首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methanococcus voltae is a methanogenic bacterium which requires leucine, isoleucine, and acetate for growth. However, it also can synthesize these amino acids, and it is capable of low levels of autotrophic acetyl coenzyme A (acetyl-CoA) biosynthesis. When cells were grown in the presence of 14CO2, as well as in the presence of compounds required for growth, the alanine found in the cellular protein was radiolabeled. The percentages of radiolabel in the C-1, C-2, and C-3 positions of alanine were 64, 24, and 16%, respectively. The incorporation of radiolabel into the C-2 and C-3 positions of alanine demonstrated the autotrophic acetyl-CoA biosynthetic pathway in this bacterium. Additional evidence was obtained in cell extracts in which autotrophically synthesized acetyl-CoA was trapped into lactate. In these extracts, both CO and CH2O stimulated acetyl-CoA synthesis. 14CH2O was specifically incorporated into the C-3 of lactate. Cell extracts of M. voltae also contained low levels of CO dehydrogenase, 13 nmol min-1 mg of protein-1. These results further confirmed the presence of the autotrophic acetyl-CoA biosynthetic pathway in M. voltae. Likewise, 14CO2 and [U-14C]acetate were also incorporated into leucine and isoleucine during growth. During growth with [U-14C]leucine or [U-14C]isoleucine, the specific radioactivity of these amino acids in the culture medium declined, and the specific radioactivities of these amino acids recovered from the cellular protein were 32 to 40% lower than the initial specific radioactivities in the medium.Cell extracts of M. voltae also contained levels of isopropyl malate synthase, an enzyme that is specific to the leucine biosynthetic pathway, of 0.8 nmol min-1 mg of protein-1. Thus, M. voltae is capable of autotrophic CO2 fixation and leucine and isoleucine biosynthesis.  相似文献   

2.
During growth of the methanogenic archaeon Methanococcus maripaludis on alanine as the sole nitrogen source under H(2)/CO(2), alanine was incorporated into amino acids derived from pyruvate including leucine, isoleucine, and valine. Thus, growth with alanine was an efficient means of labeling intracellular pools of pyruvate in this lithotroph. Cells were grown with 18% [U-(13)C]alanine, and the distribution of the isotope in the branched-chain amino acids was determined by (13)C-NMR. Carbons derived from pyruvate contained 14.5% (13)C, indicating that most of the cellular pyruvate was obtained from alanine. In contrast, carbons derived from acetyl-CoA contained only 3-5% (13)C, indicating that only small amounts of acetyl-CoA were formed from pyruvate. Thus, autotrophic acetyl-CoA biosynthesis continued even in the presence of an organic carbon source. Moreover, the labeling of acetyl-CoA was lower than would be predicted if pyruvate was a C-1 donor for acetyl-CoA biosynthesis. Carbon derived from the C-1 of acetyl-CoA contained less (13)C than carbon derived from the C-2 of acetyl-CoA, and this difference was attributed to the acetyl-CoA:CO(2) exchange activity of acetyl-CoA synthase. No enrichment was detected for the C-1 of valine, which was derived from the C-1 of pyruvate. This result was attributed to the pyruvate:CO(2) exchange activity of pyruvate oxidoreductase and may have important implications for isotope tracer studies utilizing pyruvate. Lastly, these results demonstrate that the breakdown of pyruvate by methanococci is very limited even under conditions where it is the sole nitrogen and major carbon source.  相似文献   

3.
Abstract Thermophilic (55°C) protein (peptone) degradation was studied in steady state, laboratory-scale reactors. Peptone was easily hydrolysed to amino acids under methanogenic conditions, and all amino acids were completely degraded to volatile fatty acids, carbon dioxide and ammonium. Under these conditions, amino acids known to be oxidatively deaminated were degraded more slowly than the other amino acids. Inhibition of methanogenesis by 2-bromoethanesulfonic acid led to the accumulation of hydrogen in the gas phase and to the immediate inhibition of both protein hydrolysis and the degradation of amino acids that are preferentially oxidatively deaminated. These effects resulted in lower concentrations of all volatile fatty acids except for butyrate and caproate, which increased in concentration. Interspecies hydrogen transfer appeared to be necessary for the complete degradation of alanine, phenylalanine, methionine, valine, leucine and isoleucine. α-Aminobutyrate also accumulated when methanogenesis was inhibited.  相似文献   

