首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cystic fibrosis transmembrane regulator (CFTR) is a cyclic-AMP dependent chloride channel expressed at the apical surface of epithelial cells lining various organs such as the respiratory tract. Defective processing and functioning of this protein caused by mutations in the CFTR gene results in loss of ionic balance, defective mucus clearance, increased proliferation of biofilms and inflammation of human airways observed in cystic fibrosis (CF) patients. The process by which CFTR folds and matures under the influence of various chaperones in the secretory pathway remains incompletely understood. Recently, calumenin, a secretory protein, belonging to the CREC family of low affinity calcium binding proteins has been identified as a putative CFTR chaperone whose biophysical properties and functions remain uncharacterized. We compared hydropathy, instability, charge, unfoldability, disorder and aggregation propensity of calumenin and other CREC family members with CFTR associated chaperones and calcium binding proteins, wild-type and mutant CFTR proteins and intrinsically disordered proteins (IDPs). We observed that calumenin, along with other CREC proteins, was significantly more charged and less folded compared to CFTR associated chaperones. Moreover like IDPs, calumenin and other CREC proteins were found to be less hydrophobic and aggregation prone. Phylogenetic analysis revealed a close link between calumenin and other CREC proteins indicating how evolution might have shaped their similar biophysical properties. Experimentally, calumenin was observed to significantly reduce F508del-CFTR aggregation in a manner similar to AavLEA1, a well-characterized IDP. Fluorescence microscopy based imaging analysis also revealed altered trafficking of calumenin in bronchial cells expressing F508del-CFTR, indicating its direct role in the pathophysiology of CF. In conclusion, calumenin is characterized as a charged protein exhibiting close similarity with IDPs and is hypothesized to regulate F508del-CFTR folding by electrostatic effects. This work provides useful insights for designing optimized synthetic structural correctors of CFTR mutant proteins in the future.  相似文献   

2.
3.
4.
As a misfolding protein, almost all of F508del-CFTR is degraded by the ubiquitin–proteasome system before its maturation, which results in no membrane expression of cystic fibrosis transmembrane conductance regulator (CFTR) and therefore, no chloride secretion across epithelial cells of cystic fibrosis (CF) patients. The conjugation of ubiquitin (Ub) chains to protein substrates is necessary for the proteasomal degradation of F508del-CFTR. Ubiquitin contains seven lysine (K) residues, all of which can be conjugated to one another, forming poly-ubiquitin chains on substrates, either by mixing together, or by only one type of lysine providing sorting signals for different pathways. Here, we report that four lysine-linked poly-Ub chains (LLPUCs) were involved in F508del-CFTR biogenesis: LLPUCs linked by K11 or K48 facilitated F508del-CFTR degradation, whereas the other two linked by K63 and K33 protected F508del-CFTR from degradation. LLPUC K11 is more potent for F508del-CFTR degradation than K48. F508del-CFTR utilizes four specific lysine-linked poly-Ub chains during its biogenesis for opposite destiny through different identification by proteasomal shuttle protein or receptors. These findings provide new insights into the CF pathogenesis and are expected to facilitate the development of therapies for this devastating disease.  相似文献   

5.

Background

Treatments designed to correct cystic fibrosis transmembrane conductance regulator (CFTR) defects must first be evaluated in preclinical experiments in the mouse model of cystic fibrosis (CF). Mice nasal mucosa mimics the bioelectric defect seen in humans. The use of nasal potential difference (VTE) to assess ionic transport is a powerful test evaluating the restoration of CFTR function. Nasal VTE in CF mice must be well characterized for correct interpretation.

Methods

We performed VTE measurements in large-scale studies of two mouse models of CF—B6;129 cftr knockout and FVB F508del-CFTR—and their respective wild-type (WT) littermates. We assessed the repeatability of the test for cftr knockout mice and defined cutoff points distinguishing between WT and F508del-CFTR mice.

Results

We determined the typical VTE values for CF and WT mice and demonstrated the existence of residual CFTR activity in F508del-CFTR mice. We characterized intra-animal variability in B6;129 mice and defined the cutoff points for F508del-CFTR chloride secretion rescue. Hyperpolarization of more than -2.15 mV after perfusion with a low-concentration Cl- solution was considered to indicate a normal response.

Conclusions

These data will make it possible to interpret changes in nasal VTE in mouse models of CF, in future preclinical studies.  相似文献   

6.

Background

Cigarette smoke has both pro-inflammatory and immunosuppressive effects. Both active and passive cigarette smoke exposure are linked to an increased incidence and severity of respiratory virus infections, but underlying mechanisms are not well defined. We hypothesized, based on prior gene expression profiling studies, that upregulation of pro-inflammatory mediators by short term smoke exposure would be protective against a subsequent influenza infection.

