首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Mytilus pedal ganglion contains a small population of glial cells that are immunopositive for interleukin-1 alpha. Positively stained fibers can also be seen in the neuropil of these sections. 2. The marine worm Nereis diversicolor also exhibits positive neural immunostaining for interleukin-1 alpha. 3. Both organisms contain hemocytes that contain immunoactivity for interleukin-1 alpha. The study suggests interleukin-1 alpha to be an ancient cytokine given its presence in organisms that evolved significantly earlier than mammals.  相似文献   

2.
Analysis of polymerase chain reaction amplified products from the sixth intron of the human interleukin-1 gene reveals a high polymorphism (polymorphism information content = 0.51) in a Caucasian population. Altogether, seven alleles have been defined ranging from 620 to 1220bp. This polymorphism is probably attributable to a variable number of 46-bp tandem repeats, each containing potential regulatory sequences.  相似文献   

3.
Introduction: It has been suggested that allergies are inversely associated with glioma risk. Single nucleotide polymorphisms in two allergy-related genes [interleukin (IL)-4Rα, IL-13] have been implicated in susceptibility to glioma; however, results from the published studies remained inconclusive. Methods: To derive a more precise relationship, we conducted a meta-analysis including seven case–control studies that investigated the influence of IL-4Rα rs1801275 and IL13 rs20541 polymorphisms on glioma risk. Data were extracted from these studies and pooled odds ratios (OR) with 95% confidence intervals (CI) were used to investigate the strength of the association. Results: Overall, the pooled analysis showed that there was no significant association between the IL-4Rα rs1801275 polymorphism and glioma risk (OR = 0.99, 95%CI: 0.79–1.25, AG/GG vs. AA). However, we found that the IL13 rs20541 variant genotypes (GA/AA) were significantly associated with reduced risk for glioma (OR = 0.85, 95%CI: 0.75–0.97, GA/AA vs. GG). In the stratified analyses by ethnicity, marginally significant association between the IL13 rs20541 polymorphism and decreased glioma risk was found among Asian populations in dominant models (OR = 0.84, 95%CI: 0.70–1.00, GA/AA vs. GG). Conclusions: This meta-analysis suggests that the IL13 rs20541 but not the IL-4Rα rs1801275 polymorphism may be a genetic predictor for glioma. More studies with larger sample size are warranted to further elucidate the impact of the IL13 rs20541 polymorphism on glioma risk.  相似文献   

4.
The modulation of cisPlatin cytotoxicity by interleukin-1 (IL-1α) was studied in cultures of SCC-7 tumor cells with and without tumor macrophages to examine potential mechanisms for the synergistic antitumor activity of cisPlatin and IL-1α in SCC-7 solid tumors. Neither IL-1α nor tumor macrophages affected the survival of clonogenic tumor cells and IL-1α had no direct effect on tumor cell growthin vitro. Macrophages had no direct effect on cisPlatin sensitivity (IC90=6.0 μM), but, the addition of IL-1α (500–2000U/ml) to co-cultures of cisPlatin pretreated tumor cells and resident tumor macrophages increased cell killing (IC90=3.1 μM). Similar responses were seen in primary cultures treated with cisPlatin before IL-1α. The modulation of cisPlatin cytotoxicity by IL-1α exhibited a biphasic dose response that paralleled the IL-1α dose dependent release of H2O2by resident tumor macrophages. Further, IL-1α modification of cisPlatin cytotoxicity was prompt and inhibited by catalase. CisPlatin and exogenous H2O2 (50 μM) produced more than additive SCC-7 clonogenic cell kill and hydroxyl radicals played an important role in the response. Interleukin-1 modulation of cisPlatin cytotoxicity was schedule dependent. IL-1α treatment for 24 hrs, before cisPlatin, produced drug resistance (IC90=11.1 μM). Our study shows that IL-1α can stimulate tumor macrophages to release pro-oxidants that modify cellular chemosensitivity in a schedule and dose dependent fashion. Our findings may also provide a mechanistic explanation for the synergistic antitumor activity of cisPlatin and IL-1αin vivo.  相似文献   

