首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
蛋白质组学逐渐从定性研究转向定量研究。在定量蛋白质组学技术中,相对和绝对定量的等量异位标签(Isobaric tags for relative and absolute quantitation,iTRAQ)是应用最广泛的技术之一,具有通量高、稳定性强及不受样品来源制约等优点,几乎可以对任意样品进行标记,而且可以同时对多达8个样品进行定量分析,有效地提高了通量。iTRAQ技术不断改进,其定量准确性显著提高,适用的平台越来越多,为微生物、动物、植物、生物医学领域蛋白质及其翻译后修饰组研究创造了条件。文中综述了高精度iTRAQ技术在定量蛋白质组学研究中的最新发展及其应用。  相似文献   

2.
Isobaric peptide labeling plays an important role in relative quantitative comparisons of proteomes. Isobaric labeling techniques utilize MS/MS spectra for relative quantification, which can be either based on the relative intensities of reporter ions in the low mass region (iTRAQ and TMT) or on the relative intensities of quantification signatures throughout the spectrum due to isobaric peptide termini labeling (IPTL). Due to the increased quantitative information found in MS/MS fragment spectra generated by the recently developed IPTL approach, new software was required to extract the quantitative information. IsobariQ was specifically developed for this purpose; however, support for the reporter ion techniques iTRAQ and TMT is also included. In addition, to address recently emphasized issues about heterogeneity of variance in proteomics data sets, IsobariQ employs the statistical software package R and variance stabilizing normalization (VSN) algorithms available therein. Finally, the functionality of IsobariQ is validated with data sets of experiments using 6-plex TMT and IPTL. Notably, protein substrates resulting from cleavage by proteases can be identified as shown for caspase targets in apoptosis.  相似文献   

3.
Telocytes (TCs) are described as a particular type of cells of the interstitial space ( www.telocytes.com ). Their main characteristics are the very long telopodes with alternating podoms and podomers. Recently, we performed a comparative proteomic analysis of human lung TCs with fibroblasts, demonstrating that TCs are clearly a distinct cell type. Therefore, the present study aims to reinforce this idea by comparing lung TCs with endothelial cells (ECs), since TCs and ECs share immunopositivity for CD34. We applied isobaric tag for relative and absolute quantification (iTRAQ) combined with automated 2‐D nano‐ESI LC‐MS/MS to analyse proteins extracted from TCs and ECs in primary cell cultures. In total, 1609 proteins were identified in cell cultures. 98 proteins (the 5th day), and 82 proteins (10th day) were confidently quantified (screened by two‐sample t‐test, P < 0.05) as up‐ or down‐regulated (fold change >2). We found that in TCs there are 38 up‐regulated proteins at the 5th day and 26 up‐regulated proteins at the 10th day. Bioinformatics analysis using Panther revealed that the 38 proteins associated with TCs represented cellular functions such as intercellular communication (via vesicle mediated transport) and structure morphogenesis, being mainly cytoskeletal proteins and oxidoreductases. In addition, we found 60 up‐regulated proteins in ECs e.g.: cell surface glycoprotein MUC18 (15.54‐fold) and von Willebrand factor (5.74‐fold). The 26 up‐regulated proteins in TCs at 10th day, were also analysed and confirmed the same major cellular functions, while the 56 down‐regulated proteins confirmed again their specificity for ECs. In conclusion, we report here the first extensive comparison of proteins from TCs and ECs using a quantitative proteomics approach. Our data show that TCs are completely different from ECs. Protein expression profile showed that TCs play specific roles in intercellular communication and intercellular signalling. Moreover, they might inhibit the oxidative stress and cellular ageing and may have pro‐proliferative effects through the inhibition of apoptosis. The group of proteins identified in this study needs to be explored further for the role in pathogenesis of lung disease.  相似文献   

