首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The male gonopores, male reproductive apparatus, spermatophore and spermatozoa of the Mediterranean hermit crab Paguristes eremita are described, using interference phase microscopy, scanning electron microscopy and transmission electron microscopy. A correlation is made between the gonopore morphology and the different kinds of setae accompanying them, and the reproductive biology of these crabs. Each testes merges into a tubular duct made up of four zones: (1) the collecting tubule with free spermatozoa; (2) the proximal zone, where the ampulla of the spermatophores starts to be formed; (3) the medial zone, where the ampulla is completed, the stalk lengthens and the pedestal is formed; (4) the distal zone, where the mature spermatophores are stored. The sizes of the different parts of the spermatophore and of the sperm are given and their exterior morphology and ultrastructure described and compared to congeners. The morphology of the gonopore, male reproductive system, spermatophore and spermatozoa of P. eremita are species-specific, clearly distinguishing the species from the other members of the family. The available spermatozoal and spermatophore data is used to place P. eremita within a sperm phylogeny of the hermit crab family Diogenidae.  相似文献   

2.
The spermatophore morphology of the hermit crab Isocheles sawayai from southwestern Atlantic (Brazil) is described. The spermatophores show similarities with those described for other members of the family Diogenidae, especially with the recently described Loxopagurus loxochelis. The spermatophore is composed of three major regions: a sperm filled head or ampulla, a columnar stalk and a foot or pedestal. The spermatophores show specific morphology in having a circular ampulla, and a constriction or neck between the ampulla (100 μm) and the thin (27 μm), long stalk (500 μm). The stalk penetrates less than half way into the spermatophore head. Most spermatophores show one of the small posterior projections on the underside of the ampulla as being bigger than the other, making it asymmetrical. The size of the spermatophore is related to hermit crab size with direct relationships found between spermatophore ampulla width, total length, and peduncle length with shield length of the hermit crab. The morphological characteristics of the spermatophore of I. sawayai are species-specific distinguishing it from other members of the family, and are useful to infer further phylogenetic relationships.  相似文献   

3.
The reproductive system of hermit crabs shows species-specific morphology, which can be used in phylogenetic analysis. Here, we describe the male reproductive system of the hermit crab Dardanus insignis, including morphological and biometric analyses of the spermatophore, the gonopore, and sperm ultrastructure. The morphological analyses were based on 15 selected specimens and carried out by means of light and electron microscopy. Our results indicate a reproductive system composed of lobular testes attached to a simple straight vas deferens connected to the exterior via ventral gonopores. The gonopores are ovoid, surrounded by dense serrulate setae, and covered by a membranous operculum. The spermatophores exhibit a tripartite structure, with an elongate ovoid ampulla, a long narrow stalk, and a proximal foot. The spermatozoal ultrastructure shows three main regions: an ovoid-oblong acrosomal vesicle, a nucleus, and cytoplasm with three armlike extensions. Some of these characteristics can also be found in other species of Diogenidae within the genus Dardanus and in members of Coenobitidae, a closely related family. The available information on spermatophore and spermatozoal structure may indicate a closer similarity between the genus Dardanus and the Coenobitidae, compared with other members of Diogenidae.  相似文献   

4.
We investigated the morphology of spermatozoa, spermatophores and the anterior vas deferens (AVD) of the gecarcinucid freshwater crab Sundathelphusa philippina. The morphology of the acrosome (proportions, structure and arrangement of acrosomal layers) and the spermatophores complies with the known sperm and spermatophore morphology of the brachyuran family Gecarcinucidae. The sperm cells are packed within coenospermic spermatophores that are of a mucous type, lacking a complex spermatophore wall. Spermatophore formation takes place in the distal part of the AVD. The strongly proliferated inner epithelium of the vas deferens releases vesicles via apocrine secretion. These vesicles fuse with the incipient spermatophores that subsequently coalesce, thus forming the coenospermic aggregates that represent the mature spermatophores.  相似文献   

5.
Spermatozoa of most crustacean species are nonmotile and are packed into spermatophores. In Decapoda, spermatophores are highly variable in morphology and can be useful in the solving of taxonomic and systematic questions, especially among the Anomura. In this study, the morphology and morphometry of the spermatophores of the western Atlantic hermit crabs Pagurus brevidactylus and P. criniticornis are described. The abdomen of fresh male specimens was dissected to expose the reproductive system and to extract the spermatophores, which were analyzed by stereoscopic, light, and scanning electron microscopy. The vas deferens can be divided macroscopically in three regions, all of them containing spermatophores. Tripartite spermatophores are composed of an elongated cylindrical main ampulla, a triangular accessory ampulla, a narrow cylindrical peduncle, and a round pedestal. Dimensions of the spermatophore components are positively correlated to the size of the crab. Morphological patterns observed in this study resemble those of other pagurid hermit crabs investigated to date. The morphological character distribution confirms classifications based on adult morphology and molecular analysis. J. Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

