首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidation of combined ingestion of glucose and fructose during exercise.   总被引:1,自引:0,他引:1  
The purpose of the present study was to examine whether combined ingestion of a large amount of fructose and glucose during cycling exercise would lead to exogenous carbohydrate oxidation rates >1 g/min. Eight trained cyclists (maximal O(2) consumption: 62 +/- 3 ml x kg(-1) x min(-1)) performed four exercise trials in random order. Each trial consisted of 120 min of cycling at 50% maximum power output (63 +/- 2% maximal O(2) consumption), while subjects received a solution providing either 1.2 g/min of glucose (Med-Glu), 1.8 g/min of glucose (High-Glu), 0.6 g/min of fructose + 1.2 g/min of glucose (Fruc+Glu), or water. The ingested fructose was labeled with [U-(13)C]fructose, and the ingested glucose was labeled with [U-(14)C]glucose. Peak exogenous carbohydrate oxidation rates were approximately 55% higher (P < 0.001) in Fruc+Glu (1.26 +/- 0.07 g/min) compared with Med-Glu and High-Glu (0.80 +/- 0.04 and 0.83 +/- 0.05 g/min, respectively). Furthermore, the average exogenous carbohydrate oxidation rates over the 60- to 120-min exercise period were higher (P < 0.001) in Fruc+Glu compared with Med-Glu and High-Glu (1.16 +/- 0.06, 0.75 +/- 0.04, and 0.75 +/- 0.04 g/min, respectively). There was a trend toward a lower endogenous carbohydrate oxidation in Fruc+Glu compared with the other two carbohydrate trials, but this failed to reach statistical significance (P = 0.075). The present results demonstrate that, when fructose and glucose are ingested simultaneously at high rates during cycling exercise, exogenous carbohydrate oxidation rates can reach peak values of approximately 1.3 g/min.  相似文献   

2.
It was reported previously that glucose ingestion prior to or at the beginning of muscular exercise was a readily available metabolic substrate. The aim of this study was to see what percentage of carbohydrate utilization can be covered by glucose ingested regularly during exercise. Male healthy volunteers exercised for 285 min at approximately 45% of their individual maximal O2 uptake on a 10% uphill treadmill. After 15 min adaptation to exercise they received either 200 g (group G 200) or 400 g (group G 400) glucose (0.25 g X ml H2O-1) orally in eight equal doses repeated every 30 min (G 200 = 8 X 25 g, n = 4; G 400 = 8 X 50 g, n = 4). Indirect calorimetry was used to evaluate carbohydrate and lipid oxidation. Naturally labeled [13C]glucose was used to follow the oxidation of the exogenous glucose. Total carbohydrate oxidation was 341 +/- 22 and 332 +/- 32 g, lipid oxidation was 119 +/- 8 and 105 +/- 5 g, and exogenous glucose oxidation was 137 +/- 4 and 227 +/- 13 g (P less than 0.005) in groups G 200 and G 400, respectively. Endogenous glucose oxidation was about half in G 400 of what it was in G 200: 106 +/- 27 vs. 204 +/- 24 g (P less than 0.02). During the last hour of exercise, exogenous oxidation represented 55.3 and 87.5% of total carbohydrate oxidation for groups G 200 and G 400, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Both carbohydrate (CHO) and caffeine have been used as ergogenic aids during exercise. It has been suggested that caffeine increases intestinal glucose absorption, but there are also suggestions that it may decrease muscle glucose uptake. The purpose of the study was to investigate the effect of caffeine on exogenous CHO oxidation. In a randomized crossover design, eight male cyclists (age 27 +/- 2 yr, body mass 71.2 +/- 2.3 kg, maximal oxygen uptake 65.7 +/- 2.2 ml x kg(-1) x min(-1)) exercised at 64 +/- 3% of maximal oxygen uptake for 120 min on three occasions. During exercise subjects ingested either a 5.8% glucose solution (Glu; 48 g/h), glucose with caffeine (Glu+Caf, 48 g/h + 5 mg x kg(-1) x h(-1)), or plain water (Wat). The glucose solution contained trace amounts of [U-13C]glucose so that exogenous CHO oxidation could be calculated. CHO and fat oxidation were measured by indirect calorimetry, and 13C appearance in the expired gases was measured by continuous-flow IRMS. Average exogenous CHO oxidation over the 90- to 120-min period was 26% higher (P < 0.05) in Glu+Caf (0.72 +/- 0.04 g/min) compared with Glu (0.57 +/- 0.04 g/min). Total CHO oxidation rates were higher (P < 0.05) in the CHO ingestion trials compared with Wat, but they were highest when Glu+Caf was ingested (1.21 +/- 0.37, 1.84 +/- 0.14, and 2.47 +/- 0.23 g/min for Wat, Glu, and Glu+Caf, respectively; P < 0.05). There was also a trend (P = 0.082) toward an increased endogenous CHO oxidation with Glu+Caf (1.81 +/- 0.22 g/min vs. 1.27 +/- 0.13 g/min for Glu and 1.12 +/- 0.37 g/min for Wat). In conclusion, compared with glucose alone, 5 mg x kg(-1) x h(-1) of caffeine coingested with glucose increases exogenous CHO oxidation, possibly as a result of an enhanced intestinal absorption.  相似文献   

