首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Enzymes of the C4, C3 pathway and photorespiration have beenanalyzed for P. hians and P. milioides, which have chlorenchymatousbundle sheath cells in the leaves. On whole leaf extracts thelevels of PEP carboxylase are relatively low compared to C4species, RuDP carboxylase is typical of C3 species, and enzymesof photorespiratory metabolism appear somewhat intermediatebetween C3 and C4. Substantial levels of PEP carboxylase, RuDPcarboxylase, and photorespiratory enzymes were found in bothmesophyll and bundle sheath cells. Low levels of C4-acid decarboxylatingenzymes may limit the capacity for C4 photosynthesis in P. hiansand P. milioides. The results on enzyme activity and distributionbetween mesophyll and bundle sheath cells are consistent withCO2 fixation via C3 pathway in these two species. 1 This research was supported by the College of Agriculturaland Life Sciences, University of Wisconsin, Madison; and bythe University of Wisconsin Research Committee with funds fromthe Wisconsin Alumni Research Foundation; and by the NationalScience Foundation Grant BMS 74-09611. (Received September 16, 1975; )  相似文献   

2.
Temperate Gramineae show maximal net photosynthesis at 20–5°C, whereas tropical Gramineae have maxima between 30 and35 °C. Moreover, it has been suggested that different carboxylationreactions are involved in the two groups. The present studyof the temperature dependance of in vitro ribulose-1,5- diphosphate(RuDP), and phosphopyruvate (PEP) carboxylases indicates thatthe two enzymes have clearly marked differences in temperaturesensitivity. RuDP carboxylase, present in the temperate andtropical species studied, showed maximal activity around 20–5°C except in Zea. By contrast, PEP carboxylase activityin all species was maximal between 30 and 35 °C. The dataimply that activity and temperature sensitivity of the relevantcarboxylase enzymes may well be a significant limiting factorin leaf photosynthesis, even at light saturation.  相似文献   

3.
Potts  W.C. 《Plant & cell physiology》1986,27(6):997-1003
The presence of GA9, GA19 and GA20 was demonstrated by gas chromatography/massspectrometry (GC/MS) and the presence of GA44 strongly indicatedby GC/MS in selected ion monitoring mode (GC/SIM) in extractsof shoots of light-grown tall peas (Pisum sativum L.). Usingthe rice seedling bioassay with cv. Tan-ginbozu, the levelsof gibberellins in pea shoots were monitored from early shootgrowth through to apical senescence in a tall pea line. Levelsof activity corresponding to GA20, GA19 and GA44 remained relativelystable in the shoot despite reproductive development and apicalsenescence. The level of GA1-like activity increased to a maximumwhen the leaves had between 7 and 9 leaves expanded and decreasedonly with apical senescence. The na gene which blocks the productionof biologically active gibberellins in shoots but not in developingseed, was also operative in pod walls, with na pods containinglittle or no significant gibberellin-like activity when comparedto na pods at contact. This occurred despite the presence ofrelatively high levels of gibberellins in developing seed atthe same time. The results suggest that there is little or nosignificant leakage of biologically active gibberellins fromdeveloping seed to pods or shoots. Extracts of pods of tallpeas with Na contained low levels of gibberellin-like activitybut like developing seed, contained little or no significantGA1-like activity despite the presence of significant GA1-likeactivity in shoot extracts of tall peas. (Received March 11, 1986; Accepted May 27, 1986)  相似文献   

4.
RuDP carboxylase isolated from autotrophically grown cells ofphotosynthetic sulfur bacterium, Chromatium strain D, was partiallypurified by (NH4)2SO4 precipitation and Sephadex G-200 gel filtration.The molecular size of the bacterial RuDP carboxylase was foundto be large, analogous to that of the plant enzyme, in agreementwith results of previous workers. Sucrose density gradient centrifugationshowed the Srel to be approximately 18; the omission of Mg++caused no dissociation of the enzyme molecule in its subunits.Chromatium RuDP carboxylase showed similarities to the plantenzyme in some of its kinetic properties; (a) a shift of pHoptimum to the neutral side from the alkaline side on the additionof Mg++, (b) deviation of the substrate concentration (NaHCO3)-activityrelationship from the MICHAELIS formula and (c) a marked stimulativeeffect of Mg++. A unique sigmoidal saturation curve of the enzymeto RuDP, which had been detected in Rhodospirillum rubrum andRhodopseudomonas spheroides RuDP carboxylase in the absenceof Mg++, was not found. Another characteristic feature of ChromatiumRuDP carboxylase is its partial immunological response to therabbit anti-spinach RuDP carboxylase serum as detected by theinhibition of the carboxylation reaction due to the antibody-antigenreaction. 1Part X, Structure and Function of Chloroplast Proteins. Supportedin part by research grants from the Ministry of Education ofJapan (No. 8719) and USPHS (AM-10792-03) (Received July 4, 1969; )  相似文献   