5.
Host genetic factors may be important determinants of susceptibility to tuberculosis, and several candidate gene polymorphisms have been shown to date. A series of recent reports concerning rare human deficiencies in the type-1 cytokine pathway suggest that more subtle variants of relevant genes may also contribute to susceptibility to tuberculosis at the general population level. To investigate whether polymorphisms in the interleukin-12 receptor (IL-12R) gene predispose individuals to tuberculosis, we studied these genes by single-strand conformational polymorphism analysis and direct sequencing. Although no common polymorphisms could be identified in the IL-12R beta 2 gene ( IL-12RB2), we confirmed four single nucleotide polymorphisms (SNPs; 641A-->G, 684C-->T, 1094T-->C, and 1132G-->C) causing three missense variants (Q214R, M365T, G378R) and one synonymous substitution in the extracellular domain of the IL-12R beta 1 gene ( IL12RB1). All SNPs were in almost perfect linkage disequilibrium (D'=0.98), and two common haplotypes of IL12RB1(allele 1: Q214-M365-G378; allele 2: R214-T365-R378) were revealed. Polymerase chain reaction/restriction fragment length polymorphism and sequence analyses were used to type IL12RB1polymorphisms in 98 patients with tuberculosis and 197 healthy controls in Japanese populations. In our case-control association study of tuberculosis, the R214-T365-R378 allele (allele 2) was over-represented in patients with tuberculosis, and homozygosity for R214-T365-R378 (the 2/2 genotype) was significantly associated with tuberculosis (odds ratio: 2.45; 95% CI: 1.20-4.99; P=0.013). In healthy subjects, homozygotes for R214-T365-R378 had lower levels of IL-12-induced signaling, according to differences in cellular responses to IL-12 between two haplotypes. These data suggest that the R214-T365-R378 allele, i.e., variation in IL12RB1, contribute to tuberculosis susceptibility in the Japanese population. This genetic variation may predispose individuals to tuberculosis infection by diminishing receptor responsiveness to IL-12 and to IL-23, leading to partial dysfunction of interferon-gamma-mediated immunity.  相似文献   

6.
7.
Th1 cytokine-induced loss of oligodendrocytes (OLs) is associated with axonal loss in CNS demyelinating diseases such as multiple sclerosis (MS)that contributes to neurological disabilities in affected individuals. Recent studies indicated that, in addition to Th1-phenotype cytokines including tumor necrosis factor (TNF)-α, Th17 phenotype cytokine, interleukin (IL)-17 also involved in the development of MS. In this study, we investigated the direct effect of IL-17 on the survival of OLs in the presence of TNF-α and individually in vitro settings. Our findings suggest that IL-17 alone, however, was not able to affect the survival of OLs, but it exacerbates the TNF-α-induced OL apoptosis as compared with individual TNF-α treatment. This effect of cytokines was ascribed to an inhibition of cell-survival mechanisms, co-localization of Bid/Bax proteins in the mitochondrial membrane and caspase 8 activation mediated release of apoptosis inducing factor from mitochondria in treated OLs. In addition, cytokine treatment disturbed the mitochondrial membrane potential in OLs with corresponding increase in the generation of reactive oxygen species, which were attenuated by N-acetyl cysteine treatment. In addition, combining of these cytokines induced cell-cycle arrest at G1/S phases in OL-like cells and inhibited the maturation of OL progenitor cells that was attenuated by peroxisome proliferator-activated receptor-γ/-β agonists. Collectively, these data provide initial evidence that IL-17 exacerbates TNF-α-induced OL loss and inhibits the differentiation of OL progenitor cells suggesting that antioxidant- or peroxisome proliferator-activated receptor agonist-based therapies have potential to limit CNS demyelination in MS or other related demyelinating disorders.  相似文献   

8.
Cold pre-conditioning reduces subsequent brain injury in small animals but the underlying mechanisms remain undefined. As hypothermia triggers systemic macrophage tumor necrosis factor alpha (TNF-α) production and other neural pre-conditioning stimuli depend on this cytokine, we reasoned that microglia and TNF-α would be similarly involved with cold pre-conditioning neuroprotection. Also, as slice cultures closely approximate their in vivo counterpart and include quiescent microglia, we used rat hippocampal slice cultures to confirm this hypothesis. Furthermore, inflammatory cytokine gene screening with subsequent PCR and immunostaining confirmation of targeted mRNA and related protein changes showed that cold pre-conditioning triggered a significant rise in TNF-α that localized to microglia and a significant rise in interleukin (IL)-11 that localized mainly to hippocampal pyramidal neurons and, more rarely, astrocytes. Importantly, co-stimulation with cold and IL-11, an anti-inflammatory cytokine that inhibits TNF-α expression, abrogated the otherwise evident protection. Instead, cold pre-conditioning coupled with blockade of IL-11 signaling further enhanced neuroprotection from that seen with cold pre-conditioning alone. Thus, physiological activation of brain pro-inflammatory cytokine signaling, and its amplification by inhibition of coincident anti-inflammatory cytokine signaling, may be opportune targets for the development of novel therapeutics that can mimic the protection seen in cold pre-conditioning.  相似文献   