4.
The purpose of this study was to compare the oxidation of 13C-labeled glucose, fructose, and glucose polymer ingested (1.33 g.kg-1 in 19 ml.kg-1 water) during cycle exercise (120 min, 53 +/- 2% maximal O2 uptake) in six healthy male subjects. Oxidation of exogenous glucose and glucose polymer (72 +/- 15 and 65 +/- 18%, respectively, of the 98.9 +/- 4.7 g ingested) was similar and significantly greater than exogenous fructose oxidation (54 +/- 13%). A transient rise in plasma glucose concentration was observed with glucose ingestion only. However, plasma insulin levels were similar with glucose and glucose polymer ingestions and significantly higher than with water or fructose ingestion. Plasma free fatty acid and glycerol responses to exercise were blunted with carbohydrate ingestion. However, fat utilization was not significantly different with water (82 +/- 14 g), glucose (60 +/- 3 g), fructose (59 +/- 11 g), or glucose polymer ingestion (60 +/- 8 g). Endogenous carbohydrate utilization was significantly lower with glucose (184 +/- 22 g), glucose polymer (187 +/- 31 g), and fructose (211 +/- 18 g) than with water (239 +/- 30 g) ingestion. Plasma volume slightly increased with water ingestion (7.4 +/- 4.5%), but the decrease was similar with glucose (-7.6 +/- 5.1%) and glucose polymer (-8.2 +/- 4.6%), suggesting that the rate of water delivery to plasma was similar with the two carbohydrates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The purpose of this study was to compare the oxidation rate of exogenous 13C-labeled medium-chain triacylglycerols (MCT) with that of an isocaloric amount of exogenous [13C]glucose and to evaluate their respective effects on endocrine and metabolic responses to moderate prolonged exercise. To take into account changes in isotopic composition of 13CO2 arising from oxidation of endogenous substrates because of exercise and/or substrate ingestion that overestimates the oxidation rate of exogenous substrates, two levels of 13C enrichment were used for each substrate. Six young healthy males (20-26 yr of age) completed five 2-h periods of exercise at 65 +/- 3% maximal O2 uptake (VO2max) on a cycle ergometer at 7-day intervals: one control exercise with water ingestion, two trials with ingestion of 25 g of [13C]MCT (trioctanoate) 1 h before exercise, and two trials with 57 g of [13C]glucose (dissolved in 1,000 ml of water) ingested during exercise. Exogenous MCT and glucose began to be oxidized within the first 30 min of exercise, and the oxidation rate increased progressively until the end of exercise for both substrates. Over the 2-h period of exercise, 13.6 +/- 3.5 g of ingested MCT and 36.4 +/- 8.2 g of exogenous glucose were oxidized, which represent 54 and 64%, respectively, of the total amount ingested. The contribution of MCT (119 +/- 31 kcal) and glucose (140 +/- 36 kcal) was not significantly different and represented 7 and 8.5%, respectively, of the total energy expenditure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
There has been recent interest in the potential performance and metabolic effects of carbohydrate ingestion during exercise lasting approximately 1 h. In this study, 13 well-trained men ingested in randomized order either a 6% glucose solution (CHO trial) or a placebo (Con trial) during exercise to exhaustion at 83+/-1% peak oxygen uptake. In six subjects, vastus lateralis muscle was sampled at rest, at 32 min, and at exhaustion, and in six subjects, glucose kinetics was determined by infusion of [6,6-(2)H]glucose in both trials and ingestion of [6-(3)H]glucose in the CHO trial. Of the 84 g of glucose ingested during exercise in the CHO trial, only 22 g appeared in the peripheral circulation. This resulted in a small (12 g) but significant (P<0.05) increase in glucose uptake without influencing carbohydrate oxidation, muscle glycogen use, or time to exhaustion (CHO: 68.1+/-4.1 min; Con: 69.6+/-5.5 min). Decreases in muscle phosphocreatine content and increases in muscle inosine monophosphate and lactate content during exercise were similar in the two trials. Although endogenous glucose production during exercise was partially suppressed in the CHO trial, it remained significantly above preexercise levels throughout exercise. In conclusion, only 26% of the ingested glucose appeared in the peripheral circulation. Glucose ingestion increased glucose uptake and partially reduced endogenous glucose production but had no effect on carbohydrate oxidation, muscle metabolism, or time to exhaustion during exercise at 83% peak oxygen uptake.  相似文献   