5.
Panicum hians and Panicum milioides were found to have characteristicsintermediate to those of C3 and C4 species with respect to CO2compensation point, percentage inhibition of photosynthesisby O2 at various O2/CO2 solubility ratios, and water use efficiency.C4 species have a higher carboxylation efficiency than eitherthe intermediate or C3 species. During photosynthesis, evenunder 2.5% O2, C4 species have a higher affinity for intercellularCO2 (Km 1.6 µM) apparently due to the initial carboxylationthrough PEP carboxylase. Under low O2 the intermediate and C3species had a similar affinity for intercellular CO2 duringphotosynthesis (Km 5–7 µM) consistent with carboxylationof atmospheric CO2 through RuDP carboxylase. There were considerablevariation in photosynthesis/unit leaf area at saturating CO2levels in the species examined which in part is due to differencesin RuDP carboxylase /unit leaf area. The highest rates of photosynthesis/unitleaf area under CO2-saturating conditions were with the C3 specieswhich had a correspondingly high level of RuDP carboxylase/unitleaf area. Possibilities for the greater efficiency of P. hiansand P. milioides in comparison to C3 species in utilizing lowlevels of CO2 in the presence of atmospheric O2 are discussed. 1 This research was supported by the College of Agriculturaland Life Sciences, University of Wisconsin, Madison; and theUniversity of Wisconsin Research Committee with funds from theWisconsin Alumni Research Foundation. (Received June 25, 1977; )  相似文献   

6.
RuDP carboxylase was active mainly in chloroplasts and PEP carboxylaseactive principally outside of chloroplasts in Chlorella protothecoides. During the process of chloroplast degeneration in algal cellsinduced by addition of glucose, the activity of RuDP carboxylasesignificantly decreased, whereas the activities of PEP-carboxylaseand -carboxykinase markedly increased. During the process of chloroplast regeneration in "glucose-bleached"algal cells, which contained no detectable amounts of FractionI protein and showed only traces of RuDP carboxylase activity,a light-dependent development of RuDP carboxylase proceededalmost in parallel with the light-induced formation of chlorophyll.The activities of PEP-carboxylase and -carboxykinase, whichwere negligibly low in glucose-bleached cells, developed independentlyof light. Both chloramphenicol and cycloheximide severely inhibited thedevelopment of RuDP carboxylase activity. A relatively low concentrationof glucose also caused a significant suppression. Under theseconditions, chlorophyll formation was inhibited only slightlyby chloramphenicol and very strongly by cycloheximide and glucose. 1 Deceased, 11 June, 1972. (Received April 25, 1972; )  相似文献   

7.
A spectrophotometric assay has been used to measure the activityof PEP carboxylase and RuBP carboxylase in the epidermal andmesophyll tissue of Commelina communis. On both a chlorophylland protein basis the PEP carboxylase activity was always greaterin the epidermis than in the mesophyll, whereas RuBP carboxylaseactivity was always highest in the mesophyll. PEP carboxylaseactivity in epidermal extracts was lost very slowly and itspH optimum was a broad one in the range 7·5–8·0.The Km values for PEP carboxylase in the epidermis and mesophyllobtained from light- and dark-treated plants were not very differentalthough its Vmax was much lower in dark-treated tissue. Thesedata are discussed in relation to the possible role of PEP carboxylasein guard cell metabolism.  相似文献   

8.
Malic enzyme and phosphenol pyruvate carboxylase activitieshave been isolated and characterized from the shoots of Suaedamaritima plants grown in culture solution (with and withoutNaCl) or in tap water. The enzymes isolated from the lattershowed increases in both specific activity and Km values incomparison with plants grown in culture solution: however, theaddition of NaCl to the culture solution had no significanteffect on either enzyme. Malate levels were high in plants grownin tap water, reduced by an ordeT of magnitude by the additionof culture solution and then halved by the addition of NaCl. Both enzymes were inhibited in vitro by NaCl, although the additionof high concentrations of betaine and proline to the assay mediumdid not further inhibit enzyme activity. The significance ofthese results is discussed in relation to the proposed roleof betaine and proline as cytoplasmic osmoregulators. Suaeda maritima, halophyte, salt tolerance, malic enzyme, PEP carboxylase  相似文献   

