首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Pituitary adenylate cyclase-activating peptide (PACAP) is a vasoactive intestinal peptide (VIP)-like peptide recently isolated from ovine hypothalami. Nerve fibers displaying PACAP immunoreactivity were found in the respiratory tract of rats, guinea pigs, ferrets, pigs, sheep and squirrel monkeys. A moderate supply of PACAP-immunoreactive fibers was seen in the nasal mucosa of guinea pigs. Few to moderate numbers of PACAP-containing fibers occurred in the tracheo-bronchial wall of rats, guinea pigs, ferrets, pigs, sheep and squirrel monkeys. The fibers were distributed beneath the epithelium, around blood vessels and seromucous glands, and among bundles of smooth muscle. In the lungs, the immunoreactive fibers were observed close to small bronchioli. A few PACAP-immunoreactive nerve cell bodies were seen in the sphenopalatine and otic ganglia of guinea pigs. Simultaneous double immunostaining of the respiratory tract of sheep and ferrets revealed that all PACAP-containing nerve fibers stored VIP. We suggest that neuronal PACAP may take part in the regulation of smooth muscle tone and glandular secretion.  相似文献   

2.
The retinal expression and distribution of pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) and their receptors was investigated in early streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in rats by STZ injection (60mg/kg i.p.). PACAP, VIP and their receptors in nondiabetic control and diabetic retinas were assayed by quantitative real-time PCR and Western blot 1 and 3 weeks after STZ injection. Effects of intravitreal treatment with PACAP38 on the expression of the two apoptotic-related genes Bcl-2 and p53 were also evaluated. PACAP and VIP, as well as VPAC1 and VPAC2 receptors, but not PAC1 mRNA levels, were transiently induced in retinas 1week following STZ. These findings were confirmed by immunoblot analyses. Three weeks after the induction of diabetes, significant decreases in the expression of peptides and their receptors were observed, Bcl-2 expression decreased and p53 expression increased. Intravitreal injection of PACAP38 restored STZ-induced changes in retinal Bcl-2 and p53 expression to nondiabetic levels. The initial upregulation of PACAP, VIP and related receptors and the subsequent downregulation in retina of diabetic rats along with the protective effects of PACAP38 treatment, suggest a role for both peptides in the pathogenesis of diabetic retinopathy.  相似文献   

3.
Pituitary adenylate cyclase activating peptide (PACAP) is a novel peptide isolated from the ovine hypothalamus. PACAP exists in 2 molecular forms with 27 (PACAP27) or 38 (PACAP38) amino acid residues. PACAP localization was studied by immunohistochemical methods in central (bone marrow and thymus) and peripheral (spleen, lymph nodes and duodenal mucosa) lymphoid tissues with antisera raised against PACAP27 or PACAP38. PACAP-positive cells were found in all lymphoid tissues examined. These cells were highly positive for PACAP38 but were negative for PACAP27. Morphologically, they were small mononuclear cells with relatively scarce cytoplasm and lymphocyte-like features. PACAP38-positive cells were abundant in peripheral lymphoid tissues (i.e., mesenteric lymph nodes). In the duodenal mucosa, PACAP38-positive cells were located either in the lamina propria or epithelium. These results suggest that PACAP38-positive cells are present within lymphoid tissues and may represent a lymphocyte-like cell subpopulation that has a potential role in cell-to-cell interactions in the immune system and in the integrated communication between neuroendocrine and immune systems.  相似文献   

4.
Oxidative stress, associated with a variety of disorders including neurodegenerative diseases, results from accumulation of reactive oxygen species (ROS). Oxidative stress is not only responsible for neuron apoptosis, but can also provoke astroglial cell death. Numerous studies indicate that pituitary adenylate cyclase-activating polypeptide (PACAP) promotes neuron survival, but nothing is known regarding the action of PACAP on astroglial cell survival. Thus, the purpose of the present study was to investigate the potential glioprotective effect of PACAP on H(2)O(2)-induced astrocyte death. Pre-treatment of cultured rat astrocytes with nanomolar concentrations of PACAP prevented cell death provoked by H(2)O(2) (300 μM), whereas vasoactive intestinal polypeptide was devoid of protective activity. The effect of PACAP on astroglial cell survival was abolished by the type 1 PACAP receptor antagonist, PACAP6-38. The protective action of PACAP was blocked by the protein kinase A inhibitor H89, the protein kinase C inhibitor chelerythrine and the mitogen-activated protein (MAP)-kinase kinase (MEK) inhibitor U0126. PACAP stimulated glutathione formation, and blocked H(2)O(2)-evoked ROS accumulation and glutathione content reduction. In addition, PACAP prevented the decrease of mitochondrial activity and caspase 3 activation induced by H(2)O(2). Taken together, these data indicate for the first time that PACAP, acting through type 1 PACAP receptor, exerts a potent protective effect against oxidative stress-induced astrocyte death. The anti-apoptotic activity of PACAP on astrocytes is mediated through the protein kinase A, protein kinase C and MAPK transduction pathways, and can be accounted for by inhibition of ROS-induced mitochondrial dysfunctions and caspase 3 activation.  相似文献   

