首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
组蛋白修饰调节机制的研究进展   总被引:2,自引:0,他引:2  
表观遗传学涉及到DNA甲基化、组蛋白修饰、染色体重塑和非编码RNA调控等内容,其中组蛋白修饰包括组蛋白的乙酰化、磷酸化、甲基化、泛素化及ADP核糖基化等,这些多样化的修饰以及它们时间和空间上的组合与生物学功能的关系又可作为一种重要的表观标志或语言,因而被称为“组蛋白密码”.相同组蛋白残基的磷酸化与去磷酸化、乙酰化与去乙酰化、甲基化与去甲基化等,以及不同组蛋白残基的磷酸化与乙酰化、泛素化与甲基化、磷酸化与甲基化等组蛋白修 饰之间既相互协同又互相拮抗,形成了一个复杂的调节网络.对组蛋白修饰内在调节机制的研究将丰富“组蛋白密码”的内涵.  相似文献   

2.
组蛋白甲基化修饰效应分子的研究进展   总被引:2,自引:0,他引:2  
Song BY  Zhu WG 《遗传》2011,33(4):285-292
作为一种重要的表观遗传学调控机制,组蛋白甲基化修饰在多种生命过程中发挥了重要的作用。细胞内有多种组蛋白甲基化酶和去甲基化酶共同调节组蛋白的修饰状态,在组蛋白甲基化状态确定后,多种效应分子特异的读取修饰信息,从而参与基因转录调控过程。文章从组蛋白甲基化效应分子的作用机制方面综述了这一领域的研究进展。  相似文献   

3.
DNA甲基化及组蛋白修饰在精神分裂症中的改变   总被引:1,自引:0,他引:1  
精神分裂症(schizophrellia)是一种严重的精神疾病,对双胞胎、家庭及认养的研究揭示,遗传与环境因素之间复杂的相互作用是精神分裂症的病因。表观遗传学(epigenetics)研究与基因序列变化无关的基因表达调控机制.为人们深入认识精神分裂症的病因提供了新的思路。表观遗传调控机制主要包括:DNA甲基化、组蛋白修饰和非编码RNA三种方式。该文介绍前两种在精神分裂症发病机制中的作用。  相似文献   

4.
泛素化修饰是真核生物细胞内重要的翻译后修饰类型,通过调节蛋白质活性、稳定性和亚细胞定位广泛参与细胞内各项信号传导与代谢过程,对维持正常生命活动具有重要意义。组蛋白作为染色质中主要的蛋白成分,与DNA复制转录、修复等行为密切相关,是研究翻译后修饰的热点。DNA损伤后,组蛋白泛素化修饰通过调节核小体结构、激活细胞周期检查点、影响修复因子的招募与装配等诸多途径参与损伤应答。同时,组蛋白泛素化修饰还能调节其他位点翻译后修饰,并通过这种串扰(crosstalk)作用调节DNA损伤应答。本文介绍了组蛋白泛素化修饰的主要位点和相关组分(包括E3连接酶、去泛素化酶与效应分子),以及这些修饰作用共同编译形成的信号网络在DNA损伤应答中的作用,最后总结了目前该领域研究所面临的一些问题,以期为科研人员进一步探索组蛋白密码在DNA损伤应答中的作用提供参考。  相似文献   

5.
基于ChIP-seq的差异组蛋白修饰区域的筛选   总被引:1,自引:0,他引:1       下载免费PDF全文
组蛋白修饰是在基因组水平上起到重要调控作用的表观遗传修饰,随着ChIP-Seq的广泛使用,高通量数据的积累,为从全基因组研究组蛋白修饰模式奠定了基础。但目前缺乏在多样本间筛选疾病相关的调控区域的方法,因而本文开发了一种多细胞系的差异筛选算法来识别差异组蛋白修饰区域。本文通过窗口移动法来估计组蛋白修饰水平,并根据信息熵理论定量各个细胞系之间的差异。基于随机背景来确定差异显著性阈值。利用此算法来筛选人类全基因组9个细胞系间H3K4me3差异的区域,结果显示这些区域显著富集在基因启动子上和其他重要的染色质状态上,且与先前人们发现的活性启动子染色质状态显著重叠。通过文献挖掘进一步证实了与白血病相关的基因组标记。这些结果表明基于熵的策略可有效地挖掘多细胞系间以及与疾病相关的差异组蛋白修饰。  相似文献   