9.
In the present study, we examined the role of tumor necrosis factor (TNF) in interleukin (IL)-10 production by dendritic cells (DCs) using bone-marrow derived DCs from wild type (WT) and TNF-α knockout (TNF-α−/−) mice. Toll-like receptor (TLR) stimulation induced substantial level of IL-10 production by WT DCs, but significantly low level of IL-10 production by TNF-α−/− DCs. In contrast, no significant difference was detected in IL-12 p40 production between WT and TNF-α−/− DCs. Addition of TNF-α during TLR stimulation recovered the impaired ability of TNF-α−/− DCs for IL-10 production. This recovery appeared to be associated with an activation of extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and phosphatidylinositol 3-kinase/Akt following the TNF-α addition. Blocking these kinases significantly inhibited IL-10 production by TNF-α−/− DCs stimulated with TLR ligands plus TNF-α. Thus, TNF-α may be a key molecule to regulate the balance between anti-inflammatory versus inflammatory cytokine production in DCs.  相似文献   

10.
Genomic organization of the human interleukin-12 receptor β2-chain gene   总被引:1,自引:1,他引:0  
 The interleukin-12 receptor (IL-12R) is composed of two subunits, referred to as β1 and β2. Both chains are necessary for high-affinity IL-12 binding and signalling, although only the IL-12Rβ2 chain contains the intracellular tyrosine residues responsible for STAT4 activation. This study presents the intron-exon organization of the human IL-12Rβ2-chain gene. Polymerase chain reaction (PCR) primers designed across the cDNA (U46198) were used to trace introns, by comparing PCR product sizes obtained using cDNA and genomic DNA as templates. PCR products spanning introns were sequenced to determine the exact splice sites and flanking regions. The coding region of the gene was found to consist of 15 exons and 14 introns. All intron-exon boundaries are consistent with the consensus sequence for splice junctions (5′ GT/AG 3′). Comparison of the intron-exon organization with the human GCSFR gene indicated a remarkably well conserved genomic organization between these two class I cytokine receptors. Interestingly, we identified an alternatively spliced mRNA, encoding a putative, truncated protein, lacking all signalling potential. Received: 21 July 1999 / Revised: 2 September 1999  相似文献   

11.
Cell-mediated immunity (CMI) plays an essential role in human host defense against intracellular bacteria. Type-1 cytokines, particularly gamma interferon (IFN-gamma), interleukin-12 (IL-12), and IL-23, the major cytokines that regulate IFN-gamma production, are essential in CMI. This is illustrated by patients with unusual severe infections caused by poorly pathogenic mycobacteria and Salmonella species, in whom genetic deficiencies have been identified in several key genes in the type-1 cytokine pathway, including IL12RB1, the gene encoding the beta1 chain of the IL-12 and IL-23 receptors. Several mutations in IL12RB1 with deleterious effects on human IL-12R function have been identified, including nonsense and missense mutations. In addition, a number of coding IL12RB1 polymorphisms have been reported. In order to gain more insight into the effect that IL12RB1 mutations and genetic variations can have on IL-12Rbeta1 function, three approaches have been followed. First, we determined the degree of conservation at the variant amino acid positions in IL-12Rbeta1 between different species, using known deleterious mutations, known variations in IL-12Rbeta1, as well as novel coding variations that we have identified at position S74R and R156H. Second, we analyzed the potential impact of these amino acid variations on the three-dimensional structure of the IL-12Rbeta1 protein. Third, we analyzed the putative functions of different IL-12Rbeta1 domains, partly based on their homology with gp130, and analyzed the possible effects of the above amino acid variations on the function of these domains. Based on these analyses, we propose an integrated model of IL-12Rbeta1 structure and function. This significantly enhances our molecular understanding of the human IL-12 and IL-23 systems.  相似文献   