9.
C4 cereals (Zea maya L. and Sorghum bicolor L. Moench) and C3cereals (Triticum aestivum L. and Hordeum vulgare L) were grownin nutrient solutions with constant, interrupted, or absentpotassium supply. The lack of potassium retarded shoot growthand depressed the chlorophyll accumulation in all species ina similar way. After the renewal of potassium, the differencesin the compensation for growth retardation were not correlatedwith the photosynthetic system, but with the recovery of chlorophyllaccumulation in younger leaves. As important for the compensationof shoot growth retardation was a slower senescence of old leavescompared to plants with a constant potassium supply. This wasshown by the chlorophyll content and PEP carboxylase activity.In contrast to C3 cereals, the C4 cereals did not react withhigher chlorophyll contents to the same extent after the renewalof the postassium supply. The PEP carboxylase activity, however,was immediately raised higher than in control leaves. Chlorophylland PEP carboxylase activity increased simultaneously only inless aged leaves.  相似文献   

10.
The pyruvate dehydrogenase complex (PDC) and acetyl-CoA carboxylase(ACC, EC 6.4.1.2 [EC] ) have been characterized in pea root plastids.PDC activity was optimum in the presence of 1.0 mM pyruvate,1.5 mM NAD+ 0.1 mM CoA, 0.1 mM TPP, 5 mM MgCl2, 3.0 mM cysteine-HCl,and 0.1 M Tricine (pH 8.0) and represents approximately 47%of the total cellular activity. ACC activity was greatest inthe presence of 1.0 mM acetyl-CoA, 4 mM NaHCO3 mM ATP, 10 mMMgCl2, 2.5 mM dithiothreitol, and 100 mM Tricine (pH 8.0). Bothenzymes were stimulated by reduced sulphydryl reagents and inhibitedby sulphydryl inhibitors. ACC was also inhibited by malonyl-CoAwhile PDC was inhibited by both malonyl-CoA and NADH. Both enzymeswere stimulated by DHAP and UDP-galactose while ACC was alsostimulated by PEP and F1,6P. Palmitic acid and oleic acid bothinhibited ACC, but had essentially no effect on PDC. Palmitoyl-CoAinhibited both enzymes while PA and Lyso-PA inhibited PDC, butstimulated ACC. The results presented support the hypothesisthat PDC and ACC function in a co-ordinated fashion to promoteglycolytic carbon flow to fatty acid biosynthesis in pea rootplastids. Key words: Pisum sativum L., pyruvate dehydrogenase complex, acetyl-CoA carboxylase, roots, non-photosynthetic plastids  相似文献   

11.
Effect of the age of tobacco leaves on photosynthesis and photorespiration   总被引:1,自引:0,他引:1  
Relationships among the activities of enzymes related to photosynthesisand photorespiration, and 14CO2 photosynthetic products wereinvestigated with individual tobacco leaves attached to thestalk from the bottom to the top. P-glycolate phosphatase ofthe chloroplasts and glycolate oxidase of the peroxisomes hadtheir maximum activities in the 25th leaf from the dicotyledons.Maximum photorespiration was similarly distributed. The highestratio of serine-14C to glycine-14C in the photosynthesates andmaximum glycolate formation were also observed in the 25th leaf.Glutamateglyoxylate aminotransferase, serine hydroxymethyltransferaseand glycine decarboxylase were more active in the upper leaves.RuDP carboxylase had nearly constant activity in all leaves,except for the youngest in which activity decreased. MaximumCO2 photosynthesis and enzyme activity for the C4 dicarboxylicacid cycle occurred in the upper, youngest leaf. Distributionof photosynthetic CO2 fixation among the leaves did not coincidewith RuDP carboxylase activity. The photosynthetic capacityappeared to be better related to the distribution pattern forenzymes of the C4 dicarboxylic acid pathway, i.e. PEP carboxylase,pyruvate Pi dikinase and 3-PGA phosphatase in the upper leaves.The results suggest that the C4 dicarboxylic acid pathway participates,to some extent, in photosynthesis in young leaves of tobacco,a dicotyledonous plant. 1This work was reported at the Annual Meeting (1970) of theJapanese Plant Physiologists in Kobe. 2The Central Research Institute, Japan Monopoly Corporation1-28-3, Nishishinagawa, Shinagawaku, Tokyo, 141 Japan. (Received November 2, 1972; )  相似文献   