4.
AIMS: Staphylococcus xylosus is an important starter culture in the production of flavours from the branched-chain amino acids leucine, valine and isoleucine in fermented meat products. The sensorially most important flavour compounds are the branched-chain aldehydes and acids derived from the corresponding amino acids and this paper intends to perspectivate these flavour compounds in the context of leucine metabolism. METHODS AND RESULTS: GC and GC/MS analysis combined with stable isotope labelling was used to study leucine catabolism. This amino acid together with valine and isoleucine was used as precursors for the production of branched-chain fatty acids for cell membrane biosynthesis during growth. A 83.3% of the cellular fatty acids were branched. The dominating fatty acid was anteiso-C(15:0) that constituted 55% of the fatty acids. A pyridoxal 5'-phosphate and alpha-ketoacid dependent reaction catalysed the deamination of leucine, valine and isoleucine into their corresponding alpha-ketoacids. As alpha-amino group acceptor alpha-keto-beta-methylvaleric acid and alpha-ketoisovaleric acid was much more efficient than alpha-ketoglutarate. The sensorially and metabolic key intermediate on the pathway to the branched-chain fatty acids, 3-methylbutanoic acid was produced from leucine at the onset of the stationary growth phase and then, when the growth medium became scarce in leucine, from the oxidation of glucose via pyruvate. CONCLUSIONS: This paper demonstrates that the sensorially important branched-chain aldehydes and acids are important intermediates on the metabolic route leading to branched-chain fatty acids for cell membrane biosynthesis. SIGNIFICANCE AND IMPACT OF THE STUDY: The metabolic information obtained is extremely important in connection with a future biotechnological design of starter cultures for production of fermented meat.  相似文献   

5.
Radioactive carbon dioxide was incubated with growing cells of Leptospira interrogans serotypes semaranga and tarassovi, and the specific activities and distribution of the label within the cellular amino acids were determined. The origins of the carbon skeletons of all the acid-stable amino acids except isoleucine were found to be consistent with known biosynthetic pathways for these amino acids. Experiments using radioactive carbon dioxide and other tracers indicated that most of the isoleucine was synthesized by a pathway not involving threonine. The origin of the carbon skeleton of isoleucine consisted of two residues of pyruvate (carbons 2 and 3) and acetate of acetyl-coenzyme A by this pathway. Isotope competition studies indicated that the pathway was regulated by isoleucine. The results are discussed in relation to two proposed pathways of isoleucine biosynthesis involving citramalate as an intermediate.  相似文献   

6.
The dissimilation of leucine, isoleucine and valine to volatile fatty acids was determined in Fasciola hepatica and the degradation of (U−14C) branched amino acids to the volatile fatty acids end products demonstrated. F. hepatica was found to metabolize leucine, isoleucine and valine to isovaleric, 2-methylbutyric and isobutyric acid respectively. The rate of formation of isobutyrate, isovalerate and 2-methylbutyrate was found to be positively related to the rate of propionic acid production with air or nitrogen as the gas phase. However, under 95% O2/5% CO2 the formation of the branched chain acids was independent of propionic acid production. The production of isobutyrate, isovalerate and 2-methylbutyrate caused a simultaneous reduction in the rate of acetate formation. The role of propionate formation in regulating metabolism is discussed.  相似文献   

7.
The rates of incorporation of 14C from 14C labelled acetate, glucose, alanine, leucine, isoleucine and valine into fatty acids has been measured in perirenal adipose tissue from foetal lambs and 8-month-old sheep, and into both fatty acids and acylglycerol glycerol in adipose tissue from 3-year-old sheep and 220-240 g female rats. Rates of incorporation of 14C from amino acids into fatty acids were much lower in adipose tissue from sheep (at all three ages) than from rats, whereas rates of incorporation of 14C into acylglycerol glycerol were either greater in sheep adipose tissue or the same as in rat adipose tissue. The rate of incorporation of 14C from amino acids into fatty acids decreased in the order leucine greater than alanine greater than isoleucine greater than valine in adipose tissue from rats and foetal lambs, and in the order leucine greater than alanine = isoleucine greater than valine in adipose tissue from 8-month- and 3-year-old sheep. Amino acids make a very small contribution to fatty acid synthesis in adipose tissue from sheep at all stages of development examined while fatty acids are a minor product of amino acid metabolism in sheep adipose tissue. The study provides further evidence for an important role for ATP-citrate lyase in restricting the utilization of acetyl-CoA generated in the mitochondria for fatty acid synthesis.  相似文献   

