首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Density, body mass and parasite species richness of terrestrial mammals   总被引:9,自引:0,他引:9  
We investigated the relationships between helminth species richness and body mass and density of terrestrial mammals. Cross-species analysis and the phylogenetically independent contrast method produced different results. A non-phylogenetic approach (cross-species comparisons) led to the conclusion that parasite richness is linked to host body size. However, an analysis using phylogenetically independent contrasts showed no relationship between host body size and parasite richness. Conversely, a non-phylogenetic approach generated a negative relationship between parasite richness and host density, whereas the independent contrast method showed the opposite trend – that is, parasite richness is positively correlated with host density. From an evolutionary perspective, our results suggest that opportunities for parasite colonization depend more closely on how many hosts are available in a given area than on how large the hosts are. From an epidemiological point of view, our results confirm theoretical models which assume that host density is linked to the opportunity of a parasite to invade a population of hosts. Our findings also suggest that parasitism may be a cost associated with host density. Finally, we provide some support for the non-linear allometry between density and mammal body mass (Silva and Downing, 1995), and explain why host density and host body mass do not relate equally to parasite species richness.  相似文献   

3.
The geographical distribution of species richness and species range size of African anthropoid primates (catarrhines) is investigated and related to patterns of habitat and dietary niche breadth. Catarrhine species richness is concentrated in the equatorial regions of central and west Africa; areas that are also characterised by low average species range sizes and increased ecological specificity. Species richness declines with increasing latitude north and south of the equator, while average species range size, habitat and dietary breadth increase. Relationships between species richness, species range size and niche breadth remain once latitudinal and longitudinal effects have been removed. Among areas of lowest species richness, however, there is increased variation in terms of average species range size and niche breadth, and two trends are identified. While most such areas are occupied by a few wide-ranging generalists, others are occupied by range-restricted specialist species. That conservation efforts increasingly focus on regions of high species richness may be appropriate if these regions are also characterised by species that are more restricted in both their range size and their ecological versatility, although special consideration may be required for some areas of low species richness.  相似文献   

4.
Generic species richness, the number of species per genus, is examined as a function of mean generic body mass for extant North American mammals. Species richness decreases as an inverse power function with increased mass, and the Spearman rank correlation coefficient of the logio transformed data is significant (rs= ‐0.37). When the data are partitioned by trophic level, the relationship is not statistically significant for carnivores but strengthens for herbivores (rs= ‐0.46). This interesting but incidental effect is due to the negligible number of diminutive and excessively large carnivores, which is in turn determined by foraging strategies. Alternate hypotheses for the “right‐skewed”; size distribution of modern North American mammals, such as disproportionate extinction of large species, differential species longevity, and a geographical scaling function, are rejected in favor of the proposition that elevated levels of speciation are restricted to animals of small body mass, as originally proposed by Gould and Eldredge (1977). This phenomenon is explained as a function of habitat restriction and particularly in herbivores, limited home range size. Aquatic mammals, regardless of body size, speciate rarely. Cope's Rule, the tendency of many animal groups to evolve towards large size, is understood as a probabilistic statement reflecting the phylogenetic tendencies of a disproportionately high number of small species alive at any given point in time.  相似文献   