Methods

BALB/c mice were subjected to whole body smoke exposure with 9 cigarettes/day for 4 days. Mice were then infected with influenza A (H3N1, Mem71 strain), and analyzed 3 and 10 days later (d3, d10). These time points are the peak and resolution (respectively) of influenza infection.

Results

Inflammatory cell influx into the bronchoalveolar lavage (BALF), inflammatory mediators, proteases, histopathology, viral titres and T lymphocyte profiles were analyzed. Compared to smoke or influenza alone, mice exposed to smoke and then influenza had more macrophages, neutrophils and total lymphocytes in BALF at d3, more macrophages in BALF at d10, lower net gelatinase activity and increased activity of tissue inhibitor of metalloprotease-1 in BALF at d3, altered profiles of key cytokines and CD4+ and CD8+ T lymphocytes, worse lung pathology and more virus-specific, activated CD8+ T lymphocytes in BALF. Mice smoke exposed before influenza infection had close to 10-fold higher lung virus titres at d3 than influenza alone mice, although all mice had cleared virus by d10, regardless of smoke exposure. Smoke exposure caused temporary weight loss and when smoking ceased after viral infection, smoke and influenza mice regained significantly less weight than smoke alone mice.

Conclusion

Smoke induced inflammation does not protect against influenza infection. In most respects, smoke exposure worsened the host response to influenza. This animal model may be useful in studying how smoke worsens respiratory viral infections.  相似文献   

7.
8.
9.
A basal calpain activity promotes the limited proteolysis of wild type (WT) cystic fibrosis conductance regulator (CFTR), inducing the internalization of the split channel. This process contributes to the regulation in the level of the active CFTR at the plasma membranes. In peripheral blood mononuclear cells (PBMC) from 16 healthy donors, the inhibition of calpain activity induces a 3-fold increase in the amount of active WT CFTR at the plasma membranes. Instead, in PBMC from cystic fibrosis (CF) patients, calpain activity is expressed at aberrant levels causing the massive removal of F508del-CFTR from the cell surface. In these patients, the inhibition of such abnormal proteolysis rescues physiological amounts of active mutated CFTR in 90% of the patients (25 over 28). The recovery of functional F508del-CFTR at the physiological location, in cells treated with a synthetic calpain inhibitor, indicates that F508del-CFTR folding, maturation, and trafficking operate in CF-PBMC at significant rate. Thus, an increase in the basal calpain activity seems primarily involved in the CFTR defect observed in various CF cells. Furthermore, in CF-PBMC the recovery of the scaffolding protein Na+/H+ exchanger regulatory factor 1 (NHERF-1), occurring following inhibition of the aberrant calpain activity, can contribute to rescue CFTR-functional clusters.  相似文献   

10.
11.
BackgroundP. aeruginosa is an opportunistic pathogen that chronically infects the lungs of 85% of adult patients with Cystic Fibrosis (CF). Previously, we demonstrated that P. aeruginosa reduced wt-CFTR Cl secretion by airway epithelial cells. Recently, a new investigational drug VX-809 has been shown to increase F508del-CFTR Cl secretion in human bronchial epithelial (HBE) cells, and, in combination with VX-770, to increase FEV1 (forced expiratory volume in 1 second) by an average of 3-5% in CF patients homozygous for the F508del-CFTR mutation. We propose that P. aeruginosa infection of CF lungs reduces VX-809 + VX-770- stimulated F508del-CFTR Cl secretion, and thereby reduces the clinical efficacy of VX-809 + VX-770.ConclusionThe observation that P. aeruginosa reduces VX-809 and VX-809 + VX-770 stimulated F508del CFTR Cl secretion may explain, in part, why VX-809 + VX-770 has modest efficacy in clinical trials.  相似文献   

12.
Cystic Fibrosis (CF) is the most frequent fatal genetic disease in Caucasian populations. Mutations in the chloride channel CF Transmembrane Conductance Regulator (CFTR) gene are responsible for functional defects of the protein and multiple associated dysregulations. The most common mutation in patients with CF, F508del-CFTR, causes defective CFTR protein folding. Thus minimal levels of the receptor are expressed at the cell surface as the mutated CFTR is retained in the endoplasmic reticulum (ER) where it correlates with defective calcium (Ca2+) homeostasis. In this study, we discovered that the Ca2+ binding protein Calumenin (CALU) is a key regulator in the maintenance of ER-Ca2+ calcium homeostasis in both wild type and F508del-CFTR expressing cells. Calumenin modulates SERCA pump activity without drastically affecting ER-Ca2+ concentration. In addition, reducing Calumenin expression in CF cells results in a partial restoration of CFTR activity, highlighting a potential function of Calumenin in CFTR maturation. These findings demonstrate a pivotal role for Calumenin in CF cells, providing insights into how modulation of Calumenin expression or activity may be used as a potential therapeutic tool to correct defects in F508del-CFTR.  相似文献   