6.
Although mating has been described in several hermit crab species, the mechanics of spermatophore transfer have not previously been demonstrated. Evidence from pleopod and gonopore morphology, video observations, and inseminated females indicates that in Clibanarius vittatus the male applies a spermatophoric mass directly onto the female via the gonopores rather than with modified pleopods 1-2 (gonopods) and/or genital papillae as in many other decapods. The single second pleopod of males of C. vittatus has a simple endopod with no apparent modifications for sperm transfer. There are no genital papillae extending from the male gonopores. The globular spermatophores are aligned in rows surrounded by a seminal secretion in the male ducts (vasa deferentia that terminate in ejaculatory ducts opening to the exterior via the gonopores). During copulation, described from time-lapse video recordings, the ventral surface of the last thoracic segment of the male, bearing the gonopores, was apposed to the ventral cephalothorax of the female. A massive amount of seminal secretion containing spermatophore ribbons, termed here the spermatophoric mass and described for the first time in a hermit crab species, was observed covering the sternites and coxae of pereopods 1-5 of a recently copulated female. It is suggested that during copulation the male emits the contents of the ejaculatory ducts directly onto the female without the aid of gonopods or genital papillae. Although spermatophore transfer is simple in C. vittatus, the presence of modified anterior pleopods or elongate genital papillae (sexual tubes) in other paguroidean species suggests the possibility of a more complex insemination process in these other hermit crabs.  相似文献   

7.
Our aim was to describe the reproductive system of males and the formation of sperm packages in the seminal receptacle (SR) of recently mated females of the arrow crab Stenorhynchus seticornis. The male reproductive system was analyzed, and was described using light microscopy and histological and histochemical methods. The first pair of gonopods was described by means of scanning electron microscopy. Additionally, the dehiscence of spermatophores was tested using samples obtained from the vas deferens of males and from the seminal receptacle of recently mated females. Testes were tubular type, and each vas deferens consisted of three regions: the anterior vas deferens (AVD), including a proximal portion that was filled with free spermatozoa and a distal portion contained developing spermatophores; the median vas deferens (MVD) that contained completely formed spermatophores; and the posterior vas deferens (PVD), which contained only granular secretions. The accessory gland, which was filled with secretions, was located in the transition region between the MVD and the PVD. The spermatophores from the MVD were of different sizes, and none of them showed dehiscence in seawater, whereas those spermatophores in contact with the seminal receptacle were immediately broken. The ultrastructure of the gonopods revealed the presence of denticles at the distal portion, which contribute to the mechanical rupture of the spermatophore wall during the transfer of sperm. The contents of the PVD and accessory gland of males are transferred together with the spermatophores, and are responsible for the secretions observed among the sperm packets in the SR of the female. We suggest that these secretions formed the layers found in the SR of recently mated females, and may play a role in sperm competition in arrow crabs.  相似文献   

8.
Under sex dissociated sperm transfer, females seek spermatophores and pick up sperm without male assistance. In several species males adjust spermatophore deposition rate to the presence of conspecifics. It is not known, however, which factors could favor such elasticity in non-pairing males. In this paper, we compare male response towards conspecifics between the sex dissociated eriophyoid mites Aculus fockeui (Nalepa and Trouessart) and Aculops allotrichus (Nalepa). The species differ significantly in male reproductive strategies and, consequently, the intensity of male–male-competition. Aculus fockeui males deposit spematophores all over the leaves and occasionally leave single spermatophores beside quiescent female nymphs (QFNs). In contrast, A. allotrichus males guard QFNs and encircle them with spermatophores. In this study, males of both species deposited spermatophores close to and apart from the rival spermatophores. Aculops allotrichus males had similar spermatophore output whether they were kept alone or in a group of seven males. They did not change spermatophore output in the presence of five rival spermatophores, a QFN or a QFN and varying number of rivals, either. In contrast, A. fockeui males increased spermatophore output in the presence of rival spermatophores or when on the arena with a QFN the male number increased to eight males. They did not respond, however, to the presence of a QFN and one rival or a QFN alone. The possible effect of the species-specific intensity of male–male competition, population density, the availability of receptive females and the rate of spermatophore output on the flexibility of eriophyoid spermatophore deposition is discussed.  相似文献   

