首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A putative polysaccharide adhesin which mediates non-specific attachment of Hyphomonas MHS-3 (MHS-3) to hydrophilic substrata has been isolated and partially characterized. A polysaccharide-enriched portion of the extracellular polymeric substance (EPS(P)) from MHS-3 was separated into four fractions using high performance size exclusion chromatography (HPSEC). Comparison of chromatograms of EPS(P) from MHS-3 and a reduced adhesion strain (MHS-3 rad) suggested that one EPS(P) fraction, which consisted of carbohydrate, served as an adhesin. Adsorption of this fraction to germanium (Ge) was investigated using attenuated total reflection Fourier transform infrared (ATR/FT-IR) spectrometry. Binding curves indicated that the isolated fraction had a relatively high affinity for Ge when ranked against an adhesive protein from Mytilis edulis, mussel adhesive protein (MAP) and an acidic polysaccharide (alginate from Macrocystis pyrifera). Spectral features were used to identify the fraction as a polysaccharide previously reported to adsorb preferentially out of the EPS(P) mixture. Conditioning the Ge substratum with either bovine serum albumin (BSA) or MAP decreased the adsorption of the adhesive polysaccharide significantly. Conditioning Ge with these proteins also decreased adhesion of whole cells.  相似文献   

2.
Select groups of bacteria, including prothescate species, have an unusual capacity to sequester gold and bioconcentrate it to very high levels. Hyphomonas adhaerens MHS-3 (MHS-3) is one such species, as demonstrated by Energy Dispersive Spectroscopy. Transmission electron microscopy revealed that the binding site was specific on the polar polysaccharide capsule. A capsuleless mutant and periodate-treated wild type did not sequester gold. The gold may interact with the same sites in the capsule that naturally adhere MHS-3 to surfaces in the marine environment. Journal of Industrial Microbiology & Biotechnology (2001) 27, 1–4. Received 09 September 2000/ Accepted in revised form 19 March 2001  相似文献   

3.
Hyphomonas MHS-3 is a biphasic, marine bacterium that synthesizes an exopolysaccharide (EPS) capsule, which has a role in attaching the adherent, prosthecate developmental stages to solid substrata. To correlate structure with function, we characterized this integral EPS. It has a relatively homogeneous molecular weight of approximately 60000 daltons, is acidic, and putatively contains large concentrations ofN-acetylgalactosamine (GalNAc). The theoretical identity of the anionic component of the polymer, and the similarities betweenHyphomonas MHS-3 EPS and other adhesive marine/aquatic bacterial EPS are discussed.  相似文献   

4.
Hyphomonas strain MHS-3, a member of a genus of primary colonizers of surfaces immersed in marine water, synthesizes two structures that mediate adhesion to solid substrata, namely, capsular exopolysaccharide and fimbriae. Specific stains, gold-labelled lectins, and monoclonal antibodies, along with transmission electron microscopy of synchronized populations, revealed that both structures are polarly and temporally expressed. The timed synthesis and placement of the fimbriae and capsule correlated with the timing and locus of MHS-3 adhesion.  相似文献   

5.
Hyphomonas strain VP-6 is a prosthecate bacterium isolated from the Guayamas vent region and is a member of a genus of primary and common colonizers of marine surfaces. It adheres to solid substrata as a first step in biofilm formation. Fine-structure microscopy and the use of specific stains and lectins reveal that it synthesizes two different extracellular polymeric substances (EPS). One is a temporally synthesized, polar holdfast EPS, and the other is a capsular EPS that is present during the complete life cycle and surrounds the entire cell, including the prosthecum. The timing and location of Hyphomonas strain VP-6 EPS elaboration correlate with adhesion to surfaces, suggesting that the EPS serves not only as the biofilm matrix but also as a primary adhesin. The temporality and polarity of VP-6 EPS expression substantially differ from those properties of Hyphomonas strain MHS-3 EPS expression.  相似文献   