12.
Obesity is often associated with insulin resistance, low-grade systemic inflammation, and reduced plasma adiponectin. Inflammation is also increased in adipose tissue, but it is not clear whether the reductions of adiponectin levels are related to dysregulation of insulin activity and/or increased proinflammatory mediators. In this study, we investigated the interactions of insulin, tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) in the regulation of adiponectin production using in vivo and in vitro approaches. Plasma adiponectin and parameters of insulin resistance and inflammation were assessed in a cohort of lean and obese insulin-resistant subjects. In addition, the effect of insulin was examined in vivo using the hyperinsulinemic-euglycemic clamp, and in adipose tissue (AT) cultures. Compared with lean subjects, the levels of total adiponectin, and especially the high-molecular-weight (HMW) isomer, were abnormally low in obese insulin-resistant subjects. The hyperinsulinemic clamp data confirmed the insulin-resistant state in the obese patients and showed that insulin infusion significantly increased the plasma adiponectin in lean but not obese subjects (P < 0.01). Similarly, insulin increased total adiponectin release from AT explants of lean and not obese subjects. Moreover, expression and secretion of TNF-α and IL-6 increased significantly in AT of obese subjects and were negatively associated with expression and secretion of adiponectin. In 3T3-L1 and human adipocyte cultures, insulin strongly enhanced adiponectin expression (2-fold) and secretion (3-fold). TNF-α, and not IL-6, strongly opposed the stimulatory effects of insulin. Intriguingly, the inhibitory effect of TNF-α was especially directed toward the HMW isomer of adiponectin. In conclusion, these studies show that insulin upregulates adiponectin expression and release, and that TNF-α opposes the stimulatory effects of insulin. A combination of insulin resistance and increased TNF-α production could explain the decline of adiponectin levels and alterations of isomer composition in plasma of obese insulin-resistant subjects.  相似文献   

13.
In vivo studies have shown that cancer-associated skeletal muscle wasting (cachexia) is mediated by two cytokines, tumor necrosis factor-α (TNF) and interleukin-6 (IL-6). It has been unclear from these studies whether TNF exerts direct effects on skeletal muscle and/or whether these effects are mediated via IL-6. Previous studies from our laboratory have shown that TNF induces IL-6 mRNA expression in cultured skeletal muscle cells. To further investigate the relationship between TNF and IL-6, the effects of TNF and IL-6 on protein and DNA dynamics in murine C2C12 skeletal myotube cultures were determined. At 1000 U/ml, TNF induced 30% increases in protein and DNA content. The effects of TNF on protein accumulation were inhibited by aphidicolin, an inhibitor of DNA synthesis. IL-6 mimicked the effects of TNF on C2C12 cultures, inducing a 32% increase in protein accumulation and a 71% increase in the rate of protein synthesis. IL-6 also decreased expression of mRNA for several proteolytic system components, including ubiquitin 2.4 kb (51%) and 1.2 kb (63%), cathepsin B (39%) and m-calpain (47%), indicating that IL-6 acts on both protein synthesis and degradation. Incubation of murine C2C12 myotube cultures with TNF (1000 U/ml) in the presence of a polyclonal mouse anti-IL-6 antibody resulted in an abolishment of the effects of TNF on protein synthesis, but did not inhibit TNF-induced stimulation of DNA synthesis. These findings indicate that the effects of TNF on muscle protein synthesis are mediated by IL-6, but that TNF exerts IL-6-independent effects on proliferation of murine skeletal myoblasts.  相似文献   

14.
Kim KH  Kim DI  Kim SH  Jung EM  Kang JH  Jeung EB  Yang MP 《Cytokine》2011,56(2):224-230
Conjugated linoleic acid (CLA) can stimulate or inhibit immune cell function, and among CLA isomers, trans-10, cis-12 (t10c12)-CLA was shown to participate in the modulation of pro- or anti-inflammatory cytokine secretion. The objective of this study was to examine the effect of t10c12-CLA on tumor necrosis factor (TNF)-α production by lipopolysaccharide (LPS)-stimulated porcine peripheral blood mononuclear cells (PBMCs). In addition, we determined whether these effects were associated with the induction of interleukin (IL)-10. Treatment of LPS-unstimulated porcine PBMCs with t10c12-CLA increased both TNF-α expression and IL-10 production. However, treatment of LPS-stimulated porcine PBMCs with t10c12-CLA suppressed TNF-α production and increased the levels of IL-10. Furthermore, treatment of LPS-stimulated porcine PBMCs with IL-10 suppressed the production of TNF-α. The effects of t10c12-CLA on TNF-α expression by both LPS-naïve and LPS-stimulated PBMCs were inhibited by IL-10 treatment. The suppressive effects of t10c12-CLA on TNF-α production by LPS-stimulated porcine PBMCs were inhibited by an anti-IL-10 polyclonal antibody. These findings suggest that t10c12-CLA has an immunostimulatory effect on porcine PBMCs mediated via the up-regulation of TNF-α production, and an anti-inflammatory effect in LPS-stimulated PBMCs mediated via the down-regulation of TNF-α production, and that both is likely to be associated with the induction of IL-10.  相似文献   