9.
The cuticular morphology and precise location of male and female gonopores and penile spines of the homalorhagid kinorhynch Kinorhynchus phyllotropis Brown & Higgins, 1983 are described and illustrated. In this species spermatozoa are transferred from male to female by a spermatophore. This is the first record of the mechanism of sperm transfer in a kinorhynch. The spermatophore is presumably extruded through the male gonopore and directed towards the female by the ductless penile spines. Spermatozoa in the spermatophore are rod-shaped and catenulate. The spermatophore is pressed directly against the cuticular plates of the female, and usually covers the female gonopores. The spermatophore contains a mass of intertwined spermatids and spermatozoa surrounded by clear material covered with a layer of debris. Spermatozoa are found in the female lodged in the seminal receptacle tissue applied to the dorsal aspect of posterior oocytes. There the spermatozoa complete their development. Nuclei change from filiform to geniculate, and oval corpuscles surrounding the nuclei disappear, so that the spermatozoa are seen as densely-packed, polyhedral cells. These observations conform with literature reports of aberrant spermatozoa of unknown origin seen in female Pycnophyes . The fertilization process remains unknown.  相似文献   

10.
The costs of spermatogenesis constrain sperm expenditure when sperm production per day is limited. Thus, males are challenged to allocate available resources to sperm production and other life history functions. However, this prevailing assumption is not applicable to species in which spermatogenesis becomes quiescent during the breeding season. Males of these species prepare large quantities of sperm before the breeding season. Among these species, constraints on ejaculates have been intensively investigated in salamanders that deposit spermatophores. Although it is predicted that sperm expenditure should not be limited because of abundantly prepared sperm, spermatophore deposition is often limited during the breeding season when vas deferens are full of sperm. We tested a hypothesis regarding limited spermatophore deposition by measuring sperm quantity and volume of spermatophores sequentially deposited by male eastern newts Notophthalmus viridescens. A male newt rarely deposits more than three spermatophores per mating. If depletion of non‐sperm components of spermatophores limits spermatophore deposition, we predicted that spermatophore volume decreases while sperm quantity remains constant as a male deposits more spermatophores. Alternatively, some regulative mechanisms allow a limited portion of available sperm to be expended per mating, in which sperm quantity is predicted to decrease while the spermatophore volume remains constant. Finally, depletion of non‐sperm components may regulate sperm expenditure, which predicted that both spermatophore volume and sperm quantity decrease. We found that both sperm quantity and the spermatophore volume decreased as a male deposited more spermatophores during a single mating. Sperm expenditure was constrained without the costs involved in active spermatogenesis, and depletion of non‐sperm components likely regulate sperm quantity loaded in spermatophores. In dissociated spermatogenesis, constrained sperm expenditure do not mean that costly spermatogenesis is directly limiting male mating capacity but rather suggest that the evolution of physiological mechanisms regulating sperm expenditure per mating maximizes male reproductive success.  相似文献   

11.
The Norway lobster (Nephrops norvegicus) is economically important in Europe. However, apart from the female reproductive system, very little is known about its internal anatomy. This article focuses on studying the internal anatomy and ultrastructure of the male reproductive system. This system follows the general pattern found among decapod crustaceans, with several peculiarities. Testes are composed of lobular sperm ducts in which the spermatozoa are fully constituted. The spermatozoa present three lateral arms and a long acrosome, which gives a false appearance of flagellated spermatozoa. The two testes form a double H under the heart, and the vas deferens (VD) arise from each side at the posterior edge of the double H. The main characteristic of the VD is the presence of a sphincter in the enlarged area of the distal end of the middle VD. The MVD here shows an increase in musculature of the wall as compared to the VD, which regulates the passage of the sperm cord to the distal VD (DVD) and thence to the thelycum of the female. The wall of the spermatophore is formed in the distal part of the proximal VD, which surrounds the unique sperm cord present in the VD. Isolated spermatophores are not observed in the VD. The sperm cord is pinched off during copulation by the musculature of the DVD. Then, a portion of the sperm cord is transferred from each VD to form the isolated spermatophores. The wall of the spematophores and the spermatozoa that are observed inside the thelycum have the same morphology as those observed in the VD. J. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
The external morphology and internal structure of the male sexual tube of the hermit crab Micropagurus acantholepis, a member of the family Paguridae from Australian waters, is described in detail using histological thick sectioning and scanning and transmission electron microscopy techniques. This is the first in-depth study of a sexual tube in the Paguroidea, a group where a remarkable number of genera (55.9% in the family Paguridae) with species having these intriguing sexual structures are known. In M. acantholepis a sexual tube is present on the left side, whereas only a gonopore is present on the right side. The tube is used for the delivery of spermatophores to the female and consists of a sheath of cuticular origin surrounding an internal, functional extension of the posterior vas deferens. Pedunculate spermatophores were observed within the lumen and partially extruding from the terminal opening of the tube in preserved specimens. The tube protrudes from the left coxa of the fifth pereopod as an elongate 3-mm-long, hollow, coiled structure with a terminal opening. Exteriorly the tube consists of a conspicuous thick chitinous cuticular ridge throughout its length, and a thin chitinous cuticle with sparse, regularly arranged simple setae. Interior to the cuticle, the tube contains loose connective tissue, secretory cells, oblique muscle, circular muscle, and epithelial cells. The latter cells line a central lumen that runs the length of the sexual tube. The morphology, cellular composition, and function of the tube are discussed.  相似文献   