5.
Understanding the causes of spatial variation in species richness is a major research focus of biogeography and macroecology. Gridded environmental data and species richness maps have been used in increasingly sophisticated curve‐fitting analyses, but these methods have not brought us much closer to a mechanistic understanding of the patterns. During the past two decades, macroecologists have successfully addressed technical problems posed by spatial autocorrelation, intercorrelation of predictor variables and non‐linearity. However, curve‐fitting approaches are problematic because most theoretical models in macroecology do not make quantitative predictions, and they do not incorporate interactions among multiple forces. As an alternative, we propose a mechanistic modelling approach. We describe computer simulation models of the stochastic origin, spread, and extinction of species’ geographical ranges in an environmentally heterogeneous, gridded domain and describe progress to date regarding their implementation. The output from such a general simulation model (GSM) would, at a minimum, consist of the simulated distribution of species ranges on a map, yielding the predicted number of species in each grid cell of the domain. In contrast to curve‐fitting analysis, simulation modelling explicitly incorporates the processes believed to be affecting the geographical ranges of species and generates a number of quantitative predictions that can be compared to empirical patterns. We describe three of the ‘control knobs’ for a GSM that specify simple rules for dispersal, evolutionary origins and environmental gradients. Binary combinations of different knob settings correspond to eight distinct simulation models, five of which are already represented in the literature of macroecology. The output from such a GSM will include the predicted species richness per grid cell, the range size frequency distribution, the simulated phylogeny and simulated geographical ranges of the component species, all of which can be compared to empirical patterns. Challenges to the development of the GSM include the measurement of goodness of fit (GOF) between observed data and model predictions, as well as the estimation, optimization and interpretation of the model parameters. The simulation approach offers new insights into the origin and maintenance of species richness patterns, and may provide a common framework for investigating the effects of contemporary climate, evolutionary history and geometric constraints on global biodiversity gradients. With further development, the GSM has the potential to provide a conceptual bridge between macroecology and historical biogeography.  相似文献   

6.
7.
8.
Species richness patterns are characterized either by overlaying species range maps or by compiling geographically extensive survey data for multiple local communities. Although, these two approaches are clearly related, they need not produce identical richness patterns because species do not occur everywhere in their geographical range. Using North American breeding birds, we present the first continent‐wide comparison of survey and range map data. On average, bird species were detected on 40.5% of the surveys within their range. As a result of this range porosity, the geographical richness patterns differed markedly, with the greatest disparity in arid regions and at higher elevations. Environmental productivity was a stronger predictor of survey richness, while elevational heterogeneity was more important in determining range map richness. In addition, range map richness exhibited greater spatial autocorrelation and lower estimates of spatial turnover in species composition. Our results highlight the fact that range map richness represents species coexistence at a much coarser scale than survey data, and demonstrate that the conclusions drawn from species richness studies may depend on the data type used for analyses.  相似文献   

9.
Abstract This field study was designed to test whether the taxonomic group and geographic range size of a host plant species, usually found to influence insect species richness in other parts of the world, affected the number of gall species on Australian eucalypts. We assessed the local and regional species richness of gall-forming insects on five pairs of closely related eucalypt species. One pair belonged to the subgenus Corymbia, one to Monocalyptus, and three to different sections of Symphyomyrtus. Each eucalypt pair comprised a large and a small geographic range species. Species pairs were from coastal or inland regions of eastern Australia. The total number of gall species on eucalypt species with large geographic ranges was greater than on eucalypt species with small ranges, but only after the strong effect of eucalypt taxonomic grouping was taken into account. There was no relationship between the geographic range size of eucalypt species and the size of local assemblages of gall species, but the variation in insect species composition between local sites was higher on eucalypt species with large ranges than on those with small ranges. Thus the effect of host plant range size on insect species richness was due to greater differentiation between more widespread locations, rather than to greater local species richness. This study confirms the role of the geographic range size of a host plant in the determination of insect species richness and provides evidence for the importance of the taxon of a host plant.  相似文献   

10.
Introduced species escape many pathogens and other enemies, raising three questions. How quickly do introduced hosts accumulate pathogen species? What factors control pathogen species richness? Are these factors the same in the hosts' native and introduced ranges? We analysed fungal and viral pathogen species richness on 124 plant species in both their native European range and introduced North American range. Hosts introduced 400 years ago supported six times more pathogens than those introduced 40 years ago. In hosts' native range, pathogen richness was greater on hosts occurring in more habitat types, with a history of agricultural use and adapted to greater resource supplies. In hosts' introduced range, pathogen richness was correlated with host geographic range size, agricultural use and time since introduction, but not any measured biological traits. Introduced species have accumulated pathogens at rates that are slow relative to most ecological processes, and contingent on geographic and historic circumstance.  相似文献   