12.
Nitrate reductase, RuDP1 carboxylase, PEP carboxylase, and water-solubleproteins have been studied during the vegetative cycles of onesoft and one hard wheat cultivar. Nitrate reductase was similarin amount and in pattern of variation in both varieties, thevariations being related to the phenological state of the plant,because the seasonal trend was not in phase in the two varieties.The pattern of change in water-soluble proteins was significantlydifferent in the two cultivars, namely in the consistent declineshown by the upper leaves of soft wheat. RuDP carboxylase was almost identical in amount and absolutelyin phase between the two varieties, showing a dependence onseasonal factors, possibly through a photoperiodic effect. Thechanges in PEP carboxylase were similar in the two wheats andgenerally synchronous. The fluctuation in the RuDP carboxylase/PEPcarboxylase ratio was due primarily to the increase in RuDPcarboxvlase activity.  相似文献   

13.
The activities of several enzymes, including ribulose-1,5-diphosphate (RuDP) carboxylase (EC 4.1.1.39) and phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) were measured as a function of leaf age in Z. mays. Mature leaf tissue had a RuDP-carboxylase activity of 296.7 mol CO2 g-1 fresh weight h-1 and a PEP-carboxylase activity of 660.6 mol CO2 g-1 fresh weight h-1. In young corn leaves the activity of the two enzymes was 11 and 29%, respectively, of the mature leaves. In senescent leaf tissue, RuDP carboxylase activity declined more rapidly than that of any of the other enzymes assayed. On a relative basis the activities of NADP malic enzyme (EC 1.1.1.40), aspartate (EC 2.6.1.1) and alanine aminotransferase (EC 2.6.1.2), and NAD malate dehydrogenase (EC 1.1.1.37) exceeded those of both PEP and RuDP carboxylase in young and senescent leaf tissue. Pulse-chase labeling experiments with mature and senescent leaf tissue show that the predominant C4 acid differs between the two leaf ages. Labeling of alanine in senescent tissue never exceeded 4% of the total 14C remaining during the chase period, while in mature leaf tissue alanine accounted for 20% of the total after 60 s in 12CO2. The activity of RuDP carboxylase during leaf ontogeny in Z. mays parallels the development of the activity of this enzyme in C3 plants.Abbreviations RuDP ribulose-1,5-diphosphate - PEP phosphoenol pyruvate - PGA 3-phosphoglycerate  相似文献   

14.
In the developing pods of two genotypes of groundnut, putrescine,cadaverine, spermidine and spermine decreased in the fruit walland increased in the developing seed. ADC activity also followedthe same pattern. On germination all the polyamines decreasedin the cotyledons and increased progressively in the growingembryonic axis. The level of all the polyamines showed differencesbetween both the cultivars during seed development and germination. Arachis hypogaea L, genotypes, pod development  相似文献   

15.
Haloxylon aphyllum and H. persicum of Chenopodiaceae are dominantplants in the continental deserts of the Asian Irano-Turanianregion. The photosynthetic organs, assimilating shoots and leaf-likecotyledons of these two species were studied to characterizetheir photosynthetic types. 13C/12C isotope ratios, the cellularanatomy of as similating organs, primary photosynthetic products,and activities of carbon metabolism enzymes, RUBP carboxylase,PEP carboxylase, malic enzymes, and aspartate aminotransferase,indicate different pathways of CO2 fixation in the photosyntheticorgans. Assimilating shoots had attributes of the C4 photosynthesisentirely, while cotyledons lack Kranz-anatomy and incorporatedCO2 via C3 photosynthesis. Cotyledons and seeds had lower  相似文献   

16.
In vivo net CO2 exchange characteristics of attached Brassicapods were studied during the entire period of their growth anddevelopment after anthesis. 14CO2 was fed both from the externalatmosphere and internally through the pod cavity, and the anatomyof the pod-wall was examined microscopically. Stomata were observedin the outer epidermal layer of the pod wall. Net in vivo CO2fixation by the pods was observed throughout the period of theirdevelopment and was maximum on day 42 after anthesis (DAA).Compared to the internal feeding experiments, 14CO2 fixationfrom the external environment was very high. Apparent translocationof fixed carbon from the pod wall to seeds was rapid. Pod photosynthesiscontributed substantially to seed growth. pods, Brassica campestris L, CO2 fixation, stomata  相似文献   

