首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The disulfide bond network within the cortex of mammalian hair has a critical influence on the physical and mechanical characteristics of the fiber. The location, pattern, and accessibility of free and crosslinked cysteines underpin the properties of this network, but have been very difficult to map and understand, because traditional protein extraction techniques require the disruption of these disulfide bonds. Cysteine accessibility in both trichocyte keratins and keratin associated proteins (KAPs) of wool was investigated using staged labeling, where reductants and chaotropic agents were used to expose cysteines in a stepwise fashion according to their accessibility. Cysteines thus exposed were labeled with distinguishable alkylation agents. Proteomic profiling was used to map peptide modifications and thereby explore the role of KAPs in crosslinking keratins. Labeled cysteines from KAPs were detected when wool was extracted with reductant only. Among them were sequences from the end domains of KAPs, indicating that those cysteines were easily accessible in the fiber and could be involved in forming interdisulfide linkages with keratins or with other KAPs. Some of the identified peptides were from the rod domains of Types I and II keratins, with their cysteines positioned on the exposed surface of the α‐helix. Peptides were also identified from keratin head and tail domains, demonstrating that they are not buried within the filament structure and, hence, have a possible role in forming disulfide linkages. From this study, a deeper understanding of the accessibility and potential reactivity of cysteine residues in the wool fiber cortex was obtained. Proteins 2015; 83:224–234. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Wool is composed primarily of proteins belonging to the keratin family. These include the keratins and keratin‐associated proteins (KAPs) that are responsible for the structural and mechanical properties of wool fibre. Although all human keratin and KAP genes have been annotated, many of their ovine counterparts remain unknown and even less is known about their genomic organisation. The aim of this study was to use a combinatory approach including comprehensive cDNA and de novo genomic sequencing to identify ovine keratin and KAP genes and their genomic organisation and to validate the keratins and KAPs involved in wool production using ovine expressed sequence tag (EST) libraries and proteomics. The number of genes and their genomic organisation are generally conserved between sheep, cattle and human, despite some unique features in the sheep. Validation by protein mass spectrometry identified multiple keratins (types I and II), epithelial keratins and KAPs. However, 15 EST‐derived genes, including one type II keratin and 14 KAPs, were identified in the sheep genome that were not present in the NCBI gene set, providing a significant increase in the number of keratin genes mapped on the sheep genome.  相似文献   

3.
4.
The reagent 2-nitro-5-thiocyanatobenzoic acid (NTCB) is commonly used to cyanylate and cleave proteins at cysteine residues, but this two-step reaction requires lengthy incubations and produces highly incomplete cleavages. In previous reports, incomplete cleavage was attributed to a competing beta-elimination reaction that converts cyanylated cysteine to dehydroalanine. In this study, previously unidentified side reactions of the NTCB cleavage were discovered and beta-elimination was not the major reaction competing with peptide bond cleavage. A major side reaction was identified as carbamylation of lysine residues. Carbamylation could be minimized by desalting the cyanylation reaction before cleavage or by reducing the reactant concentrations, but both methods suffered from further reductions in cleavage efficiency. Based on model peptide studies, poor cleavage was primarily caused by a mass neutral rearrangement of the cyanylated cysteine which produced a cleavage-resistant, nonreducible product. The formation of this product could be minimized by using stronger nucleophiles for the cleavage reaction. We discovered that base-catalyzed nucleophilic cleavage could be achieved with many amino-containing compounds. Most notably, glycine is capable of promoting efficient cleavage. In addition, efficient NTCB cleavage can be performed in a simple one-step method without a prior cyanylation step, rather than the previously described two-step reaction.  相似文献   