11.
Factors that influence proximity and the number and duration of contacts among individuals can influence parasite transmission among hosts, and thus parasite prevalence and species richness are expected to increase with increasing host density. To examine this prediction we took advantage of a unique situation. Following the clearing of a forest fragment that supported red colobus (Piliocolobus tephrosceles) and black-and-white colobus (Colobus guereza), the animals moved into a neighboring fragment that we had been monitoring for a number of years and for which we had described the primate parasite community. After the animals immigrated into the fragment, the colobus populations more than doubled and colobus density became almost twice that found in Kibale National Park, Uganda. Despite this increase in host density, the richness of the parasite community did not increase. However, in both colobus species the prevalence of Trichuris sp., the only commonly occurring gastrointestinal parasite, increased. Over the next 5 years the prevalence and intensity of infection of Trichuris sp. in red colobus declined and their population numbers slowly increased. In contrast, the prevalence and intensity of infection of Trichuris sp. increased in black-and-white colobus and remained high following the immigration, and their population size declined. While Trichuris sp. infections are typically asymptomatic, we consider it a possibility that they contributed to the decline of the black-and-white colobus, and that the red colobus may be serving as a reservoir for Trichuris, thereby increasing the infection risk for black-and-white colobus.  相似文献   

12.
Aim  To assess whether spatial variation in sampling effort drives positive correlations between human population density and species richness.
Location  British 10 × 10 km squares.
Methods  We calculated three measures of species richness from atlas data of breeding birds in Britain: total species richness, species richness standardised for sampling effort, and the number of species only recorded in supplementary casual records in a manner not standardised for survey effort. We then assessed the form of the relationship between these richness estimates and human population density, both with and without taking spatial autocorrelation into account.
Results  Both total and standardised species richness exhibit similar species richness–human population density relationships; species richness generally increases with human population density, but decreases at the very highest densities. Supplementary species richness is very weakly correlated with human population density.
Main conclusions  In this example, sampling effort only slightly influences the form of species richness–human population density relationships. The positive correlation between species richness and human population density and any resultant conservation conflicts are thus not artefactual patterns generated by confounding human density and sampling effort.  相似文献   

13.
Several studies have searched for the key forces behind the diversification of parasite assemblages over evolutionary time. All of these studies have used parasite species richness as their measure of diversity, thus ignoring the relatedness among parasite species and the taxonomic structure of the assemblages. This information is essential, however, if we want to elucidate which processes have caused an assemblage of parasites to acquire new species. Here, we performed a comparative analysis across 110 species of mammalian hosts in which we evaluated the effects of four host traits (body mass, population density, geographic range, and basal metabolic rate) on the diversity of their assemblages of helminth endoparasites. As measures of diversity, we used parasite species richness, as well as the average taxonomic distinctness of the assemblage and its variance; the latter measures are based on the taxonomic distance between two parasite species, computed across all possible species pairs in an assemblage. Unlike parasite species richness, both the average taxonomic distinctness and its variance were unaffected by the number of hosts examined. These two measures of parasite diversity also proved highly repeatable among host populations of the same mammalian species; in contrast, parasite species richness was unreliable as a species character, as it varied as much within a host species than among different host species. Using phylogenetically independent contrasts, and correcting for potential confounding variables, we found that host population density correlated positively with parasite species richness. There were, however, no other relationships between any of the four host traits investigated and either of our measures of parasite diversity. The processes facilitating the taxonomic diversification of parasite assemblages thus remain unclear, but their elucidation will be necessary if we are to fully understand parasite evolution.  相似文献   