6.
We report the identification and characterization of the eps gene cluster of Streptococcus thermophilus Sfi6 required for exopolysaccharide (EPS) synthesis. This report is the first genetic work concerning EPS production in a food microorganism. The EPS secreted by this strain consists of the following tetrasaccharide repeating unit:-->3)-beta-D-Galp-(1-->3)-[alpha-D-Galp-(1-->6)]-beta-D- D-Galp-(1-->3)-alpha-D-Galp-D-GalpNAc-(1-->. The genetic locus The genetic locus was identified by Tn916 mutagenesis in combination with a plate assay to identify Eps mutants. Sequence analysis of the gene region, which was obtained from subclones of a genomic library of Sfi6, revealed a 15.25-kb region encoding 15 open reading frames. EPS expression in the non-EPS-producing heterologous host, Lactococcus lactis MG1363, showed that within the 15.25-kb region, a region with a size of 14.52 kb encoding the 13 genes epsA to epsM was capable of directing EPS synthesis and secretion in this host. Homology searches of the predicted proteins in the Swiss-Prot database revealed high homology (40 to 68% identity) for epsA, B, C, D, and E and the genes involved in capsule synthesis in Streptococcus pneumoniae and Streptococcus agalactiae. Moderate to low homology (37 to 18% identity) was detected for epsB, D, F, and H and the genes involved in capsule synthesis in Staphylococcus aureus for epsC, D, and E and the genes involved in exopolysaccharide I (EPSI) synthesis in Rhizobium meliloti for epsC to epsJ and the genes involved in lipopolysaccharide synthesis in members of the Enterobacteriaceae, and finally for eps K and lipB of Neisseria meningitidis. Genes (epsJ, epsL, and epsM) for which the predicted proteins showed little or no homology with proteins in the Swiss-Prot database were shown to be involved in EPS synthesis by single-crossover gene disruption experiments.  相似文献   

7.
Here we report that the structure of the Sinorhizobium fredii HH103 exopolysaccharide (EPS) is composed of glucose, galactose, glucuronic acid, pyruvic acid, in the ratios 5∶2∶2∶1 and is partially acetylated. A S. fredii HH103 exoA mutant (SVQ530), unable to produce EPS, not only forms nitrogen fixing nodules with soybean but also shows increased competitive capacity for nodule occupancy. Mutant SVQ530 is, however, less competitive to nodulate Vigna unguiculata. Biofilm formation was reduced in mutant SVQ530 but increased in an EPS overproducing mutant. Mutant SVQ530 was impaired in surface motility and showed higher osmosensitivity compared to its wild type strain in media containing 50 mM NaCl or 5% (w/v) sucrose. Neither S. fredii HH103 nor 41 other S. fredii strains were recognized by soybean lectin (SBL). S. fredii HH103 mutants affected in exopolysaccharides (EPS), lipopolysaccharides (LPS), cyclic glucans (CG) or capsular polysaccharides (KPS) were not significantly impaired in their soybean-root attachment capacity, suggesting that these surface polysaccharides might not be relevant in early attachment to soybean roots. These results also indicate that the molecular mechanisms involved in S. fredii attachment to soybean roots might be different to those operating in Bradyrhizobium japonicum.  相似文献   

8.
The resistance of Escherichia coli O157:H7 strains ATCC 43895-, 43895-EPS (an exopolysaccharide [EPS]-overproducing mutant), and ATCC 43895+ (a curli-producing mutant) to chlorine, a sanitizer commonly used in the food industry, was studied. Planktonic cells of strains 43895-EPS and/or ATCC 43895+ grown under conditions supporting EPS and curli production, respectively, showed the highest resistance to chlorine, indicating that EPS and curli afford protection. Planktonic cells (ca. 9 log10 CFU/ml) of all strains, however, were killed within 10 min by treatment with 50 μg of chlorine/ml. Significantly lower numbers of strain 43895-EPS, compared to those of strain ATCC 43895-, attached to stainless steel coupons, but the growth rate of strain 43895-EPS on coupons was not significantly different from that of strain ATCC 43895-, indicating that EPS production did not affect cell growth during biofilm formation. Curli production did not affect the initial attachment of cells to coupons but did enhance biofilm production. The resistance of E. coli O157:H7 to chlorine increased significantly as cells formed biofilm on coupons; strain ATCC 43895+ was the most resistant. Population sizes of strains ATCC 43895+ and ATCC 43895- in biofilm formed at 12°C were not significantly different, but cells of strain ATCC 43895+ showed significantly higher resistance than did cells of strain ATCC 43895-. These observations support the hypothesis that the production of EPS and curli increase the resistance of E. coli O157:H7 to chlorine.  相似文献   