6.
DNA甲基化和组蛋白修饰在克隆动物发育过程中的作用   总被引:4,自引:0,他引:4  
郭磊  李慧  韩之明 《遗传》2010,32(8):762-768
体细胞核移植在农业应用、生产疾病模型动物、转基因家畜或产生人胚胎干细胞来治疗人类的疾病方面有巨大的应用潜力。虽然已经成功克隆出多种哺乳动物, 但该技术仍存在一些未解决的问题, 包括产生克隆动物的效率低和克隆动物的异常等。异常的表观遗传重编程是克隆胚胎发育失败的一个重要因素。文章重点论述了DNA甲基化、组蛋白修饰及其与克隆胚胎发育的关系。了解表观遗传调控机制有助于解决核移植技术中存在的问题, 有利于更好地应用这项技术。  相似文献   

7.
表观遗传修饰是指染色体DNA和组蛋白上的化学修饰,主要包括DNA甲基化、组蛋白修饰和非编码RNA.在不改变DNA序列的情况下,这些修饰可以通过改变染色质状态来影响遗传信息的表达,并具有可遗传性,对植物的生长发育具有重要的调控作用.当特定的表观遗传修饰发生改变时,农作物可以获得优异的表型、更强的环境适应性,因此人为改变表...  相似文献   

8.
刘玲  周平坤 《生命科学》2014,(11):1187-1193
组蛋白翻译后修饰是细胞DNA损伤早期应答反应的重要内涵,一方面是松弛、开放染色质结构的必要分子调节事件,以便DNA损伤响应蛋白能接近DNA损伤位点;另一方面直接参与DNA损伤修复蛋白招募过程的调控。综述了在DNA损伤信号激发下,发生的组蛋白主要修饰类型,异组蛋白H2AX、H2A.Z在DNA损伤部位与组蛋白置换,及其对DNA损伤响应蛋白招募的调节作用和机制。  相似文献   

9.
张春娇  王超 《生理学报》2021,73(6):980-990
卵泡的正常发育涉及有序的基因转录激活和抑制等一系列复杂的生命过程,对雌性获得生殖能力至关重要.组蛋白甲基化修饰可以改变细胞内染色质的状态,影响基因的转录活性.现阶段的研究表明,组蛋白甲基化等表观遗传学修饰在雌性哺乳动物卵泡发育的过程中发挥了重要的调控作用.本文总结了组蛋白赖氨酸甲基化(H3K4及H3K9)等甲基化修饰与...  相似文献   

10.
真核生物核小体组蛋白修饰引起染色质重塑(Chromatin remodeling)是表观遗传的重要调控机制.乙酰化修饰(Acetylation modification)是其中一种重要的方式.组蛋白乙酰化修饰位点集中在各种组蛋白N末端赖氨酸残基上.细胞内存在功能拮抗的多种乙酰基转移酶和去乙酰化酶,二者相互竞争,共同调节组蛋白的乙酰化状态,通过影响核小体结构的致密性,并在多种效应分子的参与下,实现对基因的表达调控.以真核模式生物酿酒酵母(Saccharomyces cerevisiae)为对象,综述乙酰基转移酶和去乙酰化酶的种类、作用特点以及其基因调控的分子机制等方面的最新研究进展.  相似文献   