7.
The aim of the present study was to test the hypothesis that the oxidation rate of ingested carbohydrate (CHO) is impaired during exercise in the heat compared with a cool environment. Nine trained cyclists (maximal oxygen consumption 65 +/- 1 ml x kg body wt(-1) x min(-1)) exercised on two different occasions for 90 min at 55% maximum power ouptput at an ambient temperature of either 16.4 +/- 0.2 degrees C (cool trial) or 35.4 +/- 0.1 degrees C (heat trial). Subjects received 8% glucose solutions that were enriched with [U-13C]glucose for measurements of exogenous glucose, plasma glucose, liver-derived glucose and muscle glycogen oxidation. Exogenous glucose oxidation during the final 30 min of exercise was significantly (P < 0.05) lower in the heat compared with the cool trial (0.76 +/- 0.06 vs. 0.84 +/- 0.05 g/min). Muscle glycogen oxidation during the final 30 min of exercise was increased by 25% in the heat (2.07 +/- 0.16 vs. 1.66 +/- 0.09 g/min; P < 0.05), and liver-derived glucose oxidation was not different. There was a trend toward a higher total CHO oxidation and a lower plasma glucose oxidation in the heat although this did not reach statistical significance (P = 0.087 and P = 0.082, respectively). These results demonstrate that the oxidation rate of ingested CHO is reduced and muscle glycogen utilization is increased during exercise in the heat compared with a cool environment.  相似文献   

8.
Increased availability of circulating free fatty acids (FFA) inhibits the rate of glycolysis in heart and resting skeletal muscle (Randle effect). Whether elevated FFA may play a role in decreasing carbohydrate oxidation during prolonged exercise in humans is more controversial. Using respiratory exchange measurements, we measured substrate utilization during 2.5 h of exercise at approximately 44 +/- 1% maximal O2 uptake (VO2 max) in the presence or absence of elevated FFA levels. After 30 min of base-line determinations, 1,000 U heparin was given intravenously and a 3-h constant infusion of Intralipid 10% (150 g/h) and heparin (500 U/h) was started. After an additional 30 min of rest, subjects exercised for 2.5 h (study 1, n = 6). In another five subjects (study 2) 100 g glucose was ingested after 30 min of exercise. The same protocols (studies 1 and 2) were also performed during a 0.9%-saline infusion. During exercise, without glucose ingestion, higher FFA concentrations prevailed during the Intralipid infusion (1,122 +/- 40 vs. 782 +/- 65 mumol/l), but the relative contributions of carbohydrate (49 +/- 4 vs. 50 +/- 4%) or lipid (49 +/- 4 vs. 47 +/- 6%) oxidation to the total energy expenditure were different only during the first 30 min of exercise. Similarly, higher FFA levels (1,032 +/- 62 vs. 568 +/- 46 mumol/l) did not alter the relative contributions of carbohydrate (62 +/- 4 vs. 69 +/- 2%) or lipid (36 +/- 4 vs. 29 +/- 2%) oxidation to the total energy expenditure after glucose feeding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effects of carbohydrate or water ingestion on metabolism were investigated in seven male subjects during two running and two cycling trials lasting 60 min at individual lactate threshold using indirect calorimetry, U-14C-labeled tracer-derived measures of the rates of oxidation of plasma glucose, and direct determination of mixed muscle glycogen content from the vastus lateralis before and after exercise. Subjects ingested 8 ml/kg body mass of either a 6.4% carbohydrate-electrolyte solution (CHO) or water 10 min before exercise and an additional 2 ml/kg body mass of the same fluid after 20 and 40 min of exercise. Plasma glucose oxidation was greater with CHO than with water during both running (65 +/- 20 vs. 42 +/- 16 g/h; P < 0.01) and cycling (57 +/- 16 vs. 35 +/- 12 g/h; P < 0.01). Accordingly, the contribution from plasma glucose oxidation to total carbohydrate oxidation was greater during both running (33 +/- 4 vs. 23 +/- 3%; P < 0.01) and cycling (36 +/- 5 vs. 22 +/- 3%; P < 0.01) with CHO ingestion. However, muscle glycogen utilization was not reduced by the ingestion of CHO compared with water during either running (112 +/- 32 vs. 141 +/- 34 mmol/kg dry mass) or cycling (227 +/- 36 vs. 216 +/- 39 mmol/kg dry mass). We conclude that, compared with water, 1) the ingestion of carbohydrate during running and cycling enhanced the contribution of plasma glucose oxidation to total carbohydrate oxidation but 2) did not attenuate mixed muscle glycogen utilization during 1 h of continuous submaximal exercise at individual lactate threshold.  相似文献   

