首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein redox regulation is increasingly recognized as an important switch of protein activity in yeast, bacteria, mammals and plants. In this study, we identified proteins with potential thiol switches involved in jasmonate signaling, which is essential for plant defense. Methyl jasmonate (MeJA) treatment led to enhanced production of hydrogen peroxide in Arabidopsis leaves and roots, indicating in vivo oxidative stress. With monobromobimane (mBBr) labeling to capture oxidized sulfhydryl groups and 2D gel separation, a total of 35 protein spots that displayed significant redox and/or total protein expression changes were isolated. Using LC–MS/MS, the proteins in 33 spots were identified in both control and MeJA-treated samples. By comparative analysis of mBBr and SyproRuby gel images, we were able to determine many proteins that were redox responsive and proteins that displayed abundance changes in response to MeJA. Interestingly, stress and defense proteins constitute a large group that responded to MeJA. In addition, many cysteine residues involved in the disulfide dynamics were mapped based on tandem MS data. Identification of redox proteins and their cysteine residues involved in the redox regulation allows for a deeper understanding of the jasmonate signaling networks.  相似文献   

2.
Reversibly oxidized cysteine sulfhydryl groups serve as redox sensors or targets of redox sensing that are important in various physiological processes. However, little is known about redox‐sensitive proteins in guard cells and how they function in stomatal signaling. In this study, Brassica napus guard‐cell proteins altered by redox in response to abscisic acid (ABA) or methyl jasmonate (MeJA) were identified by complementary proteomics approaches, saturation differential in‐gel electrophoresis and isotope‐coded affinity tagging. In total, 65 and 118 potential redox‐responsive proteins were identified in ABA‐ and MeJA‐treated guard cells, respectively. All the proteins contain at least one cysteine, and over half of them are predicted to form intra‐molecular disulfide bonds. Most of the proteins fall into the functional groups of ‘energy’, ‘stress and defense’ and ‘metabolism’. Based on the peptide sequences identified by mass spectrometry, 30 proteins were common to ABA‐ and MeJA‐treated samples. A total of 44 cysteines were mapped in the identified proteins, and their levels of redox sensitivity were quantified. Two of the proteins, a sucrose non‐fermenting 1‐related protein kinase and an isopropylmalate dehydrogenase, were confirmed to be redox‐regulated and involved in stomatal movement. This study creates an inventory of potential redox switches, and highlights a protein redox regulatory mechanism in ABA and MeJA signal transduction in guard cells.  相似文献   

3.

Background

Reactive oxygen species (ROS) production is an early event in the immune response of plants. ROS production affects the redox-based modification of cysteine residues in redox proteins, which contribute to protein functions such as enzymatic activity, protein-protein interactions, oligomerization, and intracellular localization. Thus, the sensitivity of cysteine residues to changes in the cellular redox status is critical to the immune response of plants.

Methods

We used disulfide proteomics to identify immune response-related redox proteins. Total protein was extracted from rice cultured cells expressing constitutively active or dominant-negative OsRacl, which is a key regulator of the immune response in rice, and from rice cultured cells that were treated with probenazole, which is an activator of the plant immune response, in the presence of the thiol group-specific fluorescent probe monobromobimane (mBBr), which was a tag for reduced proteins in a differential display two-dimensional gel electrophoresis. The mBBr fluorescence was detected by using a charge-coupled device system, and total protein spots were detected using Coomassie brilliant blue staining. Both of the protein spots were analyzed by gel image software and identified using MS spectrometry. The possible disulfide bonds were identified using the disulfide bond prediction software. Subcellular localization and bimolecular fluorescence complementation analysis were performed in one of the identified proteins: Oryza sativa cold shock protein 2 (OsCSP2).

Results

We identified seven proteins carrying potential redox-sensitive cysteine residues. Two proteins of them were oxidized in cultured cells expressing DN-OsRac1, which indicates that these two proteins would be inactivated through the inhibition of OsRac1 signaling pathway. One of the two oxidized proteins, OsCSP2, contains 197 amino acid residues and six cysteine residues. Site-directed mutagenesis of these cysteine residues revealed that a Cys140 mutation causes mislocalization of a green fluorescent protein fusion protein in the root cells of rice. Bimolecular fluorescence complementation analysis revealed that OsCSP2 is localized in the nucleus as a homo dimer in rice root cells.