5.
Protein disulfide isomerase (PDI) has been identified in a protein extract from the venom duct of the marine snail C. amadis. In-gel tryptic digestion of a thick protein band at approximately 55 kDa yields a mixture of peptides. Analysis of tryptic fragments by MALDI-MS/MS and LC-ESI-MS/MS methods permits sequence assignment. Three tryptic fragments yield two nine residue sequences (FVQDFLDGK and EPQLGDRVR ) and an eleven residue sequence (DQESTGALAFK ). Database analysis using peptides and were consistent with the sequence of PDI and peptide appears to be derived from a co-migrating protein. In identifying proteins based on the characterization of short peptide sequences the question arises about the reliability of identification using peptide fragments. Here we have also demonstrated the minimum length of peptide fragment necessary for unambiguous protein identification using fragments obtained from the experimentally derived sequences. Sequences of length > or =7 residues provide unambiguous identification in conjunction with protein molecular mass as a filter. The length of sequence necessary for unambiguous protein identification is also established using randomly chosen tryptic fragments from a standard dataset of proteins. The results are of significance in the identification of proteins from organisms with unsequenced genomes.  相似文献   

6.
Protein identification by matrix-assisted laser desorption/ionization mass-spectrometry peptide mass fingerprinting (MALDI-MS PMF) represents a cornerstone of proteomics. However, it often fails to identify low-molecular-mass proteins, protein fragments, and protein mixtures reliably. To overcome these limitations, PMF can be complemented by tandem mass spectrometry and other search strategies for unambiguous protein identification. The present study explores the advantages of using a MALDI-MS-based approach, designated minimal protein identifier (MPI) approach, for protein identification. This is illustrated for culture supernatant (CSN) proteins of Mycobacterium tuberculosis H37Rv after separation by two-dimensional gel electrophoresis (2-DE). The MPI approach takes into consideration that proteins yield characteristic peptides upon proteolytic cleavage. In this study, peptide mixtures derived from tryptic protein cleavage were analyzed by MALDI-MS and the resulting spectra were compared with template spectra of previously identified counterparts. The MPI approach allowed protein identification by few protein-specific signature peptide masses and revealed truncated variants of mycobacterial elongation factor EF-Tu, previously not identified by PMF. Furthermore, the MPI approach can be employed to track proteins in 2-DE gels, as demonstrated for the 14 kDa antigen, the 10 kDa chaperone, and the conserved hypothetical protein Rv0569 of M. tuberculosis H37Rv. Furthermore, it is shown that the power of the MPI approach strongly depends on distinct factors, most notably on the complexity of the proteome analyzed and accuracy of the mass spectrometer used for peptide mass determination.  相似文献   

7.
Keratin-associated proteins (KAPs) are major structural components of hair and wool fibres, and play a critical role in determining the properties of the fibre. While over 100 KAP genes that have been grouped into 27 KAP families have been identified in mammals, most homologues remain unidentified in sheep.  相似文献   

8.
The combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), in-gel enzymatic digestion of proteins separated by two-dimensional gel electrophoresis and searches of molecular weight in peptide-mass databases is a powerful and well established method for protein identification in proteomics analysis. For successful protein identification by MALDI-TOF mass spectrometry of peptide mixtures, critical parameters include highly specific enzymatic cleavage, high mass accuracy and sufficient numbers and sequence coverage of the peptides which can be analyzed. For in-gel digestion with trypsin, the method employed should be compatible both with enzymatic cleavage and subsequent MALDI-TOF MS analysis. We report here an improved method for preparation of peptides for MALDI-TOF MS mass fingerprinting by using volatile solubilizing agents during the in-gel digestion procedure. Our study clearly demonstrates that modification of the in-gel digestion protocols by addition of dimethyl formamide (DMF) or a mixture of DMF/N,N-dimethyl acetamide at various concentrations can significantly increase the recovery of peptides. These higher yields of peptides resulted in more effective protein identification.  相似文献   