9.
The biofilms and rugose colony morphology of Salmonella enterica serovar Typhimurium strains are usually associated with at least two different exopolymeric substances (EPS), curli and cellulose. In this study, another EPS, a capsular polysaccharide (CP) synthesized constitutively in S. enterica serovar Typhimurium strain DT104 at 25 and 37°C, has been recognized as a biofilm matrix component as well. Fluorophore-assisted carbohydrate electrophoresis (FACE) analysis indicated that the CP is comprised principally of glucose and mannose, with galactose as a minor constituent. The composition differs from that of known colanic acid-containing CP that is isolated from cells of Escherichia coli and other enteric bacteria grown at 37°C. The reactivity of carbohydrate-specific lectins conjugated to fluorescein isothiocyanate or gold particles with cellular carbohydrates demonstrated the cell surface localization of CP. Further, lectin binding also correlated with the FACE analysis of CP. Immunoelectron microscopy, using specific antibodies against CP, confirmed that CP surrounds the cells. Confocal microscopy of antibody-labeled cells showed greater biofilm formation at 25°C than at 37°C. Since the CP was shown to be produced at both 37°C and 25°C, it does not appear to be significantly involved in attachment during the early formation of the biofilm matrix. Although the attachment of S. enterica serovar Typhimurium DT104 does not appear to be mediated by its CP, the capsule does contribute to the biofilm matrix and may have a role in other features of this organism, such as virulence, as has been shown previously for the capsules of other gram-negative and gram-positive bacteria.  相似文献   

10.

Objectives

To investigate the effect of phenolic environmental estrogens on uterine leiomyoma from the perspective of clinical epidemiology.

Methods

Urine and blood samples were collected from Han women with uterine leiomyoma and women without uterine leiomyoma, living in Nanjing, China, between September 2011 and February 2013. A total of 156 urine samples and 214 blood samples were collected from the uterine leiomyoma group and 106 urine samples and 126 blood plasma samples from the control group. Bisphenol A (BPA), nonylphenol (NP) and octylphenol (OP) concentrations were determined by solid-phase extraction (SPE) coupled with liquid chromatography-tandem mass spectrometry (HPLC-MS/MS).

Results

Phenolic environmental estrogens in the uterine leiomyoma and control groups were compared based on: gravida>3 and gravida ≤ 3. In participants with gravida>3, urine OP concentration was significantly (P<0.05) higher in the uterine leiomyoma group than in the control group. In participants with gravida ≤ 3, urine NP concentration was significantly (P<0.05) higher in the uterine leiomyoma group compared to controls. Despite obstetric history, urine BPA mean exposure concentration was significantly (P<0.05) different between uterine leiomyoma group and control group. The urine BPA concentration was not significantly (P>0.05) different between gravida>3 and gravida ≤ 3 patients. There was no significant (P>0.05) difference in plasma concentrations of BPA, OP and NP between the leiomyoma group and control group. Mean exposure concentration and range of distribution of BPA, OP and NP plasma concentration differed between the uterine leiomyoma and control group.

Conclusion

Exposure level of phenolic environmental estrogens in human was related with leiomyoma tumorigenesis.  相似文献   

