首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tissue specific expression of peptidylglycine alpha-amidating monooxygenase [(PAM) EC 1.14.17.3], an enzyme which catalyzes the formation of amidated bioactive peptides from their glycine-extended precursors, was examined in adult rat. Soluble and membrane-associated PAM enzymatic activities were determined, and the levels and size classes of PAM mRNA were examined by Northern blot analysis. PAM specific activity varied 1000-fold in the tissues examined, with highest levels in heart atrium, pituitary and salivary glands, and hypothalamus. The fraction of total PAM activity that was membrane associated varied from approximately 70% in heart atrium to 10% in neurointermediate pituitary lobe and thyroid gland. Levels of PAM mRNA varied over 300-fold. In the heart atrium, PAM mRNA accounts for more than 0.1% of the mRNA. For many tissues the ratio of total PAM specific activity to PAM mRNA levels was similar; however, PAM activity was higher than expected from mRNA levels in the salivary glands and lower than expected in several tissues, including heart ventricle. Three major size classes of PAM mRNA were identified among the tissues. Use of RNAse H indicated that differences in size were not due to the length of the poly(A) tail. The heart and central nervous system expressed PAM mRNA of the 4.2 kilobase (kb) and 3.8 kb size classes, while the remaining tissues expressed predominantly 3.8 kb and 3.6 kb classes; few tissues contained only one size class of PAM mRNA. The two major forms of PAM mRNA in adult heart atrium differ by the presence or absence of a 315 nucleotide segment in the protein coding region. Using a cDNA probe from within this segment, the 4.2 kb and 3.8 kb size classes of PAM mRNA in the central nervous system appeared to resemble those in the heart atrium. In the remaining tissues, a subset of PAM mRNAs in the 3.8 kb and 3.6 kb size classes hybridized with this probe, suggesting that additional forms of PAM mRNA are present.  相似文献   

2.
Primary cultures of neonatal rat atrial and ventricular cardiomyocytes were used to investigate the expression of peptidylglycine alpha-amidating monooxygenase (PAM), a bifunctional enzyme required for the production of alpha-amidated neuroendocrine peptides. The use of assays for the individual enzymes, peptidylglycine alpha-amidating monooxygenase (PHM) and peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL), demonstrated that the levels of expression observed in vitro approximated those observed in vivo. Both in vivo and in vitro, atrial and ventricular PAL activity greatly exceeded PHM activity. Atrial and ventricular cardiomyocytes secreted PHM and PAL activity at a constant rate throughout the culture period. Immunofluorescence studies localized PAM proteins to the perinuclear region, with intense punctate staining. Both in vivo and in vitro, PAM mRNAs encoding integral membrane proteins predominated throughout the neonatal period, with PAM-1 mRNA becoming more prevalent after the first week in culture. Although PAM-2 mRNA decreased in prevalence in vivo at the time when PAM-1 expression increased, levels of PAM-2 mRNA remained elevated throughout 2 weeks in vitro. Western blot analysis demonstrated intact PAM-1 and PAM-2 proteins in atrial cultures, with the prevalence of PAM-1 increasing in older cultures. Atrial cardiomyocytes secreted only bifunctional PAM proteins. Many of the features of PAM expression, processing, and storage that are unique to cardiomyocytes as opposed to endocrine cells are faithfully replicated by primary atrial and ventricular cultures.  相似文献   