9.
Quantification of gas-phase intact protein ions by mass spectrometry (MS) is impeded by highly-variable ionization, ion transmission, and ion detection efficiencies. Therefore, quantification of proteins using MS-associated techniques is almost exclusively done after proteolysis where peptides serve as proxies for estimating protein abundance. Advances in instrumentation, protein separations, and informatics have made large-scale sequencing of intact proteins using top-down proteomics accessible to the proteomics community; yet quantification of proteins using a top-down workflow has largely been unaddressed. Here we describe a label-free approach to determine the abundance of intact proteins separated by nanoflow liquid chromatography prior to MS analysis by using solution-phase measurements of ultraviolet light-induced intrinsic fluorescence (UV-IF). UV-IF is measured directly at the electrospray interface just prior to the capillary exit where proteins containing at least one tryptophan residue are readily detected. UV-IF quantification was demonstrated using commercially available protein standards and provided more accurate and precise protein quantification than MS ion current. We evaluated the parallel use of UV-IF and top-down tandem MS for quantification and identification of protein subunits and associated proteins from an affinity-purified 26S proteasome sample from Arabidopsis thaliana. We identified 26 unique proteins and quantified 13 tryptophan-containing species. Our analyses discovered previously unidentified N-terminal processing of the β6 (PBF1) and β7 (PBG1) subunit - such processing of PBG1 may generate a heretofore unknown additional protease active site upon cleavage. In addition, our approach permitted the unambiguous identification and quantification both isoforms of the proteasome-associated protein DSS1.  相似文献   

10.
Keratins and keratin-associated proteins (KAPs) are large heterogeneous groups of proteins that constitute about 90% of the wool fiber. The genes encoding the high glycine-tyrosine (HGT) KAPs are the first sub-group of KAP genes expressed in the wool follicle and just after expression of the keratin genes. Little is known about variation in these genes, which led us to investigate two HGT-KAP genes, KRTAP7-1 and KRTAP8-1. Polymerase chain reaction-single-stranded conformational polymorphism analysis was used to investigate these genes in 250 Romney-cross sheep. For KRTAP7-1, two unique banding patterns were detected for amplicons that spanned the entire coding region. Sequencing confirmed the presence of two sequences with only one nucleotide difference (c.173G/A) putatively resulting in p.Ser58Asn. One was identical to the published ovine KRTAP7-1 sequence. For KRTAP8-1, five unique banding patterns were detected in an amplicon that spanned the entire coding region. Sequencing revealed five different DNA sequences, all of which were highly homologous to the previously reported ovine KRTAP8-1 sequence. Among these five sequences, four single-nucleotide substitutions were identified and three of them were located in the coding region. One of these was nonsynonymous and would putatively result in p.Tyr34Asn. The variation detected in KRTAP7-1 and KRTAP8-1 may influence their expression or protein structure.  相似文献   

11.
Mass spectrometric based sequencing of enzymatic generated peptides is widely used to obtain specific sequence tags allowing the unambiguous identification of proteins. In the present study, two types of desorption/ionization techniques combined with different modes of ion dissociation, namely vacuum matrix-assisted laser desorption/ionization (vMALDI) high energy collision induced dissociation (CID) and post-source decay (PSD) as well as atmospheric pressure (AP)-MALDI low energy CID, were applied for the fragmentation of singly protonated peptide ions, which were derived from two-dimensional separated, silver-stained and trypsin-digested hydrophilic as well as hydrophobic glomerular proteins. Thereby, defined properties of the individual fragmentation pattern generated by the specified modes could be observed. Furthermore, the compatibility of the varying PSD and CID (MS/MS) data with database search derived identification using two public accessible search algorithms has been evaluated. The peptide sequence tag information obtained by PSD and high energy CID enabled in the majority of cases an unambiguous identification. In contrast, part of the data obtained by low energy CID were not assignable using similar search parameters and therefore no clear results were obtainable. The knowledge of the properties of available MALDI-based fragmentation techniques presents an important factor for data interpretation using public accessible search algorithms and moreover for the identification of two-dimensional gel separated proteins.  相似文献   