11.
Aluminum chloride induced mesophyll protoplasts of oat (Avena sativa) to produce an extracellular polysaccharide (EPS). EPS induced by AlCl3 appeared identical to that produced in response to the phytotoxin victorin (JD Walton, ED Earle [1985] Planta 165: 407-415). Al ions at 1 millimolar were toxic to protoplasts, but maximum EPS production occurred at a sublethal concentration of 200 micromolar, assayed at pH 6.0. As measured by incorporation of [14C]glucose, AlCl3 stimulated EPS production 10- to 15- fold. Pretreatment of protoplasts with cycloheximide prevented EPS production but not cell death in response to AlCl3, indicating that protein synthesis was necessary for EPS production but not for the phytotoxicity of Al ions. The trivalent salts of Y, Yb, Gd, and In also induced EPS production but those of Sc, Fe, Ga, Cr, and La did not. Mesophyll protoplasts from an acid-soil tolerant oat cultivar, Coker 83-23, produced less EPS in response to AlCl3 than the acid-soil sensitive cultivar Fla 501. EPS was also produced by wheat (Triticum aestivum) and barley (Hordeum vulgare) protoplasts in response to AlCl3. An Al-tolerant cultivar of wheat, Atlas, produced less EPS than an Al-sensitive cultivar, Scout, but an Al-tolerant cultivar of barley, Dayton, produced more than the Al-sensitive cultivar Kearney. Therefore, production of EPS by protoplasts in response to Al ions did not appear to be related to Al ion tolerance at the level of whole plants. EPS fluoresced in the presence of Calcofluor and Sirofluor and was degraded by purified laminarinase [(1→3)β-d-glucanase] but not pectinase (polygalacturonase). EPS was composed solely of glucose in 1→3 linkages; hence it is a (1→3)β-d-glucan (callose).  相似文献   

12.
The properties of purified capsular polysaccharide from the cyanobacterium Microcystis flos-aquae C3-40 were examined by capillary viscometry. Capsule suspensions exhibited similar viscosities between pH 6 and 10 but were more viscous at pH <=4 than at pH 6 to 11. At pH 7, a biphasic effect of metal ion concentration on capsule viscosity was observed: (i) capsule viscosity increased with increasing metal ion concentration until a maximal viscosity occurred at a specific concentration that was a reproducible characteristic of each metal ion, and (ii) the viscosity decreased with further addition of that ion. Because the latter part of the biphasic curve was complicated by additional factors (especially the precipitation or gelation of capsule by divalent metal ions), the effects of various metal chlorides were compared for the former phase in which capsule viscosity increased in the presence of metal ions. Equivalent increases in capsule viscosity were observed with micromolar concentrations of divalent metal ions but only with 10 to 20 times greater concentrations of Na(sup+). The relative abilities of various metal salts to increase capsule viscosity were as follows: CdCl(inf2), Pb(NO(inf3))(inf2), FeCl(inf2) > MnCl(inf2) > CuCl(inf2), CaCl(inf2) >> NaCl. This pattern of metal efficacy resembles known cation influences on the structural integrity of capsule in naturally occurring and cultured M. flos-aquae colonies. The data are the first direct demonstration of an interaction between metal ions and purified M. flos-aquae capsule, which has previously been proposed to play a role in the environmental cycling of certain multivalent metals, especially manganese. The M. flos-aquae capsule and the plant polysaccharide pectin have similar sugar compositions but differ in their relative responses to various metals, suggesting that capsular polysaccharide could be a preferable alternative to pectin for certain biotechnological applications.  相似文献   

13.
Cells of Sphingomonas sp. strain BSAR-1 constitutively expressed an alkaline phosphatase, which was also secreted in the extracellular medium. A null mutant lacking this alkaline phosphatase activity was isolated by Tn5 random mutagenesis. The corresponding gene, designated phoK, was cloned and overexpressed in Escherichia coli strain BL21(DE3). The resultant E. coli strain EK4 overexpressed cellular activity 55 times higher and secreted extracellular PhoK activity 13 times higher than did BSAR-1. The recombinant strain very rapidly precipitated >90% of input uranium in less than 2 h from alkaline solutions (pH, 9 ± 0.2) containing 0.5 to 5 mM of uranyl carbonate, compared to BSAR-1, which precipitated uranium in >7 h. In both strains BSAR-1 and EK4, precipitated uranium remained cell bound. The EK4 cells exhibited a much higher loading capacity of 3.8 g U/g dry weight in <2 h compared to only 1.5 g U/g dry weight in >7 h in BSAR-1. The data demonstrate the potential utility of genetically engineering PhoK for the bioprecipitation of uranium from alkaline solutions.  相似文献   