11.
12.
目的 阐明金属纳米材料(MNPs)对组蛋白H3第10位丝氨酸磷酸化(p-H3S10)修饰变化的影响,探讨典型MNPs暴露后细胞全基因表达的变化,为MNPs早期毒性筛选提供理论基础。方法 通过蛋白质免疫印迹及流式细胞术等方法评价了10种MNPs对p-H3S10修饰变化的影响。此外,利用转录组测序技术在转录水平上探讨了1种典型MNPs——纳米氧化铜对细胞全基因表达的影响。结果 除纳米氧化镍外,其余用于测试的9种MNPs均在不同程度上诱导了p-H3S10。进一步分析发现,MNPs诱导的p-H3S10与MNPs的细胞内蓄积高度相关,且细胞内金属离子的持续释放可能是MNPs诱导 p-H3S10的关键因素之一。另外,转录组测序的结果表明,纳米氧化铜的暴露导致了275个基因的显著差异表达(P<0.05),其中185个基因上调,90个基因下调。基因本体分析表明,在分子功能类别中,排名靠前的术语包括与多种转录因子活性、序列特异性DNA结合及丝裂原活化蛋白激酶活性相关的术语。京都基因和基因组百科全书分析表明,纳米氧化铜暴露后丝裂原活化蛋白激酶的信号级联显著上调。结论 MNPs的细胞内蓄积与其早期诱导的p-H3S10表达高度相关,并且细胞内MNPs持续释放的金属离子可能会在MNPs进入细胞后的很长一段时间内持续诱导p-H3S10的高表达。综上,p-H3S10具有作为评估MNPs毒性的生物标志物的潜力。  相似文献   

13.
表观遗传是不涉及DNA序列变化的可遗传变化,包括DNA甲基化、组蛋白修饰和miRNA调控等。在组蛋白甲基化修饰中,主要是组蛋白赖氨酸甲基转移酶(histone lysine methyltransferase,HKMT)参与调控。有文献报道,HKMT蛋白的催化核心为SET结构域,它具有促进或抑制基因表达的作用。在里氏木霉(Trichoderma reesei)中,HKMT对纤维素酶基因的表达调控的机制尚不明确。本文阐述了以里氏木霉为研究对象,利用Split-Maker技术构建了组蛋白赖氨酸甲基转移酶基因敲除表达盒,并转化了里氏木霉T. reesei QM9414。经PCR及Southern印迹验证正确后,显微镜观察到T.reesei Δhkmt菌株菌丝较长,分支较多。检测到突变体菌株连续7d滤纸酶活(filter paper enzyme activity,AFP)和羧甲基纤维素钠酶活 (carboxymethyl cellulose sodium enzyme activity,CMCA)。结果分别比野生型菌株高出5.00 IU·mL-1、15.00 IU·mL-1。利用RT-qPCR检测到突变菌株纤维素酶及其相关基因cbh1、egl1和xyr1的表达分别高出野生型4.51、3.87和2.51倍。通过对野生型菌株和突变菌株形态特征、纤维素酶酶活性、纤维素酶相关基因表达量的探索,为进一步研究里氏木霉表观遗传调控对纤维素酶表达的影响提供了新思路和实验资料。  相似文献   

14.
表观遗传是不涉及DNA序列变化的可遗传变化,包括DNA甲基化、组蛋白修饰和miRNA调控等。在组蛋白甲基化修饰中,主要是组蛋白赖氨酸甲基转移酶(histone lysine methyltransferase,HKMT)参与调控。有文献报道,HKMT蛋白的催化核心为SET结构域,它具有促进或抑制基因表达的作用。在里氏木霉(Trichoderma reesei)中,HKMT对纤维素酶基因的表达调控的机制尚不明确。本文阐述了以里氏木霉为研究对象,利用Split-Maker技术构建了组蛋白赖氨酸甲基转移酶基因敲除表达盒,并转化了里氏木霉T. reesei QM9414。经PCR及Southern印迹验证正确后,显微镜观察到T.reesei Δhkmt菌株菌丝较长,分支较多。检测到突变体菌株连续7d滤纸酶活(filter paper enzyme activity,AFP)和羧甲基纤维素钠酶活 (carboxymethyl cellulose sodium enzyme activity,CMCA)。结果分别比野生型菌株高出5.00 IU·mL-1、15.00 IU·mL-1。利用RT-qPCR检测到突变菌株纤维素酶及其相关基因cbh1、egl1和xyr1的表达分别高出野生型4.51、3.87和2.51倍。通过对野生型菌株和突变菌株形态特征、纤维素酶酶活性、纤维素酶相关基因表达量的探索,为进一步研究里氏木霉表观遗传调控对纤维素酶表达的影响提供了新思路和实验资料。  相似文献   