8.
The preparation of leucine and isoleucine labeled with 15N and of site-specific 13C-labeled isoleucines is described. This method is based on the induction of the biosynthetic pathways specific for branched chain amino acids in glutamic acid producing bacteria, and controlled provision of stable isotope labeled precursors. Corynebacterium glutamicum (ATCC 13032), a glutamic acid overproducer, was incubated in leucine production medium which consisted of a basal medium supplemented with [15N]ammonium sulfate, glucose, and sodium alpha-ketoisocaproate. production of L-[15N]leucine reached 138 mumol/ml at an isotopic efficiency of 90%. It was purified and checked by proton NMR and GC-MS. The electron impact (EI) spectrum showed 95 atom% enrichment. The cultivation of C. glutamicum in a similar medium containing alpha-ketobutyrate yielded L-[15N]isoleucine at a concentration of 120 mumol/ml. The GC-MS EI and chemical ionization (CI) spectra confirmed enrichment of 96 atom% 15N as that of the labeled precursors. The biosynthesis of L-[13C]isoleucine was carried out by induced cells which were transferred to a similar medium in which [2-13C]- or [3-13C]pyruvic acid replaced glucose. 13C NMR of the product isoleucine revealed single-site enrichment at C-3 or at C-3' respective to the precursor [13C]pyruvate; i.e., C-3 was labeled from [2-13C]pyruvate and C-3' from [3-13C]pyruvate. Mass spectrometric analysis confirmed that all molecules were labeled only in one carbon. This site-specific incorporation of [13C]pyruvate is contrasted with the labeling pattern obtained when producing cells were supplied with [2-13C]acetate, instead of pyruvate, when most label was incorporated into carbons 3 and 3' of the same isoleucine molecule.  相似文献   

9.
The herbicide sulfometuron methyl (SM) inhibited growth of some methanococci. Of 28 strains tested, the growth of 7 was completely inhibited by 0.55 mM SM. Growth of an additional 14 strains was partially inhibited, and the growth of 7 strains was unaffected by this concentration of SM. In some cases, the branched-chain amino acids protected growth. Growth inhibition was correlated with the Ki for SM of acetolactate synthase (ALS). For the enzymes from bacteria representative of the sensitive, partially resistant, and resistant methanococci (Methanococcus aeolicus, Methanococcus maripaludis, and Methanococcus voltae, respectively), the Ki for SM was 0.0012, 0.34, and greater than 1.0 mM, respectively. Inhibition was uncompetitive with respect to pyruvate. Based on these observations, ALS appeared to be the major if not the sole site of action of SM in the methanococci. The sensitivity of the ALS from these three methanococci to feedback inhibition by branched-chain amino acids was also quite different. Although all three were sensitive to feedback inhibition by valine, the Ki varied 20-fold, from 0.01 to 0.22 mM. Moreover, only the ALS from M. maripaludis was sensitive to inhibition by leucine, and the Ki was 1.8 mM. The Ki for isoleucine for the ALS from both M. maripaludis and M. voltae was about 0.1 mM. The ALS from M. aeolicus was not inhibited by isoleucine. In other respects, the ALSs from the methanococci were very similar. After dialysis, thiamine pyrophosphate but not FAD and Mg2+ was required for maximal activity, and they were all rapidly inactivated by oxygen. Although the methanococcal ALSs exhibited diverse properties, the range of catalytic and regulatory properties closely resembled those of the eubacterial enzymes.  相似文献   

10.
The relative roles of acetate and leucine in the provision of a carbon source for fatty acid and sterol biosynthesis in several trypanosomatid species were investigated using 14C- and 13C-labelled acetate, glucose and leucine as substrates. Promastigotes of Leishmania species synthesized a large proportion of their sterol from leucine. L. major (LV39), L. amazonensis and L. mexicana were the most efficient utilizers of leucine, producing at least 70-77% of their sterol from leucine; L. braziliensis, L. donovani and L. tropica apparently produced less sterol from leucine (23-36%) and L. major (LV561), L. adleri and L. panamamensis were intermediate, utilizing leucine to provide 51-58% of their sterol. In all the cases the balance of the sterol produced was apparently synthesized from carbon arising from acetate. The related trypanosomatid Endotrypanum monterogeii also produced a large amount (77%) of its sterol from leucine rather than acetate. By contrast Trypanosoma cruzi elaborated only 8% of its sterol from leucine and used acetate far more effectively than the Leishmania species for sterol biosynthesis. The fatty acid moieties of the triacylglycerols and phospholipids were produced from acetate. Leucine was also incorporated into the fatty acids to varying extents in the different organisms showing that leucine can also be metabolized in trypanosomatids to generate acetyl-CoA.  相似文献   