10.
The respective oxidation of glycerol and glucose (0.36 g/kg each) ingested simultaneously immediately before exercise (120 min at 68 +/- 2% maximal oxygen uptake) was measured in six subjects using (13)C labeling. Indirect respiratory calorimetry corrected for protein and glycerol oxidation was used to evaluate the effect of glucose + glycerol ingestion on the oxidation of glucose and fat. Over the last 80 min of exercise, 10.0 +/- 0.8 g of exogenous glycerol were oxidized (43% of the load), while exogenous glucose oxidation was 21% higher (12.1 +/- 0.7 g or 52% of the load). However, because the energy potential of glycerol is 18% higher than that of glucose (4.57 vs. 3.87 kcal/g), the contribution of both exogenous substrates to the energy yield was similar (4.0-4.1%). Total glucose and fat oxidation were similar in the placebo (144.4 +/- 13.0 and 60.5 +/- 4.2 g, respectively) and the glucose + glycerol (135.2 +/- 12.0 and 59.4 +/- 6.5 g, respectively) trials, whereas endogenous glucose oxidation was significantly lower than in the placebo trial (123.7 +/- 11.7 vs. 144.4 +/- 13.0 g). These results indicate that exogenous glycerol can be oxidized during prolonged exercise, presumably following conversion into glucose in the liver, although direct oxidation in peripheral tissues cannot be ruled out.  相似文献   

11.
In this study, an oral glucose load was enriched with a [U-(13)C]glucose tracer to determine differences in substrate utilization between endurance-trained (T) and untrained (UT) subjects during submaximal exercise at the same relative and absolute workload when glucose is ingested. Six highly trained cyclists/triathletes [maximal workload (Wmax), 400 +/- 9 W] and seven UT subjects (Wmax, 296 +/- 8 W) were studied during 120 min of cycling exercise at 50% Wmax ( approximately 55% maximal O(2) consumption). The T subjects performed a second trial at the mean workload of the UT group (148 +/- 4 W). Before exercise, 8.0 ml/kg of a (13)C-enriched glucose solution (80 g/l) was ingested. During exercise, boluses of 2.0 ml/kg of the same solution were administered every 15 min. Measurements were made in the 90- to 120-min period when a steady state was present in breath (13)CO(2) and plasma glucose (13)C enrichment. Energy expenditure was higher in T than in UT subjects (58 vs. 47 kJ/min, respectively; P < 0.001) at the same relative intensity. This was completely accounted for by an increased fat oxidation (0.57 vs. 0.40 g/min; P < 0.01). At the same absolute intensity, fat oxidation contributed more to energy expenditure in the T compared with the UT group (44 vs. 33%, respectively; P < 0.01). The reduction in carbohydrate oxidation in the T group was explained by a diminished oxidation rate of muscle glycogen (indirectly assessed by using tracer methodology at 0.72 +/- 0.1 and 1.03 +/- 0.1 g/min, respectively; P < 0.01) and liver-derived glucose (0.15 +/- 0.03 and 0.22 +/- 0.02 g/min, respectively; P < 0.05). Exogenous glucose oxidation rates were similar during all trials (+/-0.70 g/min).  相似文献   