Conclusions

The findings of the study indicate that redox-sensitive cysteine modification would contribute to the immune response in rice.
  相似文献   

4.
Citrus plants are currently facing biotic and abiotic stresses. Therefore, the characterization of molecular traits involved in the response mechanisms to stress could facilitate selection of resistant varieties. Although large cDNA microarray profiling has been generated in citrus tissues, the available protein expression data are scarce. In this study, to identify differentially expressed proteins in Citrus clementina leaves after infestation by the two-spotted spider mite Tetranychus urticae, a proteome comparison was undertaken using two-dimensional gel electrophoresis. The citrus leaf proteome profile was also compared with that of leaves treated over 0-72 h with methyl jasmonate, a compound playing a key role in the defense mechanisms of plants to insect/arthropod attack. Significant variations were observed for 110 protein spots after spider mite infestation and 67 protein spots after MeJA treatments. Of these, 50 proteins were successfully identified by liquid chromatography-mass spectrometry-tandem mass spectrometry. The majority constituted photosynthesis- and metabolism-related proteins. Five were oxidative stress associated enzymes, including phospholipid glutathione peroxidase, a salt stressed associated protein, ascorbate peroxidase and Mn-superoxide dismutase. Seven were defense-related proteins, such as the pathogenesis-related acidic chitinase, the protease inhibitor miraculin-like protein, and a lectin-like protein. This is the first report of differentially regulated proteins after T. urticae attack and exogenous MeJA application in citrus leaves.  相似文献   

5.
6.
Two-dimensional electrophoresis (2-DE) showed the variation expression of Arabidopsis thaliana root proteins between wild type and its salt-tolerant mutant obtained from cobalt-60 γ ray radiation. Forty-six differential root protein spots were reproducibly presented on 2-DE maps, and 29 spots were identified by matrix assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MS). Fifteen protein spots corresponding to 10 proteins, and 14 protein spots corresponding to 9 proteins were constitutively up-regulated and down-regulated in the salt-tolerant mutant root. Bioinformatic analysis indicated that those differential proteins might be involved in the regulation of redox homeostasis, nucleotide metabolism, signal transduction, stress response and defense, carbohydrate metabolism, and cell wall metabolism. Peroxidase 22 might be a versatile enzyme and might play dual roles in both cell wall metabolism and regulation of redox homeostasis. Our work provides not only new insights into salt-responsive proteins in root, but also the potential salt-tolerant targets for further dissection of molecular mechanism adapted by plants during salt stress.  相似文献   

7.
《Journal of Proteomics》2010,73(2):331-341
In plant cells, elicitors induce defense responses that resemble those triggered by pathogen attack, such as the synthesis of phytoalexins and pathogen-related proteins which accumulate in the extracellular space. In the search for the particular proteins involved in defense responses, we investigated the changes in the extracellular proteome of a grapevine (Vitis vinifera cv. Gamay) cell suspension in response to elicitation with methylated cyclodextrins (MBCD) and methyl jasmonate (MeJA). Twenty-five of the 39 spots differentially expressed in 2-D gels were identified and found to be encoded by 10 different genes: three secretory peroxidases, chitinase-III, β-1,3-glucanase, thaumatin-like, SGNH plant lipase-like, NtPR27-like, xyloglucan endotransglycosylase and subtilisin-like protease. Most of them belong to the pathogenesis-related type proteins. A new class III secretory basic peroxidase and chitinase III were strongly induced in cultures treated with MBCD alone or combined with MeJA, while cultures treated with MeJA alone displayed a general repression of most of the extracellular proteins. Some of the proteins induced in grapevine cell cultures by MBCD are induced in other species by activators of systemic acquired resistance (SAR), a form of plant immunity. Collectively, the results suggest that treatment with MBCD resembles the effect of SAR induction agents in cell cultures.  相似文献   

