首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Third ventricular injections of vasoactive intestinal polypeptide (VIP) result in increased circulating levels of luteinizing hormone (LH) in conscious, freely moving, ovariectomized (OVX) rats. This effect of VIP has been hypothesized to be mediated via stimulation of luteinizing hormone-releasing hormone (LH-RH) secretion from hypothalamic neurons since VIP is incapable of stimulating LH release from rat pituitaries in vitro. To test this hypothesis, crude synaptosomes were prepared from OVX rat median eminence (ME) tissue. Release of LH-RH from these preparations displayed time and temperature dependencies. Additionally, depolarization-induced (elevated K+) LH-RH release was demonstrated to be Ca2+-dependent. VIP, in doses ranging from 1.5 · 10?9 M, was capable of stimulating significantly greater LH-RH release from ME synaptosomes than that from control preparations. VIP's close structural homolog, glucagon, was incapable at the same doses of stimulating increased LH-RH release. These findings offer an explanation for the effect of third ventricularly injected VIP on LH release and suggest a modulatory role for VIP in the hypothalamic control of LH secretion.  相似文献   

2.
3.
4.
Summary LH-RH was localized at the ultrastructural level in axons and nerve terminals of the median eminence of the male guinea pig. LH-RH positive neuronal profiles were most concentrated in the medial-dorsal aspect of the infundibular stalk and in the post-infundibular median eminence at the level immediately following separation of the stalk from the base of the brain. LH-RH containing axon profiles were most abundant in the palisade zone; nerve terminals in contact with the hypophysial portal vasculature were relatively rare. The hormone was present within granules that measured 900–1,200 Å in axons of the palisade zone and 400–800 Å in nerve terminals abutting on the portal plexus. The differently sized granules represent heterogeneous populations.Supported in part by U.S. Public Health Service grant HD-09636 from the National Institutes of Health and RR-00167 to the Wisconsin Regional Primate Research Center from the National Institutes of Health. Primate Center Publication No. 15-031The authors wish to thank Dr. Sandy Sorrentino, Jr. for the gift of antiserum to LH-RH and Dr. Ludwig Sternberger for the peroxidase.antiperoxidase complex  相似文献   

5.
To determine what role pituitary responsiveness plays in the suppression of gonadotropin level during incubation in the turkey, the ability of the pituitary to release luteinizing hormone (LH) in response to luteinizing hormone-releasing hormone (LHRH) was compared in incubating, laying, and photorefractory birds. In all three groups, the i.m. injection of LHRH (4 micrograms/kg) increased serum LH levels; however, the LH response was markedly enhanced in the incubating turkeys as compared with the laying (6.6-fold increase over preinjection levels vs. 1.9-fold; p less than 0.05) or the photorefractory birds (9.7-fold vs. 3.1-fold; p less than 0.05). The LHRH-induced LH release was also determined in turkeys as they shifted from the laying to the incubating phase of the reproductive cycle. This response increased (p less than 0.05) in magnitude as the birds started to incubate. The high prolactin level of incubating turkeys does not have a depressing effect on LHRH-stimulated LH release; thus, impaired LH response to LHRH is not a mechanism involved in the diminished gonadotropin secretion of incubating turkeys.  相似文献   

6.
R Meidan  Y Koch 《Life sciences》1981,28(17):1961-1967
The binding of luteinizing hormone-releasing hormone (LHRH) to dispersed rat pituitary cells was studied by using 125I-labeled analogues of the neurohormone: a superactive agonist [D Ser (But)6]LHRH(1–9) ethylamide and an antagonist DpGlu1, DPhe2, DTrp3,6-LHRH. Although these cells were exposed to proteolytic enzymes, their ability to respond to LHRH stimulation by gonadotropin release, is preserved. The time course of binding of the two analogues at different temperatures has demonstrated that highest specific binding is evident at 4°C and that equilibrium is reached after 90 min of incubation at this temperature. Incubation of pituitary cells with the labeled analogues together with increasing concentrations of LHRH or unlabeled analogues exhibited parallel competition curves, suggesting binding to the same receptor sites but with different affinities. Biologically inactive analogues of LHRH or unrelated peptides such as TRH did not compete for binding sites. Ka values for the agonist, LHRH and the antagonist were 2.1 × 109M?1, 0.92 × 108M?1 and 0.76 × 109M?1, respectively, and the binding capacity was 116 fmoles/106 pituitary cells.  相似文献   