5.
Low voltage-activated T-type Cav3.2 calcium channels are expressed in neurosecretory chromaffin cells of the adrenal medulla. Previous studies have shown that naïve adrenal chromaffin cells express a nominal Cav3.2-dependent conductance. However, Cav3.2 conductance is up-regulated following chronic hypoxia or long term exposure to cAMP analogs. Thus, although a link between chronic stressors and up-regulation of Cav3.2 exists, there are no reports testing the specific role of Cav3.2 channels in the acute sympathoadrenal stress response. In this study, we examined the effects of acute sympathetic stress on T-type Cav3.2 calcium influx in mouse chromaffin cells in situ. Pituitary adenylate cyclase-activating peptide (PACAP) is an excitatory neuroactive peptide transmitter released by the splanchnic nerve under elevated sympathetic activity to stimulate the adrenal medulla. PACAP stimulation did not evoke action potential firing in chromaffin cells but did cause a persistent subthreshold membrane depolarization that resulted in an immediate and robust Ca2+-dependent catecholamine secretion. Moreover, PACAP-evoked secretion was sensitive to block by nickel chloride and was acutely inhibited by protein kinase C blockers. We utilized perforated patch electrophysiological recordings conducted in adrenal tissue slices to investigate the mechanism of PACAP-evoked calcium entry. We provide evidence that stimulation with exogenous PACAP and native neuronal stress stimulation both lead to a protein kinase C-mediated phosphodependent recruitment of a T-type Cav3.2 Ca2+ influx. This in turn evokes catecholamine release during the acute sympathetic stress response.  相似文献   

6.
The effects of pituitary adenylate cyclase activating peptide (PACAP) on the blood pressure of the anesthetized rat and on the isolated rat tail artery were investigated and compared to those of vasoactive intestinal peptide (VIP). PACAP-38, PACAP-27 and the C-terminal fragment 16–38 caused a dose-dependent decrease in the systemic blood pressure. PACAP-27 and PACAP-38 were equipotent with VIP. The C-terminal fragment 16–38 was much less potent than VIP. The duration of action was longer for equimolar doses of PACAP-38 and PACAP-27 than for VIP and much longer than for PACAP 16–38. PACAP-27 and the phosphodiesterase inhibitor rolipram given in combination produced additive vasodepressive responses. In vitro PACAP-38, PACAP-27, VIP and PACAP 16–38 relaxed the phenylephrine-precontracted rat tail artery. PACAP-38 and PACAP-27 were equipotent with VIP. PACAP 16–38 was much less potent than the full-length peptides. The responses were resistant to atropine and propranolol. Addition of VIP 1 μM to preparations exposed to 1 μM PACAP-38 or -27 did not produce a further relaxation. VIP-like peptides, PACAP in particular, are known to activate adenylate cyclase and to elevate the plasma cyclic AMP (cAMP) concentration. cAMP was found to be a potent vasodepressor in the anaesthetized rat and a potent vasodilator of precontracted blood vessels. On the basis of these results it cannot be excluded that the vascular effects of PACAP are secondary to the effect of elevated levels of extracellular cAMP.  相似文献   