13.
We analyzed the interrelation between the efficiency of a gene expression and the nucleotide composition of all protein-coding sequences in 38 unicellular organisms whose complete genomic sequences are known. These organisms comprise 37 prokaryotic (29 eubacteria and eight archaebacteria) and one eukaryotic (yeast) species. We demonstrated that frequency analysis of gene codon composition fails to reflect adequately the gene expression efficiency of all these organisms. We constructed a measure, the elongation efficiency index, that considers simultaneously the information on codon frequencies and the degree of mRNA local self-complementarity. This measure recognizes the ribosome-coding genes as highly expressed in all the unicellular organisms studied. According to our analysis, these species fall into five groups differentiated by the process that makes the key contribution to the elongation rate.  相似文献   

14.
BackgroundWe analyzed the CFTR response to VX-809/VX-770 drugs in conditionally reprogrammed cells (CRC) of human nasal epithelium (HNE) from F508del/F508del patients based on SNP rs7512462 in the Solute Carrier Family 26, Member 9 (SLC26A9; MIM: 608481) gene.MethodsThe Isc-eq measurements of primary nasal epithelial cells from F508del/F508del patients (n = 12) for CFTR function were performed in micro Ussing chambers and compared with non-CF controls (n = 2). Data were analyzed according to the rs7512462 genotype which were determined by real-time PCR.ResultsThe CRC-HNE cells from F508del/F508del patients evidenced high variability in the basal levels of CFTR function. Also, the rs7512462*C allele showed an increased basal CFTR function and higher responses to VX-809 + VX-770. The rs7512462*CC + CT genotypes together evidenced CFTR function levels of 14.89% relatively to wt/wt (rs7512462*CT alone-15.29%) i.e., almost double of rs7512462*TT (7.13%). Furthermore, sweat [Cl] and body mass index of patients also evidenced an association with the rs7512462 genotype.ConclusionThe CFTR function can be performed in F508del/F508del patient-derived CRC-HNEs and its function and responses to VX-809 + VX-770 combination as well as clinical data, are all associated with the rs7512462 variant, which partially sheds light on the generally inter-individual phenotypic variability and in personalized responses to CFTR modulator drugs.  相似文献   

15.
16.
We are here showing that peripheral mononuclear blood cells (PBMC) from cystic fibrosis (CF) patients contain almost undetectable amounts of mature 170 kDa CF-transmembrane conductance regulator (CFTR) and a highly represented 100 kDa form. This CFTR protein, resembling the form produced by calpain digestion and present, although in lower amounts, also in normal PBMC, is localized in cytoplasmic internal vesicles. These observations are thus revealing that the calpain-mediated proteolysis is largely increased in cells from CF patients. To characterize the process leading to the accumulation of such split CFTR, FRT cells expressing the F508del-CFTR mutated channel protein and human leukaemic T cell line (JA3), expressing wild type CFTR were used. In in vitro experiments, the sensitivity of the mutated channel to the protease is identical to that of the wild type, whereas in Ca2+-loaded cells F508del-CFTR is more susceptible to digestion. Inhibition of intracellular calpain activity prevents CFTR degradation and leads to a 10-fold increase in the level of F508del-CFTR at the plasma membrane, further indicating the involvement of calpain activity in the maintenance of very low levels of mature channel form. The higher sensitivity to calpain of the mutated 170 kDa CFTR results from a reduced affinity for HSP90 causing a lower degree of protection from calpain digestion. The recovery of HSP90 binding capacity in F508del-CFTR, following digestion, explains the large accumulation of the 100 kDa CFTR form in circulating PBMC from CF patients.  相似文献   