13.
During mating, male bushcrickets transfer a spermatophore that consists of a sperm-containing ampulla and a product of the accessory glands, the spermatophylax, which females directly ingest. In the present study, we demonstrate male spermatophore allocation in the bushcricket Poecilimon zimmeri . Males of this species show condition-dependent spermatophore investment. This investment depended upon the age at first mating of males, with older individuals transferring larger spermatophores than younger ones of the same body mass. Independently of age, heavier males transfer larger spermatophores, but the size of males (as measured by femur length) was not a good predictor. Heavier males allocate a lower proportion of their mass to spermatophores and reach their maximal investment point earlier than less heavy males. Spermatophylax production levelled off to a species specific maximum earlier than that of sperm investment (measured as ampulla mass), suggesting that males face high levels of sperm competition.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 354–360.  相似文献   

14.
A morphological and ultrastructural study was carried out on the spermatophore and spermatodoses of some species of Orthoptera Tettigoniidae. From the results concerning the spermatophore it emerged that this structure has a morphological and ultrastructural organization represented by a dilated ampulla and a peduncle or neck. From the examination of freshly deposited spermatophores and those at various time intervals thereafter, it was seen that these structures other than allowing gamete transfer, represent the site where spermatodesms, organized in the male genital tracts, undergo reorganization to acquire their definitive morphological and structural characteristics as found in the female genital tracts. The spermatodoses, in the same way as the spermatophore, represent capsules containing spermatodesms, which are originated in the spermatheca, their specific morphology seems to diversify according to the species considered. As regards their role, it is hypothesized that these structures represent a long-term conservation mechanism for spermatozoa inside the seminal receptacle.  相似文献   

15.
The male reproductive system of seven species of the family Bothriuridae are compared. These scorpions are Bothriurus flavidus Kraepelin, B. cordubensis Acosta, B. bonariensis (C. L. Koch), B. chacoensis Maury & Acosta, Brachistosternus ferrugineus (Thorell), Timogenes dorbignyi (Guérin-Méneville), T. elegans (Mello-Leitão) and Urophonius brachycentrus Pocock (Bothriuridae). Additional comparisons are made with the buthid Zabius fuscus (Thorell). Observations on the structures associated with the paraxial organs (testis, seminal vesicle and accessory glands) are given. Sperm obtained from the male reproductive tract and fresh spermatophores as well as from the female's genital atrium and seminal receptacles are examined. Accessory glands occur in six out of eight studied bothriurids and in the buthid Z. fuscus. In most species the distal portion of vas deferens has a developed ampulla. All structures vary in size and shape depending on species. Sperm packages were observed in all bothriurids. In contrast, there is no packaged spermatozoa in Z. fuscus. Each sperm package consists of many spermatozoa surrounded by a common membrane that breaks after the spermatophore capsule is everted into the female genital atrium, releasing the spermatozoa. One hour after insemination, the spermatozoa are found in the atrium and in the seminal receptacles of B. flavidus females, but after 24h spermatozoa are found only in the seminal receptacles. The functional significance of the accessory glands and the presence-absence of sperm packages are discussed.  相似文献   