12.
Nine endurance-trained men exercised on a cycle ergometer at approximately 68% peak O2 uptake to the point of volitional fatigue [232 +/- 14 (SE) min] while ingesting an 8% carbohydrate solution to determine how high glucose disposal could increase under physiological conditions. Plasma glucose kinetics were measured using a primed, continuous infusion of [6,6-2H]glucose and the appearance of ingested glucose, assessed from [3-3H]glucose that had been added to the carbohydrate drink. Plasma glucose was increased (P < 0.05) after 30 min of exercise but thereafter remained at the preexercise level. Glucose appearance rate (R(a)) increased throughout exercise, reaching its peak value of 118 +/- 7 micromol. kg(-1). min(-1) at fatigue, whereas gut R(a) increased continuously during exercise, peaking at 105 +/- 10 micromol. kg(-1). min(-1) at the point of fatigue. In contrast, liver glucose output never rose above resting levels at any time during exercise. Glucose disposal (R(d)) increased throughout exercise, reaching a peak value of 118 +/- 7 micromol. kg(-1). min(-1) at fatigue. If we assume 95% oxidation of glucose R(d), estimated exogenous glucose oxidation at fatigue was 1.36 +/- 0.08 g/min. The results of this study demonstrate that glucose uptake increases continuously during prolonged, strenuous exercise when carbohydrate is ingested and does not appear to limit exercise performance.  相似文献   

13.
This investigation determined whether ingestion of a tolerable amount of medium-chain triglycerides (MCT; approximately 25 g) reduces the rate of muscle glycogen use during high-intensity exercise. On two occasions, seven well-trained men cycled for 30 min at 84% maximal O(2) uptake. Exactly 1 h before exercise, they ingested either 1) carbohydrate (CHO; 0.72 g sucrose/kg) or 2) MCT+CHO [0.36 g tricaprin (C10:0)/kg plus 0.72 g sucrose/kg]. The change in glycogen concentration was measured in biopsies taken from the vastus lateralis before and after exercise. Additionally, glycogen oxidation was calculated as the difference between total carbohydrate oxidation and the rate of glucose disappearance from plasma (R(d) glucose), as measured by stable isotope dilution techniques. The change in muscle glycogen concentration was not different during MCT+CHO and CHO (42.0 +/- 4.6 vs. 38.8 +/- 4.0 micromol glucosyl units/g wet wt). Furthermore, calculated glycogen oxidation was also similar (331 +/- 18 vs. 329 +/- 15 micromol. kg(-1). min(-1)). The coingestion of MCT+CHO did increase (P < 0.05) R(d) glucose at rest compared with CHO (26.9 +/- 1.5 vs. 20.7 +/- 0. 7 micromol.kg(-1). min(-1)), yet during exercise R(d) glucose was not different during the two trials. Therefore, the addition of a small amount of MCT to a preexercise CHO meal did not reduce muscle glycogen oxidation during high-intensity exercise, but it did increase glucose uptake at rest.  相似文献   

14.
The aims of this study were to compare different tracer methods to assess whole body protein turnover during 6 h of prolonged endurance exercise when carbohydrate was ingested throughout the exercise period and to investigate whether addition of protein can improve protein balance. Eight endurance-trained athletes were studied on two different occasions at rest (4 h), during 6 h of exercise at 50% of maximal O2 uptake (in sequential order: 2.5 h of cycling, 1 h of running, and 2.5 h of cycling), and during subsequent recovery (4 h). Subjects ingested carbohydrate (CHO trial; 0.7 g CHO.kg(-1.)h(-1)) or carbohydrate/protein beverages (CHO + PRO trial; 0.7 g CHO.kg(-1).h(-1) and 0.25 g PRO.kg(-1).h(-1)) at 30-min intervals during the entire study. Whole body protein metabolism was determined by infusion of L-[1-13C]leucine, L-[2H5]phenylalanine, and [15N2]urea tracers with sampling of blood and expired breath. Leucine oxidation increased from rest to exercise [27 +/- 2.5 vs. 74 +/- 8.8 (CHO) and 85 +/- 9.5 vs. 200 +/- 16.3 mg protein.kg(-1).h(-1) (CHO + PRO), P < 0.05], whereas phenylalanine oxidation and urea production did not increase with exercise. Whole body protein balance during exercise with carbohydrate ingestion was negative (-74 +/- 8.8, -17 +/- 1.1, and -72 +/- 5.7 mg protein.kg(-1).h(-1)) when L-[1-13C]leucine, L-[2H5]phenylalanine, and [15N2]urea, respectively, were used as tracers. Addition of protein to the carbohydrate drinks resulted in a positive or less-negative protein balance (-32 +/- 16.3, 165 +/- 4.6, and 151 +/- 13.4 mg protein.kg(-1).h(-1)) when L-[1-13C]leucine, L-[2H5]phenylalanine, and [15N2]urea, respectively, were used as tracers. We conclude that, even during 6 h of exhaustive exercise in trained athletes using carbohydrate supplements, net protein oxidation does not increase compared with the resting state and/or postexercise recovery. Combined ingestion of protein and carbohydrate improves net protein balance at rest as well as during exercise and postexercise recovery.  相似文献   