14.
Contagious bovine pleuropneumonia is a severe respiratory disease of cattle that is caused by a bacterium of the Mycoplasma genus, namely Mycoplasma mycoides subsp. mycoides (Mmm). In the absence of classical virulence determinants, the pathogenicity of Mmm is thought to rely on intrinsic metabolic functions and specific components of the outer cell surface. One of these latter, the capsular polysaccharide galactan has been notably demonstrated to play a role in Mmm persistence and dissemination. The free exopolysaccharides (EPS), also produced by Mmm and shown to circulate in the blood stream of infected cattle, have received little attention so far. Indeed, their characterization has been hindered by the presence of polysaccharide contaminants in the complex mycoplasma culture medium. In this study, we developed a method to produce large quantities of EPS by transfer of mycoplasma cells from their complex broth to a chemically defined medium and subsequent purification. NMR analyses revealed that the purified, free EPS had an identical β(1−>6)-galactofuranosyl structure to that of capsular galactan. We then analyzed intraclonal Mmm variants that produce opaque/translucent colonies on agar. First, we demonstrated that colony opacity was related to the production of a capsule, as observed by electron microscopy. We then compared the EPS extracts and showed that the non-capsulated, translucent colony variants produced higher amounts of free EPS than the capsulated, opaque colony variants. This phenotypic variation was associated with an antigenic variation of a specific glucose phosphotransferase permease. Finally, we conducted in silico analyses of candidate polysaccharide biosynthetic pathways in order to decipher the potential link between glucose phosphotransferase permease activity and attachment/release of galactan. The co-existence of variants producing alternative forms of galactan (capsular versus free extracellular galactan) and associated with an antigenic switch constitutes a finely tuned mechanism that may be involved in virulence.  相似文献   

15.
Environmental endocrine disruptors (EDCs), including bisphenol-A (BPA), have been recently involved in obesity and diabetes by dysregulating adipose tissue function. Our aim was to examine whether prolonged exposure to low doses of BPA could affect adipogenesis and adipocyte metabolic functions. Therefore, 3T3-L1 pre-adipocytes were cultured for three weeks with BPA 1nM to mimic human environmental exposure. We evaluated BPA effect on cell proliferation, differentiation, gene expression and adipocyte metabolic function. BPA significantly increased pre-adipocyte proliferation (p<0.01). In 3T3-L1 adipocytes differentiated in the presence of BPA, the expression of Peroxisome proliferator-activated receptor gamma (PPARγ), Fatty Acid Binding Protein 4/Adipocyte Protein 2 (FABP4/AP2) and CCAAT/enhancer binding protein (C/EBPα) was increased by 3.5, 1.5 and 3 folds, respectively. Mature adipocytes also showed a significant increase in lipid accumulation (p<0.05) and alterations of insulin action, with significant reduction in insulin-stimulated glucose utilization (p<0.001). Moreover, in mature adipocytes, mRNA levels of Leptin, interleukin-6 (IL6) and interferon-γ (IFNγ) were significantly increased (p<0.05). In conclusion, BPA prolonged exposure at low doses, consistent with those found in the environment, may affect adipocyte differentiation program, enhancing pre-adipocyte proliferation and anticipating the expression of the master genes involved in lipid/glucose metabolism. The resulting adipocytes are hypertrophic, with impaired insulin signaling, reduced glucose utilization and increased pro-inflammatory cytokine expression. Thus, these data supported the hypothesis that BPA exposure, during critical stages of adipose tissue development, may cause adipocyte metabolic dysfunction and inflammation, thereby increasing the risk of developing obesity-related diseases.  相似文献   

16.
17.
Rotavirus (RV) is the major etiological agent of acute gastroenteritis in infants worldwide. Although high-pressure processing (HPP) is a popular method to inactivate enteric pathogens in food, the sensitivity of different virus strains within same species and serotype to HPP is variable. This study aimed to compare the barosensitivities of seven RV strains derived from four serotypes (serotype G1, strains Wa, Ku, and K8; serotype G2, strain S2; serotype G3, strains SA-11 and YO; and serotype G4, strain ST3) following high-pressure treatment. RV strains showed various responses to HPP based on the initial temperature and had different inactivation profiles. Ku, K8, S2, SA-11, YO, and ST3 showed enhanced inactivation at 4°C compared to 20°C. In contrast, strain Wa was not significantly impacted by the initial treatment temperature. Within serotype G1, strain Wa was significantly (P < 0.05) more resistant to HPP than strains Ku and K8. Overall, the resistance of the human RV strains to HPP at 4°C can be ranked as Wa > Ku = K8 > S2 > YO > ST3, and in terms of serotype the ranking is G1 > G2 > G3 > G4. In addition, pressure treatment of 400 MPa for 2 min was sufficient to eliminate the Wa strain, the most pressure-resistant RV, from oyster tissues. HPP disrupted virion structure but did not degrade viral protein or RNA, providing insight into the mechanism of viral inactivation by HPP. In conclusion, HPP is capable of inactivating RV at commercially acceptable pressures, and the efficacy of inactivation is strain dependent.  相似文献   