8.
Nitric oxide is an important mediator that participates in reduction-oxidation (redox) mechanisms and in cellular signal transduction pathways. Two types of post-translational modifications are induced by nitric oxide: S-nitrosylation of cysteine residues and nitration of tyrosine residues. Two-dimensional gel electrophoresis-based Western blotting was used to detect, and liquid chromatography (LC)-tandem mass spectrometry (MS/MS) to determine the amino acid sequence of, several different nitrated proteins in the human pituitary. Proteins from several 2D gel spots, which corresponded to the strongly positive anti-nitrotyrosine Western blot spots, were subjected to in-gel trypsin-digestion and LC-MS/MS analysis. MS/MS, SEQUEST analysis, and de novo sequencing were used to determine the nitration site of each nitrated peptide. A total of four different nitrated peptides were characterized and were matched to four different proteins: synaptosomal-associated protein, actin, immunoglobulin alpha Fc receptor, and cGMP-dependent protein kinase 2. Those nitrotyrosyl-proteins participate in neurotransmission, cellular immunity, and cellular structure and mobility.  相似文献   

9.
We had previously shown that Vitis vinifera cv. Gamay cell suspension accumulates extracellularly large amounts of the phytoalexin trans-resveratrol (tR) in response to elicitation with methylated cyclodextrins (MBCD), which can be triplicated when the elicitor is combined with methyl jasmonate (MeJA). In parallel, new pathogenesis-related proteins accumulated in the apoplast-like extracellular space. The aim of this study was to investigate changes in the grapevine cell proteome potentially related to tR accumulation in response to the above elicitors. The DIGE technique was used to detect statistically significant changes in the cell's proteome. A total number of 1031 unique spots were detected, 67 of which were de-regulated upon elicitation. Sixty-four spots were successfully identified by nLC-MS/MS database search analysis. The tR biosynthetic pathway enzymes were up-regulated by MBCD alone or combined with MeJA, but not by treatment with MeJA alone, in agreement with tR accumulation pattern. Seven spots contained stilbene synthase encoded by four different isogenes. Likewise, four glutathione-S-transferases, potentially involved in tR trafficking within the cell and across membranes, were up-regulated in the same fashion as stilbene synthases. The relation of other de-regulated proteins with other effects caused by elicitors on grapevine cells, namely defense response and cell growth inhibition, is discussed.  相似文献   

10.

Background

Jasmonic acid (JA) and methyl jasmonate (MeJA) regulate plant development, resistance to stress, and insect attack by inducing specific gene expression. However, little is known about the mechanism of plant defense against herbivore attack at a protein level. Using a high-resolution 2-D gel, we identified 62 MeJA-responsive proteins and measured protein expression level changes.

Results

Among these 62 proteins, 43 proteins levels were increased while 11 proteins were decreased. We also found eight proteins uniquely expressed in response to MeJA treatment. Data are available via ProteomeXchange with identifier PXD001793. The proteins identified in this study have important biological functions including photosynthesis and energy related proteins (38.4%), protein folding, degradation and regulated proteins (15.0%), stress and defense regulated proteins (11.7%), and redox-responsive proteins (8.3%). The expression levels of four important genes were determined by qRT-PCR analysis. The expression levels of these proteins did not correlate well with their translation levels. To test the defense functions of the differentially expressed proteins, expression vectors of four protein coding genes were constructed to express in-fusion proteins in E. coli. The expressed proteins were used to feed Ostrinia furnacalis, the Asian corn borer (ACB). Our results demonstrated that the recombinant proteins of pathogenesis-related protein 1 (PR1) and thioredoxin M-type, chloroplastic precursor (TRXM) showed the significant inhibition on the development of larvae and pupae.

Conclusions

We found MeJA could not only induce plant defense mechanisms to insects, it also enhanced toxic protein production that potentially can be used for bio-control of ACB.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1363-1) contains supplementary material, which is available to authorized users.  相似文献   

11.
Proteomic changes induced by Cd have been described in plants in different scenarios. However, there has been no proteomic study on Cd toxicity, including any low Cd-accumulating species. Here, we investigate the response of a low Cd-accumulating species, Solanum torvum, to Cd toxicity at the root proteomic level using two-dimensional gel electrophoresis (2-DGE). The root 2-DGE map consisted of at least 927 reproducible protein spots, of which 45 were classified as differentially expressed proteins based on three replicated separations. MALDI-TOF MS analysis identified 19 of these spots, and MALDI-TOF/TOF MS analysis identified 8 of the spots. The eight proteins identified were two S-adenosylmethionine (SAM) synthetases, actin, an ATP synthase subunit, two tubulin proteins, alcohol dehydrogenase (ADH), and 14-3-3 protein 4. These proteins are involved in phytohormone synthesis, defense responses, energy metabolism, and cytoskeleton construction. Thus, our proteomic analysis revealed that Cd stress promotes an increase in the abundance of proteins involved in antioxidant defenses and anti-stress protection.  相似文献   