14.
Aim To investigate explanations for the maintenance of a positive spatial species richness–human population density correlation at broad scales, despite the negative impact of humans on species richness. These are (hypotheses 1–4): (1) human activities that create a habitat mosaic and (2) a more favourable climate, and (3) adequate conservation measures (e.g. sufficient natural habitat), maintain the positive species richness–human density correlation; or (4) the full range of human densities decrease the slope of the correlation without changing its form. Location South Africa. Methods Avian species richness data from atlas distribution maps and human population density data derived from 2001 census results were converted to a quarter‐degree resolution. We investigated the number of land transformation types (anthropogenic habitat heterogeneity), irrigated area (increasing productivity), and other covarying factors (e.g. primary productivity) as predictors of species richness. We compared species richness–human density relationships among regions with different amounts of natural habitat, and investigated whether the full range of human densities decrease species richness in relation to primary productivity. Results Hypotheses 1, 2 and 3 were supported. Human densities and activities that increase habitat heterogeneity and productivity are important beneficial factors to common species, but not to rare species. The species richness–human density relationship persists only at low land transformation levels, and no significant relationship exists at higher levels. For common species, the relationship becomes non‐significant at lower land transformation levels than for rare species. Main conclusions The persistence of the species richness–human density relationship depends mostly on the amount of remaining natural habitat. In addition, certain human activities benefit especially common species. Common species seem to be more flexible than rare species in response to human activity and habitat loss.  相似文献   

15.
16.
Aim To examine the species richness of breeding birds along a local elevational gradient and to test the following assumptions of the energy limitation hypothesis: (1) the energy flux through birds is positively correlated with above‐ground net primary productivity, (2) bird density is positively correlated with total energy flux, and (3) bird species richness is positively correlated with bird density. Location An elevational gradient from 1400 to 3700 m on Mt. Yushan, the highest mountain in Taiwan (23°28′30″ N, 120°54′00″ E), with a peak of 3952 m a.s.l. Methods We established 50 sampling stations along the elevational gradient. From March to July 1992, we estimated the density of each bird species using the variable circular‐plot method. Above‐ground net primary productivity was modelled using monthly averages from weather data for the years 1961–90. Results Bird species richness had a hump‐shaped relationship with elevation and with net primary productivity. Bird energy flux was positively correlated with net primary productivity and bird species richness was positively correlated with bird density. The relationship between bird density and energy flux was hump‐shaped, which does not support one assumption of the energy limitation hypothesis. Main conclusions The results supported two essential assumptions of the energy limitation hypothesis. However, when energy availability exceeded a certain level, it could decrease species richness by increasing individual energy consumption, which reduced bird density. Thus, energy availability is a primary factor influencing bird species richness at this scale, but other factors, such as body size, could also play important roles.  相似文献   

17.
18.
People, species richness and human population growth   总被引:1,自引:0,他引:1  
Aim To investigate how the magnitude of conservation conflicts arising from positive relationships between human population size and species richness is altered during a period of marked human population growth (2% year?1). Location South Africa. Methods Anuran and avian species richness were calculated from atlas distribution maps, and human population was measured in 1996 and 2001, all at a quarter‐degree resolution. We investigated the relationships between human population size in, and its change during, these two periods and environmental energy availability. We then investigated the nature of relationships between species richness and human population size in both time periods, and its change during them; these analyses were conducted both with and without taking environmental energy availability into account. Finally, we investigated the nature of the relationships between human population size, and its change, and the proportion of protected land. Analyses were conducted both without and with taking spatial autocorrelation into account; the latter was achieved using mixed models that fitted a spatial covariance structure to the data. Results Change in human population size between 1996 and 2001 exhibited marked spatial variation, with both large increases and decreases, but was poorly correlated with environmental energy availability. The nature of the relationship between human population size and environmental energy availability did not, however, exhibit statistically significant differences regardless of whether the former was measured in 1996 or 2001. Similarly, relationships between species richness and human population size did not exhibit significant differences between the two periods. The strengths of the species–human relationships were markedly reduced when energy availability was taken into account. Change in human population size was poorly correlated with species richness. The proportion of protected land was negatively, albeit rather weakly, correlated with human population size in 1996 and 2001, and with its change between these two periods. Main conclusions Positive species–human relationships arise largely, but not entirely, because both species richness and human population size exhibit similar responses to environmental energy availability. During a period of rapid human population growth, and marked changes in the spatial variation in human population size, positive correlations remained between human population size and both anuran and avian species richness. The slope of these correlations did not, however, alter, and the most species‐rich areas are not those with the largest increases in human population. Despite marked population growth, the magnitude of conservation conflicts arising from positive species–human relationships thus appears to have remained largely unchanged.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号