18.
The cell surface of Azospirillum brasilense was probed by using fluorescein isothiocyanate (FITC)-labeled lectins, with binding determined by fluorescence-activated flow cytometry. Cells from nitrogen-fixing or ammonium-assimilating cultures reacted similarly to FITC-labeled lectins, with lectin binding in the following order: Griffonia simplicifolia II agglutinin > Griffonia simplicifolia I agglutinin > Triticum vulgaris agglutinin > Glycine max agglutinin > Canavalia ensiformis agglutinin > Limax flavus agglutinin > Lotus tetragonolobus agglutinin. The fluorescence intensity of cells labeled with FITC-labeled G. simplicifolia I, C. ensiformis, T. vulgaris, and G. max agglutinins was influenced by lectin concentration. Flow cytometry measurements of lectin binding to cells was consistent with measurements of agglutination resulting from lectin-cell interaction. Capsules surrounding nitrogen-fixing and ammonium-assimilating cells were readily demonstrated by light and transmission electron microscopies.  相似文献   

19.
Radiolabelled anhydrotrypsin was bound by alpha 2M (alpha 2-macroglobulin) sufficiently tightly to resist separation during gel electrophoresis; 2 mol of anhydrotrypsin were bound/mol of alpha 2M, but the interaction differed in important respects from that between active proteinases and alpha 2M. Anhydrotrypsin was bound by the electrophoretically 'fast' form of alpha 2M, although much less effectively than by the 'slow' form. The inactive enzyme was displaced from alpha 2M by trypsin inhibitor, the order of effectiveness being aprotinin > soya-bean trypsin inhibitor > benzamidine. Saturation of alpha 2M with anhydrotrypsin did not prevent subsequent binding and inhibition of active trypsin by the alpha 2M, and the anhydrotrypsin was not displaced during this reaction. Anhydrotrypsin bound by alpha 2M retained its ability to react with antibodies against trypsin, whereas bound trypsin did not.  相似文献   

20.
We examined physiological adaptations which allow the psychrotroph Rhodococcus sp. strain Q15 to assimilate alkanes at a low temperature (alkanes are contaminants which are generally insoluble and/or solid at low temperatures). During growth at 5 degrees C on hexadecane or diesel fuel, strain Q15 produced a cell surface-associated biosurfactant(s) and, compared to glucose-acetate-grown cells, exhibited increased cell surface hydrophobicity. A transmission electron microscopy examination of strain Q15 grown at 5 degrees C revealed the presence of intracellular electron-transparent inclusions and flocs of cells connected by an extracellular polymeric substance (EPS) when cells were grown on a hydrocarbon and morphological differences between the EPS of glucose-acetate-grown and diesel fuel-grown cells. A lectin binding analysis performed by using confocal scanning laser microscopy (CSLM) showed that the EPS contained a complex mixture of glycoconjugates, depending on both the growth temperature and the carbon source. Two glycoconjugates [beta-D-Gal-(1-3)-D-GlcNAc and alpha-L-fucose] were detected only on the surfaces of cells grown on diesel fuel at 5 degrees C. Using scanning electron microscopy, we observed strain Q15 cells on the surfaces of octacosane crystals, and using CSLM, we observed strain Q15 cells covering the surfaces of diesel fuel microdroplets; these findings indicate that this organism assimilates both solid and liquid alkane substrates at a low temperature by adhering to the alkane phase. Membrane fatty acid analysis demonstrated that strain Q15 adapted to growth at a low temperature by decreasing the degree of saturation of membrane lipid fatty acids, but it did so to a lesser extent when it was grown on hydrocarbons at 5 degrees C; these findings suggest that strain Q15 modulates membrane fluidity in response to the counteracting influences of low temperature and hydrocarbon toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号