15.
Imprinting, i.e. parent-of-origin expression of alleles, plays an important role in regulating development in mammals and plants. DNA methylation catalyzed by DNA methyltransferases plays a pivotal role in regulating imprinting by silencing parental alleles. DEMETER (DME), a DNA glycosylase functioning in the base-excision DNA repair pathway, can excise 5-methylcytosine from DNA and regulate genomic imprinting in Arabidopsis. DME demethylates the maternal MEDEA (MEA) promoter in endosperm, resulting in expression of the maternal MEA allele. However, it is not known whether DME interacts with other proteins in regulating gene imprinting. Here we report the identification of histone H1.2 as a DME-interacting protein in a yeast two-hybrid screen, and confirmation of their interaction by the in vitro pull-down assay. Genetic analysis of the loss-of-function histone h1 mutant showed that the maternal histone H1 allele is required for DME regulation of MEA, FWA and FIS2 imprinting in Arabidopsis endosperm but the paternal allele is dispensable. Furthermore, we show that mutations in histone H1 result in an increase of DNA methylation in the maternal MEA and FWA promoter in endosperm. Our results suggest that histone H1 is involved in DME-mediated DNA methylation and gene regulation at imprinted loci.  相似文献   

16.
Aging and cancer are two interrelated processes, with aging being a major risk factor for the development of cancer. Parallel epigenetic alterations have been described for both, although differences, especially within the DNA hypomethylation scenario, have also been recently reported. Although many of these observations arise from the use of mouse models, there is a lack of systematic comparisons of human and mouse epigenetic patterns in the context of disease. However, such comparisons are significant as they allow to establish the extent to which some of the observed similarities or differences arise from pre-existing species-specific epigenetic traits. Here, we have used reduced representation bisulfite sequencing to profile the brain methylomes of young and old, tumoral and nontumoral brain samples from human and mouse. We first characterized the baseline epigenomic patterns of the species and subsequently focused on the DNA methylation alterations associated with cancer and aging. Next, we described the functional genomic and epigenomic context associated with the alterations, and finally, we integrated our data to study interspecies DNA methylation levels at orthologous CpG sites. Globally, we found considerable differences between the characteristics of DNA methylation alterations in cancer and aging in both species. Moreover, we describe robust evidence for the conservation of the specific cancer and aging epigenomic signatures in human and mouse. Our observations point toward the preservation of the functional consequences of these alterations at multiple levels of genomic regulation. Finally, our analyses reveal a role for the genomic context in explaining disease- and species-specific epigenetic traits.  相似文献   

17.
Recent studies have indicated that nuclear protein of 95 kDa (Np95) is essential for maintaining genomic methylation by recruiting DNA methyltransferase (Dnmt) 1 to hemi‐methylated sites. Here, we show that Np95 interacts more strongly with regulatory domains of the de novo methyltransferases Dnmt3a and Dnmt3b. To investigate possible functions, we developed an epigenetic silencing assay using fluorescent reporters in embryonic stem cells (ESCs). Interestingly, silencing of the cytomegalovirus promoter in ESCs preceded DNA methylation and was strictly dependent on the presence of either Np95, histone H3 methyltransferase G9a or Dnmt3a and Dnmt3b. Our results indicate a regulatory role for Np95, Dnmt3a and Dnmt3b in mediating epigenetic silencing through histone modification followed by DNA methylation.  相似文献   

18.
N-terminal modifications of nucleosomal core histones are involved in gene regulation, DNA repair and recombination as well as in chromatin modeling. The degree of individual histone modifications may vary between specific chromatin domains and throughout the cell cycle. We have studied the nuclear patterns of histone H3 and H4 acetylation and of H3 methylation in Arabidopsis. A replication-linked increase of acetylation only occurred at H4 lysine 16 (not for lysines 5 and 12) and at H3 lysine 18. The last was not observed in other plants. Strong methylation at H3 lysine 4 was restricted to euchromatin, while strong methylation at H3 lysine 9 occurred preferentially in heterochromatic chromocenters of Arabidopsis nuclei. Chromocenter appearance, DNA methylation and histone modification patterns were similar in nuclei of wild-type and kryptonite mutant (which lacks H3 lysine 9-specific histone methyltransferase), except that methylation at H3 lysine 9 in heterochromatic chromocenters was reduced to the same low level as in euchromatin. Thus, a high level of H3methylK9 is apparently not necessary to maintain chromocenter structure and does not prevent methylation of H3 lysine 4 within Arabidopsis chromocenters.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号