11.
Leucine, but not isoleucine or valine, inhibited protein degradation and accelerated protein synthesis in hearts perfused with buffer that contained glucose (15 mM) and normal plasma levels of other amino acids, except for the branched chain compounds. Products of leucine, isoleucine, and valine metabolism also inhibited protein degradation and stimulated protein synthesis. These compounds included the transamination and decarboxylation products, as well as acetate, acetoacetate, and propionate. In some, but not all instances, inhibition of degradation and acceleration of synthesis were accompanied by an increase in intracellular leucine. When insulin was added to the perfusate, the rate of degradation was reduced by 40%, but addition of leucine was ineffective in the presence of the hormone. Insulin, leucine (2 mM) and a mixture of branched chain amino acids at normal plasma levels increased latency of cathepsin D in hearts that were perfused with buffer containing glucose. A combination of leucine and insulin increased latency more than either substance alone. These studies indicate that leucine as well as a variety of substrates that are oxidized in the citric acid cycle are involved in regulation of protein turnover in heart muscle.  相似文献   

12.
The principal supply of carbon precursors for fatty acid synthesis in leaf tissue has been a much debated topic, with some experiments suggesting a direct supply from the C3 products of photosynthetic carbon fixation and colleagues suggesting the utilization of free acetate (for which concentrations in leaves in the range of 0.05-1.4 mM have been reported). To address this issue we first reassessed the in vivo rate of fatty acid synthesis using a new method, that of [13C]carbon dioxide labeling of intact Arabidopsis plants with the subsequent analysis of fatty acids by gas chromatography-mass spectrometry (GC-MS). This method gave an average value of 2.3 mmoles carbon atoms h-1 mg chlorophyll-1 for photosynthetic tissues. The method was extended by isotopic dilution analysis to measure the rate of fatty acid synthesis in the dark. There was negligible fatty acid synthesis (< 5% of the rate in the light) in the dark. In addition, the method allowed an estimate of the absolute rate of fatty acid degradation of about 4% of the total fatty acid content per day. With the in vivo rate of fatty acid synthesis in the light defined, if the bulk tissue acetate concentration available for fatty acid synthesis is 1 mM, this acetate pool can sustain fatty acid synthesis for approximately 60 min. When the leaves of Arabidopsis, barley and pea were given a 5 min pulse of [14C]carbon dioxide, the label rapidly appeared in fatty acids with a lag phase of less than 2-3 min. Continuous labeling with [14C]carbon dioxide, for up to 1 h, showed a similar result. Furthermore, 14C-label in free acetate was less than 5% of that in fatty acids. In conclusion, these data suggest that either the bulk pool of acetate is not involved in fatty acid synthesis or the concentration of acetate must be less than 0.05 mM under strong illumination.  相似文献   

13.
The fatty acid composition of a thermophilic Bacillus sp. was altered by the addition of isobutyrate, isovalerate, alpha-methylbutyrate, leucine, and isoleucine to the growth medium. With isobutyrate, 81% of the fatty acids had 16 carbon atoms and 79% were iso-fatty acids with an even number of carbon atoms. With leucine, 58% of the fatty acids had 15 carbon atoms and 86% were iso-fatty acids with an odd number of carbon atoms. With isoleucine, 72% of the fatty acids had 17 carbon atoms and 88% were anteiso-fatty acids with an odd number of carbon atoms. Thus, by altering the composition of the growth medium, cells were produced in which the majority of the fatty acids had either 15, 16, or 17 carbons and belonged to each of the three groups of branched-chain fatty acids. The wide variation observed in the fatty acid composition makes it unlikely that any specific branched-chain fatty acid is required for vital functions.  相似文献   