7.
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP), two members of the VIP/secretin/glucagon family, modulate neurotransmission via stimulation of protein kinases including cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) in the central and peripheral nervous systems. They are reported to co-exist with nitric oxide synthases (NOSs) and other neuropeptides within the nervous system and peripheral tissues. In the present study, we investigated the neuronal role of these peptides in NO production in PC12 cells. We showed that PACAP decreased NO production in a dose-dependent manner, and the activators of protein kinase A and C also inhibited the NO production in PC12 cells. RT-PCR experiments demonstrated that PC12 cells constitutively express the mRNAs for neuronal NOS and the PACAP-specific (PAC1) receptor, and we concluded that PACAP plays an important role in the regulation of nNOS activity through PAC1 receptor in PC12 cells.  相似文献   

8.
Neuroendocrine adrenal medullary chromaffin cells receive synaptic excitation through the sympathetic splanchnic nerve to elicit catecholamine release into the circulation. Under basal sympathetic tone, splanchnic-released acetylcholine evokes chromaffin cells to fire action potentials, leading to synchronous phasic catecholamine release. Under elevated splanchnic firing, experienced under the sympathoadrenal stress response, chromaffin cells undergo desensitization to cholinergic excitation. Yet, stress evokes a persistent and elevated adrenal catecholamine release. This sustained stress-evoked release has been shown to depend on splanchnic release of a peptide transmitter, pituitary adenylate cyclase-activating peptide (PACAP). PACAP stimulates catecholamine release through a PKC-dependent pathway that is mechanistically independent of cholinergic excitation. Moreover, it has also been reported that shorter term phospho-regulation of existing gap junction channels acts to increase junctional conductance. In this study, we test if PACAP-mediated excitation upregulates cell-cell electrical coupling to enhance chromaffin cell excitability. We utilize electrophysiological recordings conducted in adrenal tissue slices to measure the effects of PACAP stimulation on cell coupling. We report that PACAP excitation increases electrical coupling and the spread of electrical excitation between adrenal chromaffin cells. Thus PACAP acts not only as a secretagogue but also evokes an electrical remodeling of the medulla, presumably to adapt to the organism's needs during acute sympathetic stress.  相似文献   

9.
Pituitary adenylate cyclase-activating peptide (PACAP) is involved in autonomous regulation, including timekeeping, by its action on the suprachiasmatic nucleus and on neuroendocrine secretion, energy metabolism, and transmitter release. In particular, the interactions between PACAP and the glutamatergic system are well recognized. We compared the effect of intravenously administered PACAP to that of placebo in eight healthy male subjects. PACAP in a concentration of 4x12.5 microg was administered in a pulsatile fashion hourly between 2200 and 0100. Sleep EEG was recorded from 2300 to 1000, which was also the time when subjects were allowed to sleep. Blood samples were taken every 20 min between 2200 and 0700 for the determination of cortisol, GH, and prolactin. PACAP administration led to no changes in the macro-sleep structure as assessed according to standard criteria. Spectral analysis revealed a significant reduction in the theta-frequency range in the first 4-h interval and of the spindle frequency range in the second 4-h interval of the registration period. This was accompanied by an increase in the time constant tau of the physiological delta-power decline in the course of the night, i.e., a less pronounced dynamic of the reduction of delta-power with time. This was accompanied by a trend (P<0.1) toward decreased prolactin secretion in the first 4-h period of the night. No other changes in endocrine secretion were observed. We concluded that PACAP leads to a reduction of the dynamics of homeostatic sleep regulation and prolactin secretion. Both effects are the opposite of those seen after sleep deprivation but similar to the changes after napping, i.e., a reduced sleep propensity. This implies that PACAP might be involved in homeostatic sleep regulation.  相似文献   

10.
Primary sensory neurons serve a dual role as afferent neurons, conveying sensory information from the periphery to the central nervous system, and as efferent effectors mediating, e.g., neurogenic inflammation. Neuropeptides are crucial for both these mechanisms in primary sensory neurons. In afferent functions, they act as messengers and modulators in addition to a principal transmitter; by release from peripheral terminals, they induce an efferent response, “neurogenic inflammation,” which comprises vasodilatation, plasma extravasation, and recruitment of immune cells. In this article, we introduce two novel members of the sensory neuropeptide family: pituitary adenylate cyclase-activating polypeptide (PACAP) and islet amyloid polypeptide (IAPP). Whereas PACAP, a vasoactive intestinal polypeptide-resembling peptide, predominantly occurs in neuronal elements, IAPP, which is structurally related to calcitonin gene-related peptide, is most widely known as a pancreatic β-cell peptide; as such, it has been recognized as a constituent of amyloid deposits in type 2 diabetes. In primary sensory neurons, under normal conditions, both peptides are predominantly expressed in small-sized nerve cell bodies, suggesting a role in nociception. On axotomy, the expression of PACAP is rapidly induced, whereas that of IAPP is reduced. Such a regulation of PACAP suggests that it serves a protective role during nerve injury, but that of IAPP may indicate that it is an excitatory messenger under normal conditions. In contrast, in localized adjuvant-induced inflammation, expression of both peptides is rapidly induced. For IAPP, studies in IAPP-deficient mice support the notion that IAPP is a pronociceptive peptide, because these mutant mice display a reduced nociceptive response when challenged with formalin.  相似文献   