7.
Aging exerts profound influences on the function of the hypothalamic-pituitary-testicular-axis. This work has been performed in order to verify whether, in male rats, the decreased secretion of LH and testosterone (T) occurring in old animals is reflected by modifications of luteinizing hormone-releasing hormone (LHRH) receptors at the level of the anterior pituitary and of the testes. To this purpose, the affinity constant (Ka) and the maximal binding capacity (Bmax) for the LHRH analog [D-Ser(tBu)6]des-Gly10-LHRH-N-ethylamide were evaluated, by means of a receptor binding assay, in membrane preparations derived from the anterior pituitary and testicular Leydig cells of male rats of 3 and 19 months of age. Serum levels of LH and T were measured by specific RIAs. The results obtained show that, in aged male rats, the concentration of pituitary LHRH receptors is significantly lower than that found in young animals. On the other hand, the concentration of LHRH binding sites is significantly increased on the membranes of Leydig cells of old rats. In no instance the Ka for the LHRH analog is significantly affected. Serum levels of LH and T are significantly lower in old than in young male rats. In conclusion, these results suggest that the reduced secretion of LH in old male rats may be linked, at least partially, to a decrease of the number of pituitary LHRH receptors. The impaired production of testosterone occurring in aged rats is accompanied by a significant increase of the number of testicular LHRH receptors, indicating that also the intratesticular mechanisms controlling testosterone release undergo significant alterations with aging.  相似文献   

8.
9.
We and others have previously reported the existence of hypothalamic and anterior pituitary (AP) enzymes that degrade luteinizing hormone (LH)-releasing hormone (LHRH). We have further characterized these LHRH-degrading activities (LHRH-DA) and in addition assessed the role of LHRH-DA in LHRH release from median eminence (ME) tissue in vitro. Major LHRH-DA components were separated and their molecular weights were estimated by gel filtration chromatography. The role of LHRH-DA in LHRH release was determined by release studies from isolated ME, in the presence and absence of N-tosyl L-phenylalanine chloromethyl ketone (TPCK) and/or norepinephrine (NEpi). Degradation and in vitro release studies were performed by using LHRH analogs with amino acid substitutions at their 5-6 bond. Biological activity of these analogs was assessed by measuring in vitro LH release from dispersed anterior pituitary cells. LHRH-DA was determined by high-performance liquid chromatography; LH and LHRH were measured by radioimmunoassay. Separation of LHRH-DA by gel filtration chromatography yielded two major enzymatic activities: a Tyr5-Gly6 cleaving endopeptidase and a post-proline cleaving enzyme. Although LHRH-DA from AP and ME produced identical degradation fragments, the former had 3-fold greater specific activity than the latter. LHRH moieties with a Tyr5-Gly6 bond substitution were more resistant to enzymatic degradation and had greater biological activity than LHRH moieties with a Tyr5-Gly6 bond. TPCK decreased LHRH-DA and increased NEpi-stimulated in vitro release of LHRH from isolated ME.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
This study used pituitary cells in culture firstly to test the hypothesis that NPY may augment the pituitary LH response to LHRH and secondly to determine whether this interaction is dependent on the presence of estradiol. LHRH (10(-10)-10(-6) M) caused a significant increase in LH secretion from dispersed ovine pituitary cells maintained in culture for six days, a response which was enhanced when cells were pretreated for three days with 4 x 10(-11) M estradiol. NPY 10(-10)-10(-6) M) had no effect on basal LH release from ovine pituitary cells maintained either in the presence or absence of estradiol. NPY (10(-10) and 10(-8) M) also had no effect on LHRH-stimulated LH release either in the presence or absence of estradiol. These results substantiate previous observations that physiologically relevant concentrations of estradiol enhance the LH response to LHRH in cultured ovine pituitary cells. However, in contrast to experiments carried out using rat pituitary cells in culture, the present data provide no evidence to support the hypothesis that NPY alone interacts with LHRH in the control of LH secretion from the ovine pituitary gland.  相似文献   