14.
Rabbit Meibomian gland tissue was incubated with radioactive acetate, propionate, valine, leucine or isoleucine. The time-course of incorporation of radioactivity into total lipids from acetate and isoleucine was studied in Hanks' or Krebs medium. Incorporation of acetate or isoleucine into lipid classes was followed by TLC, and of acetate label into individual fatty acids and alcohols by GLC with radioactivity detection. Radioactivity was highest in the minor acid components C16:1 and C18:1. Levels in branched fatty acids fell with chain length, reflecting the time-course of successive chain elongations. Use of amino acids or propionate as precursors suggested that molecules containing a specific branched structure were preferentially incorporated; this indicates a binding preference at the level of the fatty acid synthase which might explain the very high proportion of anteiso-branched structures in the rabbit secretion. Incorporation of label into total lipids was significantly reduced by tetracycline in the medium, with 50% reduction at about 1.5 mg/ml for acetate and 0.7 mg/ml for isoleucine.  相似文献   

15.
A methanogenic acetate enrichment was initiated by inoculation of an acetate-mineral salts medium with domestic anaerobic digestor sludge and maintained by weekly transfer for 2 years. The enrichment culture contained a Methanosarcina and several obligately anaerobic nonmethanogenic bacteria. These latter organisms formed varying degrees of association with the Methanosarcina, ranging from the nutritionally fastidious gram-negative rod called the satellite bacterium to the nutritionally nonfastidious Eubacterium limosum. The satellite bacterium had growth requirements for amino acids, a peptide, a purine base, vitamin B12, and other B vitamins. Glucose, mannitol, starch, pyruvate, cysteine, lysine, leucine, isoleucine, arginine, and asparagine stimulated growth and hydrogen production. Acetate was neither incorporated nor metabolized by the satellite organism. Since acetate was the sole organic carbon source in the enrichment culture, organism(s) which metabolize acetate (such as the Methanosarcina) must produce substrates and growth factors for associated organisms which do not metabolize acetate.  相似文献   

16.
A probable carbon flow from the Calvin cycle to branched chain amino acids and lipids via phosphoenolpyruvate (PEP) and pyruvate was examined in spinach (Spinacia oleracea) chloroplasts. The interpendence of metabolic pathways in and outside chloroplasts as well as product and feedback inhibition were studied. It was shown that alanine, aromatic, and small amounts of branched chain amino acids were formed from bicarbonate in purified intact chloroplasts. Addition of PEP only favored formation of aromatic amino acids. Mechanisms of regulation remained unclear. Concentrations of PEP and pyruvate within the chloroplast impermeable space during photosynthetic carbon fixation were 15 times higher than in the reaction medium. A direct carbon flow to pyruvate was identified (0.1 micromoles per milligram chlorophyll per hour). Pyruvate was taken up by intact chloroplasts slowly, leading to the formation of lysine, alanine, valine, and leucine plus isoleucine (approximate ratios, 100-500:60-100:40-100:2-10). The Km for the formation of valine and leucine plus isoleucine was estimated to be 0.1 millimolar. Ten micromolar glutamate optimized the transamination reaction regardless of whether bicarbonate or pyruvate was being applied. Alanine and valine formation was enhanced by the addition of acetate to the reaction mixture. The enhancement probably resulted from an inhibition of pyruvate dehydrogenase by acetyl-S-coenzyme A formed from acetate, and resulting accumulation of hydroxyethylthiamine diphosphate and pyruvate. High concentrations of valine and isoleucine inhibited their own and each others synthesis and enhanced alanine formation. When pyruvate was applied, only amino acids were formed; when complemented with bicarbonate, fatty acids were formed as well. This is probably the result of a requirement of acetyl-S-coenzyme A-carboxylase for bicarbonate.  相似文献   

17.
D M Ward  R A Mah    I R Kaplan 《Applied microbiology》1978,35(6):1185-1192
A methanogenic acetate enrichment was initiated by inoculation of an acetate-mineral salts medium with domestic anaerobic digestor sludge and maintained by weekly transfer for 2 years. The enrichment culture contained a Methanosarcina and several obligately anaerobic nonmethanogenic bacteria. These latter organisms formed varying degrees of association with the Methanosarcina, ranging from the nutritionally fastidious gram-negative rod called the satellite bacterium to the nutritionally nonfastidious Eubacterium limosum. The satellite bacterium had growth requirements for amino acids, a peptide, a purine base, vitamin B12, and other B vitamins. Glucose, mannitol, starch, pyruvate, cysteine, lysine, leucine, isoleucine, arginine, and asparagine stimulated growth and hydrogen production. Acetate was neither incorporated nor metabolized by the satellite organism. Since acetate was the sole organic carbon source in the enrichment culture, organism(s) which metabolize acetate (such as the Methanosarcina) must produce substrates and growth factors for associated organisms which do not metabolize acetate.  相似文献   