11.
Rheumatoid arthritis is a chronic, systemic, autoimmune, and inflammatory disorder that affects the synovial lining of the joints. We describe the beneficial effects of the pituitary adenylate cyclase-activating polypeptide (PACAP) in the collagen-induced arthritis experimental murine model being proposed as a novel therapeutic approach in the treatment of rheumatoid arthritis. PACAP greatly decreases arthritis frequency and severity in the studied mice by improving clinical symptoms, ameliorating joint damage, and blocking both the inflammatory and autoimmune mediators which are the main keys of the pathogenesis of this disease. With this study, PACAP emerges as a promising candidate for the treatment of a pathology with a high world incidence but currently no effective treatment.  相似文献   

12.
The anti-infective peptide, innate defense-regulator peptide (IDR-1), has been selectively reported to modulate the innate immune response. We found that IDR-1 stimulates the chemotactic migration in human neutrophils. Moreover, IDR-1-induced neutrophil chemotaxis was completely blocked by pertussis toxin, suggesting the importance of the Gi protein in this process. The mechanism governing the IDR-1-induced neutrophil chemotaxis was found to be completely inhibited by the formyl peptide receptor (FPR) antagonist; cyclosporin H. IDR-1 was also found to induce chemotactic migration in FPR but not in vector-expressing HCT116 cells. Meanwhile, IDR-1 failed to stimulate superoxide anion generation and intracellular calcium increase in human neutrophils. Furthermore, IDR-1 was found to inhibit fMLF (an FPR agonist)-induced superoxide generation and calcium signaling in human neutrophils and FPR-expressing HCT116 cells. Taken together, the results demonstrate that IDR-1 is a partial agonist for FPR and further, stimulates neutrophil chemotaxis without inducing calcium signaling and superoxide generation.  相似文献   

13.
Both vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) act as neurotransmitters in the central and peripheral nervous systems. Attention has been focused on these neuropeptides because among their numerous biological activities, they have been confirmed to show neuroprotective effects against ischemia and glutamate-induced cytotoxicity. It is well established that glutamate has excitatory effects on neuronal cells, and that excessive glutamate shows potent neurotoxicity, especially in neuronal nitric oxide synthase-containing neurons. Glutamate stimulates the production of nitric oxide (NO) in neurons, and the NO generated is tightly associated with the delayed death of neurons. We examined the effects of these neuropeptides on the glutamate-induced neural actions using PC12 cells, and we confirmed the important activities of PACAP/VIP on the production of NO as well as the delayed cell death stimulated by glutamate.  相似文献   

14.
Although the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) has been implicated in the regulation of several immune responses, its target receptors and signaling mechanisms have yet to be fully elucidated in immune cells. In this study, we found that PACAP27, but not PACAP38, specifically stimulated intracellular calcium mobilization and ERK phosphorylation in human neutrophils. Moreover, formyl peptide receptor-like 1 (FPRL1) was identified as a PACAP27 receptor, and PACAP27 was found to selectively stimulate intracellular calcium increase in FPRL1-transfected rat basophil leukocytes-2H3 cell lines. In addition, PACAP27-induced calcium increase and ERK phosphorylation were specifically inhibited by an FPRL1 antagonist, Trp-Arg-Trp-Trp-Trp-Trp (WRW4), thus supporting the notion that PACAP27 acts on FPRL1. In terms of the functional role of PACAP27, we found that the peptide stimulated CD11b surface up-regulation and neutrophil chemotactic migration, and that these responses were completely inhibited by WRW4. The interaction between PACAP27 and FPRL1 was analyzed further using truncated PACAPs and chimeric PACAPs using vasoactive intestinal peptide, and the C-terminal region of PACAP27 was found to perform a vital function in the activation of FPRL1. Taken together, our study suggests that PACAP27 activates phagocytes via FPRL1 activation, and that this results in proinflammatory behavior, involving chemotaxis and the up-regulation of CD11b.  相似文献   