17.
F508del-CFTR, the most common mutation in cystic fibrosis (CF) patients, impairs CFTR trafficking to plasma membrane leading to its premature proteasomal degradation. Several post-translational modifications have been identified on CFTR with multiple roles in stability, localization and channel function, and the possibility to control the enzymes responsible of these modifications has been long considered a potential therapeutic strategy. Protein kinase CK2 has been previously suggested as an important player in regulating CFTR functions and it has been proposed as a pharmacological target in a combinatory therapy to treat CF patients. However, the real implication of CK2 in F508del-CFTR proteostasis, and in particular the hypothesis that its inhibition could be important in CF therapies, is still elusive. Here, by using immortalized cell lines, primary human cells, and knockout cell lines deprived of CK2 subunits, we do not disclose any direct correlation between F508del-CFTR proteostasis and CK2 expression/activity. Rather, our data indicate that the CK2α′ catalytic subunit should be preserved rather than inhibited for F508del rescue by the correctors of class-1, such as VX-809, disclosing new important features in CF therapeutic approaches.  相似文献   

18.
Biosynthesis and folding of multidomain transmembrane proteins is a complex process. Structural fidelity is monitored by endoplasmic reticulum (ER) quality control involving the molecular chaperone calnexin. Retained misfolded proteins undergo ER-associated degradation (ERAD) through the ubiquitin-proteasome pathway. Our data show that the major degradation pathway of the cystic fibrosis transmembrane conductance regulator (CFTR) with F508del (the most frequent mutation found in patients with the genetic disease cystic fibrosis) from the ER is independent of calnexin. Moreover, our results demonstrate that inhibition of mannose-processing enzymes, unlike most substrate glycoproteins, does not stabilize F508del-CFTR, although wild-type (wt) CFTR is drastically stabilized under the same conditions. Together, our data support a novel model by which wt and F508del-CFTR undergo ERAD from two distinct checkpoints, the mutant being disposed of independently of N-glycosidic residues and calnexin, probably by the Hsc70/Hsp70 machinery, and wt CFTR undergoing glycan-mediated ERAD.  相似文献   

19.
F508del-CFTR, the most common mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, disrupts intracellular trafficking leading to cystic fibrosis (CF). The trafficking defect of F508del-CFTR can be rescued by simultaneous inactivation of its four RXR motifs (4RK). Proteins involved in the F508del-CFTR trafficking defect and/or rescue are therefore potential CF therapeutic targets. We sought to identify these proteins by investigating differential proteome modulation in BHK cells over-expressing wt-CFTR, F508del-CFTR or the revertant F508del/4RK-CFTR. By 2-dimensional electrophoresis-based proteomics and western blot approaches we demonstrated that over-expression of F508del/4RK-CFTR modulates the expression of a large number of proteins, many of which are reported interactors of CFTR and/or 14-3-3 with potential roles in CFTR trafficking. GRP78/BiP, a marker of ER stress and unfolded protein response (UPR), is up-regulated in cells over-expressing either F508del-CFTR or F598del/4RK-CFTR. However, over-expression of F508del/4RK-CFTR induces the up-regulation of many other UPR-associated proteins (e.g. GRP94, PDI, GRP75/mortalin) and, interestingly, the down-regulation of proteasome components associated with CFTR degradation, such as the proteasome activator PA28 (PSME2) and COP9 signalosome (COPS5/CSN5). Moreover, the F508del-CFTR-induced proteostasis imbalance, which involves some heat shock chaperones (e.g. HSP72/Hpa2), ER-EF-hand Ca2+-binding proteins (calumenin) and the proteasome activator PA28 (PSME2), tends to be ‘restored’, i.e., in BHK cells over-expressing F508del/4RK-CFTR those proteins tend to have expression levels similar to the wild-type ones. These findings indicate that a particular cellular environment orchestrated by the UPR contributes to and/or is compatible with F508del/4RK-CFTR rescue.  相似文献   

20.
Retention of F508del-CFTR proteins in the endoplasmic reticulum (ER) is dependent upon chaperone proteins, many of which require Ca(2+) for optimal activity. Here, we show in human tracheal gland CF-KM4 cells, that after correction of F508del-CFTR trafficking by miglustat (N-butyldeoxynojirimycin) or low temperature (27 degrees C), the Ca(2+) mobilization is decreased compared to uncorrected cells and becomes identical to the Ca(2+) response observed in non-CF MM39 cells. In CF-KM4 and human nasal epithelial CF15 cells, we also show that inhibiting vesicular trafficking by nocodazole prevents not only the rescue of F508del-CFTR but also the Ca(2+) mobilization decrease. Finally, experiments using the CFTR inhibitor CFTR(inh)-172 showed that the presence but not the channel activity of F508del-CFTR at the plasma membrane is required to decrease the Ca(2+) mobilization in corrected CF cells. These findings show that correction of the abnormal trafficking of F508del-CFTR proteins might have profound consequences on cellular homeostasis such as the control of intracellular Ca(2+) level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号