15.
Effect of carbohydrate ingestion on exercise metabolism   总被引:2,自引:0,他引:2  
Five male cyclists were studied during 2 h of cycle ergometer exercise (70% VO2 max) on two occasions to examine the effect of carbohydrate ingestion on muscle glycogen utilization. In the experimental trial (CHO) subjects ingested 250 ml of a glucose polymer solution containing 30 g of carbohydrate at 0, 30, 60, and 90 min of exercise; in the control trial (CON) they received an equal volume of a sweet placebo. No differences between trials were seen in O2 uptake or heart rate during exercise. Venous blood glucose was similar before exercise in both trials, but, on average, was higher during exercise in CHO [5.2 +/- 0.2 (SE) mmol/l] compared with CON (4.8 +/- 0.1, P less than 0.05). Plasma insulin levels were similar in both trials. Muscle glycogen levels were also similar in CHO and CON both before and after exercise; accordingly, there was no difference between trials in the amount of glycogen used during the 2 h of exercise (CHO = 62.8 +/- 10.1 mmol/kg wet wt, CON = 56.9 +/- 10.1). The results of this study indicate that carbohydrate ingestion does not influence the utilization of muscle glycogen during prolonged strenuous exercise.  相似文献   

16.
This study compared the gastric emptying and oxidation of two 15% carbohydrate (CHO) solutions: a 22-chain-length glucose polymer (GP) and soluble starch (SS). Six endurance-trained subjects ingested 1,200 ml of either GP or SS while cycling for 90 min at 70% of maximal oxygen consumption (VO2max). Whereas the calculated total CHO oxidation (GP 266.8 +/- 41.9 g; SS 263.6 +/- 28.9 g) and the volume emptied from the stomach (GP 813 +/- 130 ml; SS 919 +/- 116 ml) were similar, the appearance of the 14C label in plasma occurred more rapidly from ingested SS than from GP (P less than 0.001). This resulted in a significantly greater rate of SS oxidation than that from GP (SS 105.9 +/- 21.9 g, GP 49.6 +/- 10.2 g; P less than 0.001). Exogenous CHO oxidation from GP accounted for 19% of total CHO oxidation, whereas the corresponding value for SS was 40%. This study suggests that the oxidation of SS and GP solutions ingested during exercise at 70% VO2max is not limited by gastric emptying. Rather, it appears to be either the rate of digestion or absorption of these solutions that determines their utilization.  相似文献   

17.
Seven healthy male volunteers exercised on a cycle ergometer at 50 +/- 5% VO2max for 180 min, on three occasions during which they ingested either water only (W), [13C]glucose (G), or [13C]fructose (F) (140 +/- 12 g, diluted at 7% in water, and evenly distributed over the exercise period). Blood glucose concentration (in mM) significantly decreased during exercise with W (5.1 +/- 0.4 to 4.2 +/- 0.1) but remained stable with G (5.0 +/- 0.4 to 5.3 +/- 0.6) or F ingestion (5.4 +/- 0.5 to 5.1 +/- 0.4). Decreases in plasma insulin concentration (microU/ml) were greater (P less than 0.05) with W (11 +/- 3 to 3 +/- 1) and F (12 +/- 4 to 5 +/- 1) than with G ingestion (11 +/- 2 to 9 +/- 5), and fat utilization was greater with F (103 +/- 11 g) than with G ingestion (82 +/- 9 g) and lower than with W ingestion (132 +/- 14 g). However F was less readily available for combustion than G; over the 3-h period 75% (106 +/- 11 g) of ingested G was oxidized, compared with 56% (79 +/- 8 g) of ingested fructose. As a consequence, carbohydrate store utilizations were similar in the two conditions (G, 174 +/- 20 g; F, 173 +/- 17 g; vs. W, 193 +/- 22 g). These observations suggest that, during prolonged moderate exercise, F ingestion maintains blood glucose as well as G ingestion, and increases fat utilization when compared to G ingestion. However, due to a slower rate of utilization of F, carbohydrate store sparing is similar with G and F ingestions.  相似文献   