11.
To clarify the mode of action of phenoxybenzamine, an alpha adrenergic blocking agent, its effects upon plasma LH levels in ovariectomized rats and upon the ovulatory LH surge expected between 1400 and 1600, the critical period, on the day of proestrus in normal rats were studied. A single injection of phenoxybenzamine, 20 mg/kg, given at 1300 on the day of proestrus bokced ovulation (1 out of 7 ovulating), while plasma LH did not differ from controls between 1500 and 1600. An additional injection of 20 iu HCG at 1500 prevented the ovulation block (83% ovulating). A single phenoxybenzamine injection at 1700 failed to prevent ovulation (5 out of 7 ovulating). The beta adrenergic blocking agents, propanolol and MJ 1999, did not affect ovulation. Treatment with phenoxybenzamine for 2 days, 20mg/kg/day, for 8 days, 10mg/kg/day, were did not prevent the rise causing a reduction in blood flow through the ovary rather than acting as a neurogenic stimulus in the hypothalamus.  相似文献   

12.
13.
14.
The pathway of LH-RH degradation by two subcellular fractions (a soluble fraction and a 25 000 X g particulate fraction) of rat hypothalamus, pituitary and cerebral cortex has been studied using high performance liquid chromatography and amino acid analysis to identify the breakdown products. The primary cleavage point in the Tyr5-Gly6 bond giving [1-5] LH-RH and [6-10] LH-RH. In the presence of dithiothreitol, cleavage of LH-RH also occurred at the Pro9-Gly10 bond giving [1-9] LH-RH. The fragment [1-5] LH-RH is further degraded sequentially from the C-terminus and [1-4] LH-RH, [1-3] LH-RH, tyrosine and tryptophan were identified. The other major fragment, [6-10] LH-RH, is rapidly broken down, the only intermediate product positively identified being Arg-Pro.  相似文献   

15.
16.
Summary The postnatal development of formaldehyde induced fluorescence (FIF) was studied in the pituitary glands of female rats. The effects of 3,4-dihydroxyphenylalanine (L-dopa), D,L-5-hydroxytryptophan (DL-5-HTP) and dopamine (DA) treatments on the FIF were followed during the postnatal period.The appearance of specifically fluorescing monoamines into the cells of the pars intermedia occurred postnatally and the level of the adult fluorescence was reached at 4–5 weeks' age. The intensity of the fluorescence was independent on the density of the fluorescing nerves. Among the fluorescing nerves droplet fibres were regularly observed from the age of 3 weeks, which confirms the theory that these fibres are caused by toxic factors when the blood-brain barrier is not functioning.There was no change postnatally in the number of fluorescing cells in the pars distalis.The fluorescing innervation of the median eminence, developed most rapidly at the age of 1–3 weeks and the level of the adult fluorescence was reached at the age of 4–5 weeks.The first specifically fluorescing cells after L-dopa treatment were observed at 6 days age. A remarkable increase in the number of fluorescing cells was seen between 12 and 18 days. After DL-5-HTP treatment fluorescent cells were seen but at later stages. These observations suggest that the cells in the pituitary gland, which store amine-precursors and monoamines developmentally differ from the APUD-cells. The rapid increase of the fluorescing cells between 12 and 18 days and the simultaneous development of the fluorescing innervation of the median eminence suggest the following correlations: the development of dopaminergic innervation of the median eminence — the secretion of releasing hormones — the activity of PAS-positive cells (FSH, LH and TSH secretion) — the uptake of L-dopa and DL-5-HTP into the PAS-positive cells.Dopamine was not uptaken into the cells of pars distalis. The walls of the blood vessels began to show fluorescence suggesting a barrier mechanism, which prevents the DA-uptake into the PAS-positive cells.This work was supported by the Grant for Young Research Workers, University of Helsinki.  相似文献   