12.
13.
Identification of authenticated cuticular proteins has been based on isolation and sequencing of individual proteins extracted from cleaned cuticles. These data facilitated classification of sequences from conceptual translation of cDNA or genomic sequences. The question arises whether such putative cuticular proteins actually are incorporated into the cuticle. This paper describes the profiling of cuticular proteins from Anopheles gambiae starting with cuticle cleaned by the insect itself in the course of molting. Proteins extracted from cast larval head capsules and cast pupal cuticles were fractionated by 1D SDS gel electrophoresis. Large gel slices were reduced, carbamidomethylated and digested with trypsin. The pellet remaining after SDS extraction was also treated with trypsin. The resulting peptides were separated on a C18 column and then analyzed by tandem mass spectrometry. Two-hundred-ninety-five peptides from putative cuticular proteins were identified; these corresponded to a minimum of 69 and a maximum of 119 different proteins. Each is reported as an authentic Anopheles cuticular protein for the first time. In addition to members of two known cuticular protein families, members of additional families likely to be structural components of the cuticle were identified. Furthermore, other peptides were identified that can be attributed to molting fluid, muscle and sclerotizing agents.  相似文献   

14.
The function of the U3 small nucleolar ribonucleoprotein (snoRNP) is central to the events surrounding pre-rRNA processing, as evidenced by the severe defects in cleavage of pre-18S rRNA precursors observed upon depletion of the U3 RNA and its unique protein components. Although the precise function of each component remains unclear, since U3 snoRNA levels remain unchanged upon genetic depletion of these proteins, it is likely that the proteins themselves have significant roles in the cleavage reactions. Here we report the identification of two previously undescribed protein components of the U3 snoRNP, representing the first snoRNP components identified by using the two-hybrid methodology. By screening for proteins that physically associate with the U3 snoRNP-specific protein, Mpp10p, we have identified Imp3p (22 kDa) and Imp4p (34 kDa) (named for interacting with Mpp10p). The genes encoding both proteins are essential in yeast. Genetic depletion reveals that both proteins are critical for U3 snoRNP function in pre-18S rRNA processing at the A0, A1, and A2 sites in the pre-rRNA. Both Imp proteins associate with Mpp10p in vivo, and both are complexed only with the U3 snoRNA. Conservation of RNA binding domains between Imp3p and the S4 family of ribosomal proteins suggests that it might associate with RNA directly. However, as with other U3 snoRNP-specific proteins, neither Imp3p nor Imp4p is required for maintenance of U3 snoRNA integrity. Imp3p and Imp4p are therefore novel protein components specific to the U3 snoRNP with critical roles in pre-rRNA cleavage events.  相似文献   

15.
Synapsin I is a neuronal phosphoprotein that can bundle actin filaments in vitro. This activity is under phosphorylation control, and may be related to its putative in vivo role of regulating the clustering and release of small synaptic vesicles. We have compared human and bovine synapsin I by peptide mapping, and have used NTCB (2-nitro-5-thiocyano benzoic acid) cleavage to generate a series of peptide fragments from bovine synapsin I. After chymotryptic digestion, 88% of the tyrosine-containing fragments appear to be structurally identical in human and bovine synapsin I, as judged by their positions on high-resolution two-dimensional peptide maps. The alignment of the NTCB peptides within the parent protein have been determined by peptide mapping, and the ability of these fragments to precipitate with actin bundles has been measured. Only peptides that are derived from regions near the ends of the protein are active. One such 25-kDa peptide which sediments with actin also cross-reacts with antibodies to chicken villin, an actin binding and bundling protein derived from the intestinal microvillus. Since in other respects villin appears to be an unrelated protein, these results suggest the possibility that certain actin binding proteins may show immunologic cross-reactivity due to convergent evolution within the acting binding domain.  相似文献   