15.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a novel hypothalamic peptide, which has been shown to exert various functions in a number of tissues, including exocrine and endocrine tissues. The present study investigated the role of local PACAP in the control of anion secretion by the human colonic T84 cell. Both bioactive forms of PACAP-27 and PACAP-38 gave rise to a dose-dependent increase in the short-circuit current (I(SC)). However, there was a reversal in the order of potency observed at different concentration ranges for the two bioactive forms. PACAP-27 was greater than PACAP-38 when the peptide concentrations were below 10 n m; PACAP-38 was greater than PACAP-27 in the range of 10-80 n m. The effects of both PACAP forms were restricted to the apical aspect of the T84 cell. The I(SC)responses to both PACAP-27 and PACAP-38 were suppressed respectively by the non-selective Cl(-)channel blocker, diphenylamine-dicarboxylic acid (DPC), by the Ca(2+)dependent Cl(-)channel blocker, diisothiocyanatostilbene-disulfonic acid (DIDS) and by the Ca(2+)chelator, BAPTA-AM, indicating the involvement of Ca(2+). The expression of PACAP was demonstrated and localized specifically to the perinuclear cytoplasm of the T84 cell using immunocytochemistry, indicating its epithelial origin. Thus, the present data suggest that, in addition to the well-known cAMP-dependent pathway, PACAP may play a role in regulating colonic Cl(-)secretion via a Ca(2+)-dependent pathway, perhaps through two distinct PACAP receptor subtypes. Moreover, the regulation of anion secretion by T84 cells may be mediated by locally formed PACAP in an autocrine or paracrine fashion.  相似文献   

16.
Pituitary adenylate cyclase-activating polypeptide (PACAP) regulates the secretion of GnRH into the hypothalamic hypophysial portal system and sensitizes the pituitary for release of hormones that trigger ovulation. Because reproductive behavior is synchronized with GnRH release, the present study was undertaken to determine whether PACAP in the ventromedial nucleus (VMN) plays a role in receptivity. To this end, we used rat and mouse reproductive behavioral models to determine the biological relationship between PACAP and steroid receptor function in females. We provide evidence for the requirement of PACAP in the VMN for progesterone (P)-dependent sexual behavior in estrogen (E)-primed females. We clarify the biological and molecular mechanisms of PACAP activity by showing 1) that inhibition of endogenous PACAP suppresses P receptor (PR)-dependent sexual behavior facilitated by the steroid P or D1-like agonist SKF38393 and 2) that PR, steroid receptor coactivators-1 and -2, and new protein synthesis are essential for ligand independent PACAP-facilitated behavior. These findings are consistent with convergence of PACAP-mediated cellular signals on PR for genomic activation and subsequent behavioral changes. Further, we show that steroids regulate both endogenous PACAP mRNA in the VMN and immunoreactive PACAP in the medial basal hypothalamus and cerebral spinal fluid for ligand-dependent, steroid receptor-dependent receptivity. The present findings delineate a novel, steroid-dependent mechanism within the female hypothalamus by which the neuropeptide PACAP acts as a feed-forward, paracrine, and/or autocrine factor for synchronization of behavior coordinate with hypothalamic control of ovulation.  相似文献   

17.
《Tissue & cell》2016,48(5):503-510
Schwann cell migration, including collective migration and chemotaxis, is essential for the formation of coordinate interactions between Schwann cells and axons during peripheral nerve development and regeneration. Moreover, limited migration of Schwann cells imposed a serious obstacle on Schwann cell-astrocytes intermingling and spinal cord repair after Schwann cell transplantation into injured spinal cords. Recent studies have shown that mature brain-derived neurotrophic factor, a member of the neurotrophin family, inhibits Schwann cell migration. The precursor form of brain-derived neurotrophic factor, proBDNF, was expressed in the developing or degenerating peripheral nerves and the injured spinal cords. Since “the yin and yang of neurotrophin action” has been established as a common sense, proBDNF would be expected to promote Schwann cell migration. However, we found, in the present study, that exogenous proBDNF also inhibited in vitro collective migration and chemotaxis of RSC 96 cells, a spontaneously immortalized rat Schwann cell line. Moreover, proBDNF suppressed adhesion and spreading of those cells. At molecular level, proBDNF inhibits F-actin polymerization and focal adhesion dynamics in cultured RSC 96 cells. Therefore, our results suggested a special case against the classical opinion of “the yin and yang of neurotrophin action” and implied that proBDNF might modulate peripheral nerve development or regeneration and spinal cord repair through perturbing native or transplanted Schwann cell migration.  相似文献   