4.
Labeling of primary amines on peptides with reagents containing stable isotopes is a commonly used technique in quantitative mass spectrometry. Isobaric labeling techniques such as iTRAQ™ or TMT™ allow for relative quantification of peptides based on ratios of reporter ions in the low m/z region of spectra produced by precursor ion fragmentation. In contrast, nonisobaric labeling with mTRAQ™ yields precursors with different masses that can be directly quantified in MS1 spectra. In this study, we compare iTRAQ- and mTRAQ-based quantification of peptides and phosphopeptides derived from EGF-stimulated HeLa cells. Both labels have identical chemical structures, therefore precursor ion- and fragment ion-based quantification can be directly compared. Our results indicate that iTRAQ labeling has an additive effect on precursor intensities, whereas mTRAQ labeling leads to more redundant MS2 scanning events caused by triggering on the same peptide with different mTRAQ labels. We found that iTRAQ labeling quantified nearly threefold more phosphopeptides (12,129 versus 4,448) and nearly twofold more proteins (2,699 versus 1,597) than mTRAQ labeling. Although most key proteins in the EGFR signaling network were quantified with both techniques, iTRAQ labeling allowed quantification of twice as many kinases. Accuracy of reporter ion quantification by iTRAQ is adversely affected by peptides that are cofragmented in the same precursor isolation window, dampening observed ratios toward unity. However, because of tighter overall iTRAQ ratio distributions, the percentage of statistically significantly regulated phosphopeptides and proteins detected by iTRAQ and mTRAQ was similar. We observed a linear correlation of logarithmic iTRAQ to mTRAQ ratios over two orders of magnitude, indicating a possibility to correct iTRAQ ratios by an average compression factor. Spike-in experiments using peptides of defined ratios in a background of nonregulated peptides show that iTRAQ quantification is less accurate but not as variable as mTRAQ quantification.Stable isotope labeling techniques have become very popular in recent years to perform quantitative mass spectrometry experiments with high precision and accuracy. In contrast to label-free approaches, multiplexed isotopically labeled samples can be simultaneously analyzed resulting in increased reproducibility and accuracy for quantification of peptides and proteins from different biological states. Isotopic labeling strategies can be grouped into two major categories: isobaric labels and nonisobaric labels. In the former category are iTRAQ1 (isobaric tags for relative and absolute quantification (1)) and TMT (tandem mass tags (2)) mass tags. In the nonisobaric labeling category are methods such as mTRAQ (mass differential tags for relative and absolute quantification), stable isotope labeling by amino acids in cell culture (SILAC (3)), and reductive dimethylation (4). Isobaric labeling techniques allow relative quantification of peptides based on ratios of low m/z reporter ions produced by fragmentation of the precursor ion, whereas nonisobaric labeling yields precursors with different masses that can be directly quantified from MS1 intensity. iTRAQ and mTRAQ reagents provide a great opportunity to directly compare capabilities of reporter and precursor ion quantification since both labels have identical chemical structures and differ only in their composition and number of 13C, 15N, and 18O atoms. In fact, iTRAQ-117 and mTRAQ-Δ4 are identical mass tags with a total mass of 145 Da (Fig. 1A). To achieve 4-plex quantification capabilities for iTRAQ labels, the composition of stable isotopes is arranged in a way to obtain the reporter ion/balancing group pairs 114/31, 115/30, 116/29, and 117/28 (1). Three nonisobaric mTRAQ labels were generated by adding or removing four neutrons to the mTRAQ-Δ4 label resulting in mTRAQ-Δ8 and mTRAQ-Δ0, respectively. Both iTRAQ and mTRAQ reagents are available as N-hydroxy-succinimide esters to facilitate primary amine labeling of peptides.Open in a separate windowFig. 1.A, Labeling strategy for comparative evaluation of iTRAQ and mTRAQ tags. Peptides were labeled with the indicated iTRAQ and mTRAQ reagents for combined phosphoproteome and proteome analysis. B, Selection of optimal instrument methods for analysis of iTRAQ- and mTRAQ-labeled peptides. Unfractionated proteome samples (1 ug) and phosphoproteome samples (enriched from 250 μg peptides) were analyzed for iTRAQ samples with a CID/HCD-Top8 method, whereas for mTRAQ we compared CID-Top16 acquisition to HCD-Top8. Note that duty cycle times were for all instrument methods ∼3.1 s.One potential advantage of an iTRAQ labeling strategy is its additive effect on precursor intensities when samples are multiplexed, resulting in increased sensitivity. However, iTRAQ ratios have been demonstrated to be prone to compression. This occurs when other nonregulated background peptides are co-isolated and cofragmented in the same isolation window of the peptide of interest and contribute fractional intensity to the reporter ions in MS2-scans (57). Because most peptides in an experiment are present at 1:1:1:1 ratios between multiplexed samples, all ratios in the experiment tend to be dampened toward unity when cofragmentation occurs. This inaccuracy led to the development of mTRAQ labels to facilitate accurate precursor-based quantification of proteins initially identified in iTRAQ discovery experiments with targeted assays, such as multiple reaction monitoring (MRM) (8). Although iTRAQ has been widely used in discovery-based proteomics studies, mTRAQ has only appeared in a small number of studies thus far (8).In this study we investigated the advantages and disadvantages of iTRAQ and mTRAQ labeling for proteome-wide analysis of protein phosphorylation and expression changes. We selected epidermal growth factor (EGF)-stimulated HeLa cells as a model system for our comparative evaluation of iTRAQ and mTRAQ labeling, as both changes in the phosphoproteome (9) as well as the proteome (10) are well described for EGF stimulation. We show that iTRAQ labeling yields superior results to mTRAQ in terms of numbers of quantified phosphopeptides, proteins and regulated components. By means of spike-in experiments with GluC generated peptides of known ratios we find that iTRAQ quantification is more precise but less accurate than mTRAQ due to ratio compression. We identify a linear relationship of observed versus expected logarithmic GluC generated peptide ratios as well as for logarithmic iTRAQ and mTRAQ ratios of the phosphoproteome and proteome analysis. This indicates a uniform degree of ratio compression over two orders of magnitude throughout iTRAQ data sets and explains why iTRAQ ratio compression does not compromise the ability to detect regulated elements in these experiments.  相似文献   

