facility actually administered COVID-19 vaccines as of May 2021, and was defined by spatially matching locations of eligible and actual COVID-19 vaccine administration locations. The outcome was regressed against county-level measures for racial/ethnic composition, urbanicity, income, social vulnerability index, COVID-19 mortality, 2020 election results, and availability of nontraditional vaccination locations using generalized estimating equations.Across the US, 61.4% of eligible healthcare facilities and 76.0% of eligible pharmacies provided COVID-19 vaccinations as of May 2021. Facilities in counties with >42.2% non-Hispanic Black population (i.e., > 95th county percentile of Black race composition) were less likely to serve as COVID-19 vaccine administration locations compared to facilities in counties with <12.5% non-Hispanic Black population (i.e., lower than US average), with OR 0.83; 95% CI, 0.70 to 0.98, p = 0.030. Location of a facility in a rural county (OR 0.82; 95% CI, 0.75 to 0.90, p < 0.001, versus metropolitan county) or in a county in the top quintile of COVID-19 mortality (OR 0.83; 95% CI, 0.75 to 0.93, p = 0.001, versus bottom 4 quintiles) was associated with decreased odds of serving as a COVID-19 vaccine administration location.There was a significant interaction of urbanicity and racial/ethnic composition: In metropolitan counties, facilities in counties with >42.2% non-Hispanic Black population (i.e., >95th county percentile of Black race composition) had 32% (95% CI 14% to 47%, p = 0.001) lower odds of serving as COVID administration facility compared to facilities in counties with below US average Black population. This association between Black composition and odds of a facility serving as vaccine administration facility was not observed in rural or suburban counties. In rural counties, facilities in counties with above US average Hispanic population had 26% (95% CI 11% to 38%, p = 0.002) lower odds of serving as vaccine administration facility compared to facilities in counties with below US average Hispanic population. This association between Hispanic ethnicity and odds of a facility serving as vaccine administration facility was not observed in metropolitan or suburban counties.Our analyses did not include nontraditional vaccination sites and are based on data as of May 2021, thus they represent the early distribution of COVID-19 vaccines. Our results based on this cross-sectional analysis may not be generalizable to later phases of the COVID-19 vaccine distribution process.ConclusionsHealthcare facilities in counties with higher Black composition, in rural areas, and in hardest-hit communities were less likely to serve as COVID-19 vaccine administration locations in May 2021. The lower uptake of COVID-19 vaccinations among minority populations and rural areas has been attributed to vaccine hesitancy; however, decreased access to vaccination sites may be an additional overlooked barrier.

Inmaculada Hernandez and colleagues investigate the disparities in early-phase distribution of COVID-19 Vaccines across U.S. Counties.  相似文献   

19.
Various recently reported mutant variants, candidate and urgently approved current vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many current situations with severe neurological damage and symptoms as well as respiratory tract disorders have begun to be reported. In particular, drug, vaccine, and neutralizing monoclonal antibodies (mAbs) have been developed and are currently being evaluated in clinical trials. Here, we review lessons learned from the use of novel mutant variants of the COVID-19 virus, immunization, new drug solutions, and antibody therapies for infections. Next, we focus on the B 1.1.7, B 1.351, P.1, and B.1.617 lineages or variants of concern that have been reported worldwide, the new manifestations of neurological manifestations, the current therapeutic drug targets for its treatment, vaccine candidates and their efficacy, implantation of convalescent plasma, and neutralization of mAbs. We review specific clinical questions, including many emerging neurological effects and respiratory tract injuries, as well as new potential biomarkers, new studies in addition to known therapeutics, and chronic diseases of vaccines that have received immediate approval. To answer these questions, further understanding of the burden kinetics of COVID-19 and its correlation with neurological clinical outcomes, endogenous antibody responses to vaccines, pharmacokinetics of neutralizing mAbs, and action against emerging viral mutant variants is needed.  相似文献   

20.
BackgroundThe epidemiology of childhood SARS-CoV-2 infection and COVID-19-related illness remains little studied in high-transmission tropical settings, partly due to the less severe clinical manifestations typically developed by children and the limited availability of diagnostic tests. To address this knowledge gap, we investigate the prevalence and predictors of SARS-CoV-2 infection (either symptomatic or not) and disease in 5 years-old Amazonian children.Methodology/Principal findingsWe retrospectively estimated SARS-CoV-2 attack rates and the proportion of infections leading to COVID-19-related illness among 660 participants in a population-based birth cohort study in the Juruá Valley, Amazonian Brazil. Children were physically examined, tested for SARS-CoV-2 IgG and IgM antibodies, and had a comprehensive health questionnaire administered during a follow-up visit at the age of 5 years carried out in January or June-July 2021. We found serological evidence of past SARS-CoV-2 infection in 297 (45.0%; 95% confidence interval [CI], 41.2–48.9%) of 660 cohort participants, but only 15 (5.1%; 95% CI, 2.9–8.2%) seropositive children had a prior medical diagnosis of COVID-19 reported by their mothers or guardians. The period prevalence of clinically apparent COVID-19, defined as the presence of specific antibodies plus one or more clinical symptoms suggestive of COVID-19 (cough, shortness of breath, and loss of taste or smell) reported by their mothers or guardians since the pandemic onset, was estimated at 7.3% (95% CI, 5.4–9.5%). Importantly, children from the poorest households and those with less educated mothers were significantly more likely to be seropositive, after controlling for potential confounders by mixed-effects multiple Poisson regression analysis. Likewise, the period prevalence of COVID-19 was 1.8-fold (95%, CI 1.2–2.6-fold) higher among cohort participants exposed to food insecurity and 3.0-fold (95% CI, 2.8–3.5-fold) higher among those born to non-White mothers. Finally, children exposed to household and family contacts who had COVID-19 were at an increased risk of being SARS-CoV-2 seropositive and–even more markedly–of having had clinically apparent COVID-19 by the age of 5 years.Conclusions/SignificanceChildhood SARS-CoV-2 infection and COVID-19-associated illness are substantially underdiagnosed and underreported in the Amazon. Children in the most socioeconomically vulnerable households are disproportionately affected by SARS-CoV-2 infection and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号