18.
The nucleus houses and protects genomic DNA, which is surrounded by the nuclear envelope. Owing to its size and stiffness, the nucleus is often a barrier to migration through confined spaces. Neutrophils are terminally differentiated, short-lived cells that migrate through tissues in response to injury and infections. The neutrophil nucleus is soft, multilobular, and exhibits altered levels of key nuclear envelope proteins. These alterations result in a multifunctional organelle that serves as a signaling hub during migration and NETosis, a process by which neutrophils release decondensed chromatin decorated with granular enzymes that entrap pathogens. In this review, we present emerging evidence suggesting that a unique, ambiguous cell-cycle state is critical for NETosis and migration. Finally, we discuss how the mechanisms underlying migration and NETosis are evolutionarily conserved.  相似文献   

19.
A number of regulatory peptides were investigated for their ability to elevate plasma cAMP. Pituitary adenylate cyclase activating peptide (PACAP)-27, PACAP-38, helodermin, helospectin I and II, vasoactive intestinal peptide (VIP), glucagon, parathyroid hormone (PTH), calcitonin and calcitonin gene-related peptide were among the peptides that were highly effective in raising plasma cAMP when given intravenously in equimolar doses to conscious mice. PACAP-27 and -38 were more effective than any of the other peptides. PACAP 16–38, secretin, gastrin-17, galanin, somatostatin, cholecystokinin-8s, pancreatic polypeptide, substance P, peptide YY and neuropeptide Y were inactive and also did not interfere with the PACAP-27-evoked rise in plasma cAMP levels. Repeated injections of PACAP-27 every 30 min caused a progressive reduction in the plasma cAMP response (measured 5 min after each injection). Forskolin, an activator of adenylate cyclase, dose-dependently raised the plasma concentration of cAMP and displayed a synergistic effect when given in a low dose concurrently with PTH or PACAP-38. The phosphodiesterase inhibitor rolipram dose-dependently raised the plasma concentration of cAMP. Combined treatment with PACAP-27 and a threshold dose of rolipram resulted in an exaggerated plasma cAMP response. Kidney hilus ligation suppressed the responses to PACAP-38, PTH, helodermin, helospectin, VIP, glucagon and calcitonin. Hepatectomy suppressed the response to glucagon but was without effect on the response to the other peptides. Pancreatectomy and spleenectomy reduced the response to VIP, but was without effect on the response to the other peptides. PACAP-27 stimulated cAMP efflux from the isolated rat tail vein. Hence, it cannot be excluded that blood vessels contribute to the peptide evoked plasma cAMP response in vivo.  相似文献   

20.
目的:观察垂体腺苷酸环化酶激活肽(PACAP)mRNA在大鼠妊娠黄体中的表达及调节。方法:①于妊娠不同时期收集大鼠卵巢。用RT-PCR和原位杂交方法,观察妊娠过程卵巢PACAP mRNA表达的动态变化;②未成年雌性大鼠颈部皮下注射50IU孕马血清促性腺激素,48h后注射25IU人绒毛膜促性腺激素,第6天收集培养黄体细胞。用放免法测定给予不同处理后,培养液中孕酮的含量;用RT-PCR方法检测各组PACAP mRNA表达水平。结果:从妊娠11d起,PACAP mRNA表达逐渐增强,在妊娠19d达高峰;与对照组相比,血小板活化因子(PAF)、福司考林(forskolin)、佛波酯(PMA)均使培养黄体细胞孕酮分泌量及PACAP mRNA表达显著增高(P0.05)。结论:PACAP与中、晚期妊娠的维持密切相关;PAF可促进培养黄体细胞PACAP mRNA的表达,蛋白激酶C(PKC)和蛋白激酶A(PKA)途径都有可能参与了此过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号