16.
A concept of unique peptides(CUP)was proposed and implemented to identify whole-cell proteins from tandem mass spectrometry(MS/MS)ion spectra.A unique peptide is defined as a peptide,irrespective of its length,that exists only in one protein of a proteome of interest,despite the fact that this peptide may appear more than once in the same protein.Integrating CUP,a two-step whole-cell protein identification strategy was developed to further increase the confidence of identified proteins.A dataset containing 40,243 MS/MS ion spectra of Saccharomyces cerevisiae and protein identification tools including Mascot and SEQUEST were used to illustrate the proposed concept and strategy.Without implementing CUP,the proteins identified by SEQUEST are 2.26 fold of those identified by Mascot.When CUP was applied,the proteins bearing unique peptides identified by SEQUEST are3.89 fold of those identified by Mascot.By cross-comparing two sets of identified proteins,only 89 common proteins derived from CUP were found.The key discrepancy between identified proteins was resulted from the filtering criteria employed by each protein identification tool.According to the origin of peptides classified by CUP and the commonality of proteins recognized by protein identification tools,all identified proteins were cross-compared,resulting in four groups of proteins possessing different levels of assigned confidence.  相似文献   

17.
Saliva is a readily available body fluid with great diagnostic potential. The foundation for saliva-based diagnostics, however, is the development of a complete catalog of secreted and "leaked" proteins detectable in saliva. By employing a capillary isoelectric focusing-based multidimensional separation platform coupled with electrospray ionization tandem mass spectrometry (MS), a total of 5338 distinct peptides were sequenced, leading to the identification of 1381 distinct proteins. A search of bacterial protein sequences also identified many peptides unique to several organisms and unique to the NCBI nonredundant database. To the best of our knowledge, this proteome study represents the largest catalog of proteins measured from a single saliva sample to date. Data analysis was performed on individual MS/MS spectra using the highly specific peptide identification algorithm, OMSSA. Searches were conducted against a decoyed SwissProt human database to control the false-positive rate at 1%. Furthermore, the well-curated SwissProt sequences represent perhaps the least redundant human protein sequence database (12,484 records versus the 50,009 records found in the International Protein Index human database), therefore minimizing multiple protein inferences from single peptides. This combined bioanalytical and bioinformatic approach has established a solid foundation for building up the human salivary proteome for the realization of the diagnostic potential of saliva.  相似文献   

18.
The keratin proteins from wool can be divided into two classes: the intermediate filament proteins (IFPs) and the matrix proteins. Using peptide mass spectral fingerprinting it was possible to match spots to the known theoretical sequences of some IFPs in web-based databases, as enzyme digestion generated sufficient numbers of peptides from each spot to achieve this. In contrast, it was more difficult to obtain good matches for some of the lower molecular weight matrix proteins. Relatively few peaks were generated from tryptic digests of high-sulfur proteins because of their lower molecular weight and the absence of basic residues in the first two-thirds of the sequence. Their high sequence homology also means that generally only a few of these peptides could be considered to be unique identifiers for each protein. Nevertheless, it was still possible to uniquely identify some of these proteins, while the presence of two peptides in the matrix-assisted laser desorption/ionization time-of-flight mass spectrum allowed classification of other protein spots as being members of this family. Only one major peptide peak was generated by the high-glycine tyrosine proteins (HGTPs) and there were relatively few sequences available in web-based databases, limiting their identification to one HGTP family.  相似文献   

19.
Summary Conditions are described for the reduction and alkylation of cysteines in peptides and proteins with volatile reagents by use of triethylphosphine as reductant, bromopropane as alkylating reagent and triethylamine as base. Alkylated samples need only be vacuum dried prior to subsequent analysis steps. Alkylated samples have been acid hydrolyzed and analyzed on an amino acid analyzer with recoveries of cysteine within 10% of the expected value. Alkylated samples have been directly applied to a sequencer membrane, dried on the surface and cysteines identified by sequence analysis without additional wash steps. In addition proteins blotted onto PVDF have been alkylatedin situ and sequenced with identification of cysteines. On the analyzer and sequencer the S-propylcysteine derivative elutes at a unique position allowing for the unambiguous identification of cysteine. Cysteine residues are quantitativly alkylated under the conditions developed. The ease of this procedure allows the routine analysis of cysteine in peptides and proteins without additional, time consuming repurification or dialysis steps.Abbreviations dptu diphenylthiourea - dmptu dimethylphenylthiourea - prop-cys S-propylcysteine  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号