18.
1. Isolated perfused goat udders supplied with glucose, acetate and amino acids were infused for several hours with NaH14CO3. 2. Lactose, milk-fat fatty acids and glycerol had very little radioactivity. The specific radioactivity (counts./min./mg. of C) of milk citrate was 9–16% that of the carbon dioxide in the perfusion fluid and 19% that estimated for tissue carbon dioxide. The specific radioactivity of tissue citrate resembled that of milk citrate. 3. The radioactivity in citrate was predominantly in C-6, suggesting some carboxylation of α-oxoglutarate in addition to carboxylation of C3 compounds. 4. [1-14C]Glutamate was infused in a similar experiment, and milk citrate radioactivity was predominantly in C-1+C-5. 5. The results are discussed in relation to the contribution of glucose and acetate carbon to citrate. The implications of the carboxylation of α-oxoglutarate are considered.  相似文献   

19.
Cutaneous lipogenesis was studied, using a guinea pig ear slice incubation technique, for the following precursors: acetate, propionate, butyrate, glucose, pyruvate, lactate, succinate, citrate, and selected amino acids. Active lipogenesis was observed with short-chain fatty acids, glucose, pyruvate, lactate, and with the amino acids, alanine, leucine, and isoleucine. Glucose was shown to play an important role in cutaneous lipogenesis; it is a major precursor of lipid and the only compound able to stimulate lipogenesis. Its incorporation into lipid is unaffected by either insulin or epinephrine. The incorporation rates of glucose-1- and glucose-6-(14)C were equal, suggesting the possibility that generation of NADPH by the pentose-phosphate pathway is minimal. Citrate, succinate, and pyruvate all failed to stimulate the incorporation of acetate; on the other hand, citrate, isocitrate, malate, malonate, and ATP caused inhibition of the incorporation of glucose. Significant incorporation of tritium from tritiated water was observed, and the order of magnitude suggests that it can be used as an independent assessment of the rate of cutaneous lipogenesis. Bicarbonate was not only able to stimulate the rate of incorporation of a variety of precursors but was also incorporated into fatty acids to a measurable extent. The mode of incorporation of propionate was unusual, since propionate-1-(14)C was incorporated into fatty acids at more than double the rate for propionate-2-(14)C, suggesting incorporation of the carboxyl carbon without the rest of the molecule. Mechanisms are suggested to account for the carbon dioxide fixation, but we are unable to completely explain the anomalous results for propionate.  相似文献   

20.
Amino acid deprivation induces adaptive changes in amino acid transport and the intracellular amino acid pool in cultured cells. In this study intracellular amino acid levels were determined in cultured bovine aortic endothelial cells (EC) deprived of L-arginine or total amino acids for 1, 3, 6 and 24 h. Amino acid concentrations were analyzed by reverse phase HPLC after precolumn derivatisation. Under normal culture conditions levels of L-arginine L-citrulline, total essential and non-essential amino acids were 840 +/- 90 microM, 150 +/- 40 microM, 11.4 +/- 0.9 mM and 53.3 +/- 3.4 mM (n = 9), respectively. In EC deprived of L-arginine or all amino acids for 24 h L-arginine and L-citrulline levels were 200 microM and 50 microM, and 670 microM and 100 microM Deprivation of L-arginine or total amino acids induced rapid (1 h) decreases (30 - 50%) in the levels of other cationic (lysine, ornithine) and essential branched-chain (valine, isoleucine, leucine) and aromatic (phenylalanine, tryptophan) amino acids. L-glutamine was reduced markedly in EC deprived of total amino acids for 1 h - 6 h but actually increased 3-fold in EC deprived of L-arginine for 6 h or 24 h. Arginine deprivation resulted in a rapid decrease in the total intracellular amino acid pool, however concentrations were restored after 24 h. Increased amino acid transport and/or reduced protein synthesis may account for the restoration of amino acid levels in EC deprived of L-arginine. The sustained reduction in the free amino acid pool of EC deprived of all amino acids may reflect utilization of intracellular amino acids for protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号