12.
13.
In stressed plants, the reactive oxygen species (ROS) levels rise. Key to ROS signaling research are detection and identification of the protein cysteine sulfenylation (-SOH), the ROS-mediated oxidative product of a thiol (-SH). Arabidopsis thaliana seedlings were stressed with hydrogen peroxide (H2O2) and the sulfenylated proteins were tagged with dimedone. Dimedone-tagged sulfenic acid proteins were visualized on a two-dimensional electrophoresis (2DE) immunoblot with an anticysteine sulfenic acid antibody and were subsequently detected by mass spectrometry. We optimized the detection method for protein sulfenylation in Arabidopsis. We conclude that dimedone can penetrate the cell wall, does not stress plants, and can “read” the changes in the protein sulfenylation pattern under oxidative stress. We observed that the number of sulfenylated proteins in plants treated with 10 mM H2O2 was higher than that in untreated plants. A total of 39 sulfenylated protein spots were found on 2DE immunoblots. By means of mass spectrometry, 11 sulfenylated proteins were discovered involved in primary metabolism, redox regulation, translation and signaling pathways. Hence, by combining an immunochemical 2DE strategy with mass spectrometry, we were able to identify sulfenylated proteins in H2O2-stressed Arabidopsis seedlings. The sulfenylated proteins can be considered for further validation as redox regulators in plants.  相似文献   

14.
15.
Methionine sulfoxide reductases are conserved enzymes that reduce oxidized methionines in proteins and play a pivotal role in cellular redox signaling. We have unraveled the redox relay mechanisms of methionine sulfoxide reductase A of the pathogen Corynebacterium diphtheriae (Cd-MsrA) and shown that this enzyme is coupled to two independent redox relay pathways. Steady-state kinetics combined with mass spectrometry of Cd-MsrA mutants give a view of the essential cysteine residues for catalysis. Cd-MsrA combines a nucleophilic cysteine sulfenylation reaction with an intramolecular disulfide bond cascade linked to the thioredoxin pathway. Within this cascade, the oxidative equivalents are transferred to the surface of the protein while releasing the reduced substrate. Alternatively, MsrA catalyzes methionine sulfoxide reduction linked to the mycothiol/mycoredoxin-1 pathway. After the nucleophilic cysteine sulfenylation reaction, MsrA forms a mixed disulfide with mycothiol, which is transferred via a thiol disulfide relay mechanism to a second cysteine for reduction by mycoredoxin-1. With x-ray crystallography, we visualize two essential intermediates of the thioredoxin relay mechanism and a cacodylate molecule mimicking the substrate interactions in the active site. The interplay of both redox pathways in redox signaling regulation forms the basis for further research into the oxidative stress response of this pathogen.  相似文献   

16.
Jasmonates are phytohormones derived from oxygenated fatty acids that regulate a broad range of plant defense and developmental processes. In Arabidopsis, hypocotyl elongation under various light conditions was suppressed by exogenously supplied methyl jasmonate (MeJA). Moreover, this suppression by MeJA was particularly effective under red light condition. Mutant analyses suggested that SCFCOI1-mediated proteolysis was involved in this function. However, MeJA action still remained in the coi1 mutant, and (+)-7-iso-JA-L-Ile, a well-known active form of jasmonate, had a weaker effect than MeJA under the red light condition, suggesting that unknown signaling pathway are present in MeJA-mediated inhibition of hypocotyl elongation. EMS mutant screening identified two MeJA-insensitive hypocotyl elongation mutants, jasmonate resistance long hypocotyl 1 (jal1) and jal36, which had mutations in the phytochrome B (PHYB) gene. These analyses suggested that inhibition of hypocotyl elongation by jasmonates is enhanced under red light in phyB dependent manner.  相似文献   

17.
18.
19.
OsWRKY71, a rice transcription factor, is involved in rice defense response   总被引:13,自引:0,他引:13  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号