15.
16.
17.
18.
Two of the main stresses faced by cells at the neurovascular unit (NVU) as an immediate result of cerebral ischemia are oxygen-glucose deprivation (OGD)/reperfusion and inflammatory stress caused by up regulation of IL-1. As a result of these stresses, perlecan, an important component of the NVU extracellular matrix, is highly proteolyzed. In this study, we describe that focal cerebral ischemia in rats results in increased generation of laminin globular domain 3 (LG3), the c-terminal bioactive fragment of perlecan. Further, in vitro study of the cells of the NVU was performed to locate the source of this increased perlecan-LG3. Neurons, astrocytes, brain endothelial cells and pericytes were exposed to OGD/reperfusion and IL-1α/β. It was observed that neurons and pericytes showed increased levels of LG3 during OGD in their culture media. During in vitro reperfusion, neurons, astrocytes and pericytes showed elevated levels of LG3, but only after exposure to brief durations of OGD. IL-1α and IL-1β treatment tended to have opposite effects on NVU cells. While IL-1α increased or had minimal to no effect on LG3 generation, high concentrations of IL-1β decreased it in most cells studied. Finally, LG3 was determined to be neuroprotective and anti-proliferative in brain endothelial cells, suggesting a possible role for the generation of LG3 in the ischemic brain.  相似文献   

19.
During cardiac remodeling, cardiac fibroblasts (CF) are influenced by increased levels of interleukin-1α (IL-1α) and transforming growth factor-β1 (TGFβ1). The present study investigated the interaction between these two important cytokines on function of human CF and their differentiation to myofibroblasts (CMF). CF were isolated from human atrial appendage and exposed to IL-1α and/or TGFβ1 (both 0.1 ng/ml). mRNA expression levels of selected genes were determined after 6–24 h by real-time RT-PCR, while protein levels were analyzed at 24–48 h by ELISA or western blot. Activation of canonical signaling pathways (NFκB, Smad3, p38 MAPK) was determined by western blotting. Differentiation to CMF was examined by collagen gel contraction assays. Exposure of CF to IL-1α alone enhanced levels of IL-6, IL-8, matrix metalloproteinase-3 (MMP3) and collagen III (COL3A1), but reduced the CMF markers α-smooth muscle actin (αSMA) and connective tissue growth factor (CTGF/CCN2). By contrast, TGFβ1 alone had minor effects on IL-6, IL-8 and MMP3 levels, but significantly increased levels of the CMF markers αSMA, CTGF, COL1A1 and COL3A1. Co-stimulation with both IL-1α and TGFβ1 increased MMP3 expression synergistically. Furthermore, while TGFβ1 had no effect on IL-1α-induced IL-6 or IL-8 levels, co-stimulation inhibited the TGFβ1-induced increase in αSMA and blocked the gel contraction caused by TGFβ1. Combining IL-1α and TGFβ1 had no apparent effect on their canonical signaling pathways. In conclusion, IL-1α and TGFβ1 act synergistically to stimulate MMP3 expression in CF. Moreover, IL-1α has a dominant inhibitory effect on the phenotypic switch of CF to CMF induced by TGFβ1.  相似文献   

20.
The airway is kept sterile by an efficient innate defense mechanism. The cornerstone of airway defense is mucus containing diverse antimicrobial factors that kill or inactivate pathogens. Most of the mucus in the upper airways is secreted by airway submucosal glands. In patients with cystic fibrosis (CF), airway defense fails and the lungs are colonized by bacteria, usually Pseudomonas aeruginosa. Accumulating evidence suggests that airway submucosal glands contribute to CF pathogenesis by failing to respond appropriately to inhalation of bacteria. However, the regulation of submucosal glands by the innate immune system remains poorly understood. We studied the response of submucosal glands to the proinflammatory cytokines interleukin-1β and tumor necrosis factor-α. These are released into the airway submucosa in response to infection with the bacterium P. aeruginosa and are elevated in CF airways. Stimulation with IL-1β and TNF-α increased submucosal gland secretion in a concentration-dependent manner with a maximal secretion rate of 240 ± 20 and 190 ± 40 pl/min, respectively. The half maximal effective concentrations were 11 and 20 ng/ml, respectively. The cytokine effect was dependent on cAMP but was independent of cGMP, nitric oxide, Ca(2+), or p38 MAP kinase. Most importantly, IL-1β- and TNF-α-stimulated secretion was blocked by the CF transmembrane conductance regulator (CFTR) blocker, CFTRinh172 (100 μmol/l) but was not affected by the Ca(2+)-activated Cl(-) channel blocker, niflumic acid (1 μmol/l). The data suggest, that during bacterial infections and resulting release of proinflammatory cytokines, the glands are stimulated to secrete fluid, and this response is mediated by cAMP-activated CFTR, a process that would fail in patients with CF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号