5.
6.
Faulkner S  Elia G  Mullen MP  O'Boyle P  Dunn MJ  Morris D 《Proteomics》2012,12(12):2014-2023
Early embryo loss is a key factor affecting fertility in dairy and beef herds. Prior to implantation, the bovine embryo spends around 16 days free-floating in the uterine environment and is dependent on the composition of uterine fluid for normal growth and development. However, there is a lack of information regarding the protein composition of the bovine uterus and how it relates to plasma. In this study, uterine flushings (UF) (n = 6) and blood plasma (n = 4) were collected from beef heifers on day 7 of the oestrous cycle, albumin depleted and compared using iTRAQ proteomics. A total of 35 proteins were higher and 18 were lower in UF including metabolic enzymes, proteins with anti-oxidant activity and those involved in modulation of the immune response. This study confirms the dynamic nature of the bovine uterine proteome and that it differs from plasma. Factors affecting the uterine proteome and how it impacts on embryo survival warrant further study.  相似文献   

7.
MOTIVATION: Mass spectrometry (MS) data are impaired by noise similar to many other analytical methods. Therefore, proteomics requires statistical approaches to determine the reliability of regulatory information if protein quantification is based on ion intensities observed in MS. RESULTS: We suggest a procedure to model instrument and workflow-specific noise behaviour of iTRAQ reporter ions that can provide regulatory information during automated peptide sequencing by LC-MS/MS. The established mathematical model representatively predicts possible variations of iTRAQ reporter ions in an MS data-dependent manner. The model can be utilized to calculate the robustness of regulatory information systematically at the peptide level in so-called bottom-up proteome approaches. It allows to determine the best fitting regulation factor and in addition to calculate the probability of alternative regulations. The result can be visualized as likelihood curves summarizing both the quantity and quality of regulatory information. Likelihood curves basically can be calculated from all peptides belonging to different regions of proteins if they are detected in LC-MS/MS experiments. Therefore, this approach renders excellent opportunities to detect and statistically validate dynamic post-translational modifications usually affecting only particular regions of the whole protein. The detection of known phosphorylation events at protein kinases served as a first proof of concept in this study and underscores the potential for noise models in quantitative proteomics.  相似文献   