17.
In vivo net CO2 exchange characteristics of attached Brassicapods were studied during the entire period of their growth anddevelopment after anthesis. 14CO2 was fed both from the externalatmosphere and internally through the pod cavity, and the anatomyof the pod-wall was examined microscopically. Stomata were observedin the outer epidermal layer of the pod wall. Net in vivo CO2fixation by the pods was observed throughout the period of theirdevelopment and was maximum on day 42 after anthesis (DAA).Compared to the internal feeding experiments, 14CO2 fixationfrom the external environment was very high. Apparent translocationof fixed carbon from the pod wall to seeds was rapid. Pod photosynthesiscontributed substantially to seed growth. pods, Brassica campestris L., CO2 fixation, stomata  相似文献   

18.
A comparative study was made on features of the induced synthesisof RuDP carboxylase in three strains of R. spheroides with differentbiochemical properties. In strains Sb and Sa, which were able to grow under either light-anaerobicor dark-aerobic conditions, activities of RuDP carboxylase inthe light-grown cells were much higher than those in dark-growncells. The level of RuDP carboxylase activity in dark-growncells of the Sb strain (wild type strain) increased two to threetimes in the dark by incubating the heavy cell suspension underlow aeration, but, for a further increase in enzyme activity,a light-anaerobic condition was required. This is in contrastto the induced formation of bacteriochlorophyll which has beenshown to proceed actively in the dark as well as in the light.On the other hand, with dark-grown cells of the Sa strain, whichhad possible partial defects in the chlorophyll synthesis system,the induced synthesis of RuDP carboxylase under the light-anaerobiccondition was markedly retarded as compared to that with theSb strain. RuDP carboxylase formation was not induced in L-57(a colorless mutant) under any of these conditions. The induced formation of RuDP carboxylase, as well as of bacteriochlorophyll,under the light-anaerobic condition was considerably suppressedby hydroxyurea and mitomycin C. This suggests that the geneticcontrol systems of RuDP carboxylase synthesis may be closelyrelated with those for the formation of the photosynthetic apparatus. 1This work was supported in part by Public Health Research GrantAM 08016 from the National Institute of Arthritis and MetabolicDiseases, U.S.A. (G. K.). 2Present address: Laboratory of Radioisotope Experiment, TohokuUniversity School of Medicine, Sendai, Japan. (Received September 6, 1968; )  相似文献   

19.
Robert A. Kennedy 《Planta》1976,128(2):149-154
Summary Ribulose diphosphate (RuDP) and (PEP) phosphoenolpyruvate carboxylase enzyme activities were studied in young, mature, and senescent Portulaca oleracea leaves. While the absolute amount of both the C3 (RuDP) and C4 (PEP) carboxylase is less in senescent leaves than in mature leaves, RuDP carboxylase activity is reduced to a lesser degree. In senescent leaves, PEP carboxylase activity equals 10% of that in mature tissue, but RuDP carboxylase is 27% of that in mature leaves. The same ontogenetic series was also used to determine photorespiration rates and responses to several gas treatments. Young and mature leaves were unaffected by changes in the light regime or oxygen concentrations, and exhibited typical C4-plant light/dark 14CO2 evolution ratios. Senescent leaves, on the other hand, have photorespiration ratios similar to C3-plants. In addition, senescent leaves were affected by minus CO2, 100% O2 and N2 in a manner expected of C3-plants, but not C4-plants. These results are discussed in terms of a relative increase in activity of the C3 cycle in later developmental stages in this plant.Abbreviation RuDP ribulose diphosphate - PEP phosphoenolpyruvate - PGA phosphoglyceric acid  相似文献   

20.
Supplementing pollen suspension cultures with CO2 (3–5per cent) caused a marked increase in germination and tube growthin vitro in Brassica campestris L. cv. toria. A weakening ofself-incompatibility by increased CO2 levels from 3–5per cent was observed. The percentage of pollen tubes whichpenetrated the cuticle layer of stigmatic papilla cells in self-pollinatedpistils was high when CO2 level was 5 per cent. Phosphoenolpyruvate (PEP) carboxylase activity was greater in the pollengerminated in 4 per cent CO2 as compared to air (0.03 per cent).A possible role of CO2 for self-recognition and control of pollentube growth is proposed, proposed. Brassica campestris L., carbon dioxide, self-incompatibility, phosphoenol pyruvate carboxylase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号