17.
18.
The effects of rat growth hormone releasing factor (rGRF) on somatostatin (SRIF) secretion, cyclic nucleotide production and phosphatidylinositol metabolism were investigated in the median eminence (ME), using an in vitro system. Medium was discarded and replaced by medium containing various concentrations of rGRF or rGRF plus epinephrine (E, 6 x 10(-7) M). rGRF had no effect on basal or E-stimulated release of cAMP. In the same experiments rGRF markedly stimulated SRIF release. These results suggested that cAMP is not involved in the stimulatory effect of GRF on SRIF release. However, GRF significantly stimulated release of both SRIF and cGMP in a dose-related manner. Maximal stimulation was observed at 10(-10) M GRF (p less than 0.005) which also produces maximal SRIF release. 2'0-monobutyrylguanosine 3'5' cyclic phosphate (mbcGMP, 10(-11) to 10(-10) M) stimulated SRIF release from ME fragments (p less than 0.001 at 10(-10) M) whereas the control, sodium butyrate (10(-6) M), had no effect. GRF caused significant elevation of 30.6% in the concentration of labelled inositol phosphates [( 3H]-IPs) in the ME. These data indicate that GRF stimulation of SRIF release is accompanied by increased cGMP production and phosphatidyl-inositol (PI) metabolism but does not alter cAMP production. Because mbcGMP can directly stimulate SRIF release, we suggest that GRF causes a receptor-mediated increase in the metabolism of phosphatidylinositol and cGMP formation. These actions therefore may be among the early metabolic events in the mechanism of GRF-stimulated SRIF release from the ME.  相似文献   

19.
Using the classical approach, a decapeptide was synthesized with the structure of porcine luteinizing hormone/follicle stimulating hormone releasing hormone reported by Matsuo, H., Baba, Y., Nair, R. M. G., Arimura, A. and Schally, A. V. (1971) Biochem. Biophys. Res. Commun. 43, 1393–1399. As already reported, this peptide was capable of inducing in vitro the release of luteinizing hormone and follicle stimulating hormone from rat pituitary glands. A specific antiserum against luteinizing hormone/follicle stimulating hormone releasing hormone has been generated in the guinea pig and this allowed the development of a radioimmunoassay for this peptide. The antisera, at a final dilution of to depending on the antiserum used, were able to bind 35% of the 131I-labelled antigen. The sensitivity of this assay method was 50 pg of luteinizing hormone/follicle stimulating hormone releasing hormone. The following substances did not cross-react: oxytocin, lysine-vasopressin, synthetic thyroid stimulating hormone releasing hormone, ovine luteinizing hormone, follicle stimulating hormone and prolactin. Des-Trp3 luteinizing hormone/follicle stimulating hormone releasing hormone, pyroglutamyl-histidyl-tryptophan and seryl-tyrosyl-glycyl-leucyl-arginyl-prolyl-glycinamide, exhibited flatter curves than luteinizing hormone/follicle stimulating hormone releasing hormone with a cross-reactivity of about . Using this method, luteinizing hormone/follicle stimulating hormone releasing hormone was assayed in extracts of the sheep stalk-median eminence and of the hypothalamus and in jugular vein blood from a normal ram and from normal male rats, from cyclic ewe and from hypophysectomized ram and rats. It was concluded that luteinizing hormone/follicle stimulating hormone releasing hormone is present in hypothalamic extracts and in plasma of sheep and rat.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号