8.
Comprehensive comparisons of quantitative proteomics techniques are rare in the literature, yet they are crucially important for optimal selection of approaches and methodologies that are ideal for a given proteomics initiative. In this study, two LC-based quantitative proteomics approaches--iTRAQ and label-free--were implemented using the LTQ-Orbitrap Velos platform. For this comparison, the model used was the total protein content from two Chlamydomonas reinhardtii strains in the context of alternative biofuels production. The strain comparison includes sta6 (a starch-less mutant of cw15) that produces twice as many lipid bodies (LB) containing triacylglycerols (TAGs) as its parental strain cw15 (a cell wall-deficient C. reinhardtii strain) under nitrogen starvation. Internal standard addition was used to rigorously assess the quantitation accuracy and precision of each method. Results from iTRAQ-4plex labeling using HCD (higher energy collision-induced dissociation) fragmentation were compared to those obtained using a label-free approach based on the peak area of intact peptides and collision-induced dissociation. The accuracy and precision, number of identified/quantified proteins and statistically significant protein differences detected, as well as efficiency of these two quantitative proteomics methods were evaluated and compared. Four technical and three biological replicates of each strain were performed to assess both the technical and biological variation of both approaches. A total of 896 and 639 proteins were identified with high confidence, and 329 and 124 proteins were quantified significantly with label-free and iTRAQ, respectively, using biological replicates. The results showed that both iTRAQ labeling and label-free methods provide high quality quantitative and qualitative data using nano-LC coupled with the LTQ-Orbitrap Velos mass spectrometer, but the selection of the optimal approach is dependent on experimental design and the biological question to be addressed. The functional categorization of the differential proteins between cw15 and sta6 reveals already known but also new mechanisms likely responsible for the production of lipids in sta6 and sets the baseline for future studies aimed at engineering these strains for high oil production.  相似文献   

9.
Stable isotope labelling in combination with mass spectrometry has emerged as a powerful tool to identify and relatively quantify thousands of proteins within complex protein mixtures. Here we describe a novel method, termed isotope-coded protein label (ICPL), which is capable of high-throughput quantitative proteome profiling on a global scale. Since ICPL is based on stable isotope tagging at the frequent free amino groups of isolated intact proteins, it is applicable to any protein sample, including extracts from tissues or body fluids, and compatible to all separation methods currently employed in proteome studies. The method showed highly accurate and reproducible quantification of proteins and yielded high sequence coverage, indispensable for the detection of post-translational modifications and protein isoforms. The efficiency (e.g. accuracy, dynamic range, sensitivity, speed) of the approach is demonstrated by comparative analysis of two differentially spiked proteomes.  相似文献   

10.
Functional and quantitative proteomics using SILAC   总被引:3,自引:0,他引:3  
Researchers in many biological areas now routinely characterize proteins by mass spectrometry. Among the many formats for quantitative proteomics, stable-isotope labelling by amino acids in cell culture (SILAC) has emerged as a simple and powerful one. SILAC removes false positives in protein-interaction studies, reveals large-scale kinetics of proteomes and - as a quantitative phosphoproteomics technology - directly uncovers important points in the signalling pathways that control cellular decisions.  相似文献   

11.
The response of Desulfovibrio vulgaris Hildenborough (DvH), a sulphate-reducing bacterium, to nitrate stress was examined using quantitative proteomic analysis. DvH was stressed with 105 mM sodium nitrate (NaNO(3)), a level that caused a 50% inhibition in growth. The protein profile of stressed cells was compared with that of cells grown in the absence of nitrate using the iTRAQ peptide labelling strategy and tandem liquid chromatography separation coupled with mass spectrometry (quadrupole time-of-flight) detection. A total of 737 unique proteins were identified by two or more peptides, representing 22% of the total DvH proteome and spanning every functional category. The results indicate that this was a mild stress, as proteins involved in central metabolism and the sulphate reduction pathway were unperturbed. Proteins involved in the nitrate reduction pathway increased. Increases seen in transport systems for proline, glycine-betaine and glutamate indicate that the NaNO(3) exposure led to both salt stress and nitrate stress. Up-regulation observed in oxidative stress response proteins (Rbr, RbO, etc.) and a large number of ABC transport systems as well as in iron-sulphur-cluster-containing proteins, however, appear to be specific to nitrate exposure. Finally, a number of hypothetical proteins were among the most significant changers, indicating that there may be unknown mechanisms initiated upon nitrate stress in DvH.  相似文献   