16.
17.
The morphology and function of the male reproductive system in the spider crab Maja brachydactyla, an important commercial species, is described using light and electron microscopy. The reproductive system follows the pattern found among brachyuran with several peculiarities. The testis, known as tubular testis, consists of a single, highly coiled seminiferous tubule divided all along by an inner epithelium into germinal, transformation, and evacuation zones, each playing a different role during spermatogenesis. The vas deferens (VD) presents diverticula increasing in number and size towards the median VD, where spermatophores are stored. The inner monostratified epithelium exocytoses the materials involved in the spermatophore wall formation (named substance I and II) and spermatophore storage in the anterior and median VD, respectively. A large accessory gland is attached to the posterior VD, and its secretions are released as granules in apocrine secretion, and stored in the lumen of the diverticula as seminal fluids. A striated musculature may contribute to the formation and movement of spermatophores and seminal fluids along the VD. The ejaculatory duct (ED) shows a multilayered musculature and a nonsecretory pseudostratified epithelium, and extrudes the reproductive products towards the gonopores. A tissue attached to the ED is identified as the androgenic gland.  相似文献   

18.
An individual''s gametes can represent a nourishing food source for a manipulative mate. Here, we provide evidence of ejaculate and sperm consumption in a cephalopod. Through labelling male spermatophores with 14C radiolabel, we found that female squid, Sepiadarium austrinum, consumed the spermatophores of their partners and directed the nutrients received into both somatic maintenance and egg production. We further show that in this species—where fertilization occurs externally in the female''s buccal cavity—sperm storage is short-term (less than 21 days). The combination of female spermatophore consumption and short-term external sperm storage has the potential to exert strong selection on male ejaculates and reproductive strategies.  相似文献   

19.
Under dissociated sperm transfer, (non-pairing) males deposit spermatophores on a substrate, while females seek spermatophores and pick up sperm on their own. Spermatophore expenditures of non-pairing males should be high, due to the increased uncertainty of sperm uptake by a female. In this study I examined spermatophore expenditures in two eriophyoid species that differed in the degree of dissociation between sexes: (1) Aculus fockeui (Nalepa and Trouessart) males rarely visit quiescent female nymphs (QFNs), and mostly deposit spermatophores all over the leaves, whereas (2) Aculops allotrichus (Nalepa) males guard QFNs for many hours and deposit several spermatophores beside them. Males of both species were collected from the field and tested in solitude. Aculus fockeui males deposited on average 19.1 spermatophores per day, whereas A. allotrichus deposited only 3.6 spermatophores per day, and had a very large coefficient of variation. Males and spermatophores of A. allotrichus were significantly smaller and contained less sperm than those of A. fockeui. In both eriophyoids, spermatophore size was fitted to the size of female genitalia and the height of females. The ratio between the diameter of spermatophore head and the width of a female genital coverflap was 0.6, whereas the ratio between the female leg and the length of spermatophore stalk was 0.5. Several factors could be responsible for the discrepancy in spermatophore expenditures between species. Among other factors, the effects of male size, male reproductive strategy and female genitalia size on spermatophore output and size of spermatophores are discussed.  相似文献   

20.
《Zoology (Jena, Germany)》2014,117(3):192-199
In cephalopods, sperm discharge is an important event not only for sperm transfer but also influencing sperm storage capacity of attached spermatangia (everted spermatophores). To investigate sperm discharge from spermatangia and the condition of naturally attached spermatangia in Japanese pygmy squid (Idiosepius paradoxus) we (i) investigated the morphology of spermatophores and spermatangia, and the process of spermatophore evagination and sperm discharge from spermatangia obtained in vitro; (ii) observed spermatangia that were naturally attached to female squids at 6, 12, 18, 24 and 48 h after copulation to investigate alterations in naturally attached spermatangia with time. The spermatophore of I. paradoxus is slender and cylindrical and consists of a sperm mass, a cement body and an ejaculatory apparatus, which is similar to those of loliginid squids. The spermatangium is fishhook-shaped, its distal end being open and narrow. After the spermatangium is formed, the sperm mass gradually moves to the open end of the spermatangium, from where sperm are released. Sperm discharge is a rapid process immediately after the beginning of sperm release, but within 5 min changes to an intermittent release of sperm. Although the volume of residual spermatozoa differed among spermatangia that were naturally attached to a single individual, the probability that spermatangia would be empty increased with time. Most naturally attached spermatangia discharged almost all of their spermatozoa within 24 h after copulation, and no spermatangia were attached to females 48 h after copulation. These results suggest that sperm transfer from the spermatangium to the seminal receptacle must occur within 24 h, and that the spermatangium functions as a transient sperm storage organ in pygmy squids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号