18.
The purpose of this study was to determine the efficacy of glutamine in promoting whole body carbohydrate storage and muscle glycogen resynthesis during recovery from exhaustive exercise. Postabsorptive subjects completed a glycogen-depleting exercise protocol, then consumed 330 ml of one of three drinks, 18.5% (wt/vol) glucose polymer solution, 8 g glutamine in 330 ml glucose polymer solution, or 8 g glutamine in 330 ml placebo, and also received a primed constant infusion of [1-13C]glucose for 2 h. Plasma glutamine concentration was increased after consumption of the glutamine drinks (0.7-1.1 mM, P < 0.05). In the second hour of recovery, whole body nonoxidative glucose disposal was increased by 25% after consumption of glutamine in addition to the glucose polymer (4.48 +/- 0.61 vs. 3.59 +/- 0.18 mmol/kg, P < 0.05). Oral glutamine alone promoted storage of muscle glycogen to an extent similar to oral glucose polymer. Ingestion of glutamine and glucose polymer together promoted the storage of carbohydrate outside of skeletal muscle, the most feasible site being the liver.  相似文献   

19.
The purpose of the present study was to investigate whether combined ingestion of two carbohydrates (CHO) that are absorbed by different intestinal transport mechanisms would lead to exogenous CHO oxidation rates of >1.0 g/min. Nine trained male cyclists (maximal O(2) consumption: 64 +/- 2 ml x kg body wt(-1) x min(-1)) performed four exercise trials, which were randomly assigned and separated by at least 1 wk. Each trial consisted of 150 min of cycling at 50% of maximal power output (60 +/- 1% maximal O(2) consumption), while subjects received a solution providing either 1.8 g/min of glucose (Glu), 1.2 g/min of glucose + 0.6 g/min of sucrose (Glu+Suc), 1.2 g/min of glucose + 0.6 g/min of maltose (Glu+Mal), or water. Peak exogenous CHO oxidation rates were significantly higher (P < 0.05) in the Glu+Suc trial (1.25 +/- 0.07 g/min) compared with the Glu and Glu+Mal trials (1.06 +/- 0.08 and 1.06 +/- 0.06 g/min, respectively). No difference was found in (peak) exogenous CHO oxidation rates between Glu and Glu+Mal. These results demonstrate that, when a mixture of glucose and sucrose is ingested at high rates (1.8 g/min) during cycling exercise, exogenous CHO oxidation rates reach peak values of approximately 1.25 g/min.  相似文献   

20.
The purpose of this study is to outline a common mistake made when the rate of oxidation of exogenous substrates during prolonged exercise is computed using 13C naturally labeled substrates. The equation proposed and commonly used in the computation does not take into account that exercise and/or exogenous substrate ingestion modifies the composition of the mixture of endogenous substrates oxidized and, consequently, the isotopic composition of CO2 arising from oxidation of endogenous substrates. The recovery of 13C and the amount of exogenous substrate oxidized are thus overestimated. An adequate procedure for the computation of exogenous substrate oxidation taking into account changes in isotopic composition of CO2 arising from oxidation of endogenous substrates is suggested. Results from a pilot experiment (4 subjects) using this procedure indicate that over 2 h of exercise (66% of maximal O2 uptake), with ingestion of 60 g of glucose, 39 +/- 4 g of glucose were oxidized. Estimates made without taking into account changes in isotopic composition of CO2 arising from oxidation of endogenous substrates range between 70 +/- 8 and 44 +/- 3 g depending on 1) the isotopic composition of exogenous glucose and 2) the isotopic composition of expired CO2 taken as reference (rest or exercise without glucose ingestion). These observations suggest that results from previous studies of exogenous substrate oxidation during exercise using 13C labeling should be used with caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号