12.

Background

Lung cancer is the number one cause of cancer-related deaths in the United States and worldwide. The complex protein changes and/or signature of protein expression in lung cancer, particularly in non-small cell lung cancer (NSCLC) has not been well defined. Although several studies have investigated the protein profile in lung cancers, the knowledge is far from complete. Among early studies, mucin5B (MUC5B) has been suggested to play an important role in the tumor progression. MUC5B is the major gel-forming mucin in the airway. In this study, we investigated the overall protein profile and MUC5B expression in lung adenocarcinomas, the most common type of NSCLCs.

Methods

Lung adenocarcinoma tissue in formalin-fixed paraffin-embedded (FFPE) blocks was collected and microdissected. Peptides from 8 tumors and 8 tumor-matched normal lung tissue were extracted and labeled with 8-channel iTRAQ reagents. The labeled peptides were identified and quantified by LC-MS/MS using an LTQ Orbitrap Velos mass spectrometer. MUC5B expression identified by iTRAQ labeling was further validated using immunohistochemistry (IHC) on tumor tissue microarray (TMA).

Results

A total of 1288 peptides from 210 proteins were identified and quantified in tumor tissues. Twenty-two proteins showed a greater than 1.5-fold differences between tumor and tumor-matched normal lung tissues. Fifteen proteins, including MUC5B, showed significant changes in tumor tissues. The aberrant expression of MUC5B was further identified in 71.1% of lung adenocarcinomas in the TMA.

Discussions

A subset of tumor-associated proteins was differentially expressed in lung adenocarcinomas. The differential expression of MUC5B in lung adenocarcinomas suggests its role as a potential biomarker in the detection of adenocarcinomas.  相似文献   

13.
Melanson JE  Avery SL  Pinto DM 《Proteomics》2006,6(16):4466-4474
Peptide dimethylation with isotopically coded formaldehydes was evaluated as a potential alternative to techniques such as the iTRAQ method for comparative proteomics. The isotopic labeling strategy and custom-designed protein quantitation software were tested using protein standards and then applied to measure proteins levels associated with Alzheimer's disease (AD). The method provided high accuracy (10% error), precision (14% RSD) and coverage (70%) when applied to the analysis of a standard solution of BSA by LC-MS/MS. The technique was then applied to measure protein abundance levels in brain tissue afflicted with AD relative to normal brain tissue. 2-D LC-MS analysis identified 548 unique proteins (p<0.05). Of these, 349 were quantified with two or more peptides that met the statistical criteria used in this study. Several classes of proteins exhibited significant changes in abundance. For example, elevated levels of antioxidant proteins and decreased levels of mitochondrial electron transport proteins were observed. The results demonstrate the utility of the labeling method for high-throughput quantitative analysis.  相似文献   

14.
The analysis of plasma samples from HIV-1/HCV mono- and coinfected individuals by quantitative proteomics is an efficient strategy to investigate changes in protein abundances and to characterize the proteins that are the effectors of cellular functions involved in viral pathogenesis. In this study, the infected and healthy plasma samples (in triplicate) were treated with ProteoMiner beads to equalize protein concentrations and subjected to 4-plex iTRAQ labeling and liquid chromatography/mass spectrometry (LC-MS/MS) analysis. A total of 70 proteins were identified with high confidence in the triplicate analysis of plasma proteins and 65% of the proteins were found to be common among the three replicates. Apolipoproteins and complement proteins are the two major classes of proteins that exhibited differential regulation. The results of quantitative analysis revealed that APOA2, APOC2, APOE, C3, HRG proteins were upregulated in the plasma of all the three HIV-1 mono-, HCV mono-, and coinfected patient samples compared to healthy control samples. Ingenuity pathway analysis (IPA) of the upregulated proteins revealed that they are implicated in the hepatic lipid metabolism, inflammation, and acute-phase response signaling pathways. Thus, we identified several differentially regulated proteins in HIV-1/HCV mono and coinfected plasma samples that may be potential biomarkers for liver disease.  相似文献   

15.
Yang Y  Wang J  Bu D  Zhang L  Li S  Zhou L  Wei H 《Biotechnology letters》2011,33(1):119-121
A sensitive and convenient “visible SYPRO” staining protocol was developed for visualizing proteins after SDS-PAGE. Gels were sensitized with SYPRO Ruby and then stained with the Coomassie Brilliant Blue G-250 protocol (Blue Silver). This combined protocol had similar or better linearity than staining with only SYPRO Ruby or Blue Silver, respectively. In addition, this method was more sensitive than that of Blue Silver, simpler than that of SYPRO Ruby, and compatible with subsequent mass spectrometry analysis.  相似文献   

16.
Advances in quantitative proteomics using stable isotope tags   总被引:3,自引:0,他引:3  
A great deal of current biological and clinical research is directed at the interpretation of the information contained in the human genome sequence in terms of the structure, function and control of biological systems and processes. Proteomics, the systematic analysis of proteins, is becoming a critical component in this endeavor because proteomic measurements are carried out directly on proteins – the catalysts and effectors of essentially all biological functions. To detect changes in protein profiles that might provide important diagnostic or functional insights, proteomic analyses necessarily have to be quantitative. This article summarizes recent technological advances in quantitative proteomics.  相似文献   

17.
This study compared the whole cell proteome profiles of two isogenic colorectal cancer (CRC) cell lines (primary SW480 cell line and its lymph node metastatic variant SW620), as an in vitro metastatic model, to gain an insight into the molecular events of CRC metastasis. Using iTRAQ (isobaric tags for relative and absolute quantitation) based shotgun proteomics approach, we identified 1140 unique proteins, out of which 147 were found to be significantly altered in the metastatic cell. Ingenuity pathway analysis with those significantly altered proteins, revealed cellular organization and assembly as the top-ranked altered biological function. Differential expression pattern of 6 candidate proteins were validated by Western blot. Among these, the low expression level of β-catenin combined with the up-regulation of CacyBP (Calcyclin binding Protein), a β-catenin degrading protein, in the metastatic cell provided a rational guide for the downstream functional assays. The relative expression pattern of these two proteins was further validated in three other CRC cells by Western blot and quantitative immunofluorescence studies. Overexpression of CacyBP in three different primary CRC cell lines showed significant reduction in adhesion characteristics as well as cellular β-catenin level as confirmed by our experiments, indicating the possible involvement of CacyBP in CRC metastasis. In short, this study demonstrates successful application of a quantitative proteomics approach to identify novel key players for CRC metastasis, which may serve as biomarkers and/or drug targets to improve CRC therapy.  相似文献   

18.
We describe Census, a quantitative software tool compatible with many labeling strategies as well as with label-free analyses, single-stage mass spectrometry (MS1) and tandem mass spectrometry (MS/MS) scans, and high- and low-resolution mass spectrometry data. Census uses robust algorithms to address poor-quality measurements and improve quantitative efficiency, and it can support several input file formats. We tested Census with stable-isotope labeling analyses as well as label-free analyses.  相似文献   

19.
20.

Background  

Isobaric Tags for Relative and Absolute Quantitation (iTRAQ™) [Applied Biosystems] have seen increased application in differential protein expression analysis. To facilitate the growing need to analyze iTRAQ data, especially for cases involving multiple iTRAQ experiments, we have developed a modeling approach, statistical methods, and tools for estimating the relative changes in protein expression under various treatments and experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号