3.
Recent investigations have shown that the heart atrium is an endocrine tissue. In the present studies, high levels of peptidylglycine alpha-amidating monooxygenase (PAM), which catalyzes the formation of bioactive alpha-amidated peptides from their glycine-extended precursors, have been found in particulate fractions from bovine and rat heart atrium; only low levels of PAM activity were present in soluble fractions. Corresponding fractions from the ventricles contained 20-fold less activity. Immunocytochemical studies demonstrated that PAM was localized primarily to atrial cardiocytes, with a distribution resembling that of atriopeptin. Following differential centrifugation of rat atrial homogenates, most of the PAM activity was associated with crude granule fractions, with lesser amounts of activity associated with crude microsomal fractions. Upon further subcellular fractionation, PAM activity in the rat atrium was found primarily with immunoactive atriopeptin in fractions enriched in secretory granules. Following sodium dodecyl sulfate-polyacrylamide gel electrophoresis, antisera to purified bovine pituitary PAM identified a 113,000-dalton protein in bovine atrial microsomes and secretory granules; the protein predicted from the sequence of the cDNA encoding bovine pituitary PAM is of similar size (Eipper, B. A., Park, L. P., Dickerson, I. M., Keutmann, H. T., Thiele, E. A., Rodriguez, H., Schofield, P. R., and Mains, R. E. (1987) Mol. Endocrinol. 1, 777-790). Northern blot analysis using cDNA probes encoding bovine pituitary PAM demonstrated higher levels of PAM mRNA in heart atrium than in anterior pituitary. Rat heart contains PAM mRNA species of 3.6 and 3.8 kilobases, the smaller mRNA species corresponding in size to the PAM mRNA expressed in rat anterior pituitary.  相似文献   

4.
We have demonstrated that muscarinic stimulation of inositol phosphate production in cultured atrial cells from chicks at 14 days in ovo is partially sensitive to inhibition by pertussis toxin. In these cells, muscarinic agonist binding is coupled to phospholipase C activity via at least two guanine-nucleotide-binding proteins (G-proteins), one sensitive to pertussis toxin and the other (Gp) insensitive to pertussis toxin [Barnett, Shamah, Lassegue, Griendling & Galper (1990) Biochem. J. 271, 437-442]. In the current study we demonstrate that during embryonic development of the chick heart, muscarinic stimulation of inositol phosphate production decreases by 50% between days 5 and 14 in ovo in cells cultured from both atrium and ventricle. In atrial cells, however, pertussis toxin-sensitive muscarinic stimulation of inositol phosphate production increased from undetectable levels at day 5 in ovo to 40% of total stimulation at day 12 in ovo. Muscarinic stimulation of inositol phosphate production in the ventricle did not become sensitive to pertussis toxin at any age studied. In permeabilized atrial cells from embryonic chicks at 5 days in ovo, guanosine 5'-[gamma-thio]triphosphate (GTP[S]) stimulated InsP1 levels by 40 +/- 10% (mean +/- S.E.M., n = 3), InsP2 levels by 117 +/- 18% and InsP3 levels by 51 +/- 8%, suggesting that at day 5 in ovo all of the muscarinic-stimulated inositol phosphate production was coupled to phospholipase C via Gp. H.p.l.c. analysis demonstrated that, in spite of these changes in coupling of phospholipase C to different G-proteins, no changes could be demonstrated in the isomers of InsP3 produced in response to carbamylcholine at both days 5 and 14 in ovo. These data demonstrate that embryonic development of the chick atrium is associated with a switch in coupling of muscarinic receptors to phospholipase C from Gp to a pertussis toxin substrate. This developmental switch in coupling of G-proteins may be related to possible developmental switches in levels of muscarinic receptor isoforms or switches in the subtype of phospholipase C.  相似文献   

5.
The differentiation of endocrine myocardiocytes was investigated in the heart of developing toad Bufo arenarum Hensel, combining ultrastructural and immunocytochemical procedures. The distribution of immuno-reactive atrial natriuretic peptide (ANP) in the whole heart was appraised by light microscopy, applying biotin-streptavidin and immunofluorescence techniques. With the latter procedures ANP was first recognized at embryonic stage 22, in both atrium and ventricle. In the ensuing stages the ANP-reactivity became stronger in the atrium, while it became dimmer in the ventricle. At the end of the larval prometamorphic stage, atrial myocardiocytes acquired almost all the features of adult myoendocrine cells. At electron microscope level, small inclusions, about 110-120 nm in diameter, resembling secretory granules were found in myoendocrine cells beginning at embryonic stage 22. However, no immunogold labeling of ANP occurred until stage 25. The number of secretory granules diminished in the ventricles and increased in the atrium of the larval heart and at the end of the prometamorphic stage the atrial myoendocrine cells presented the ultrastructural characteristics of active secretory cells. The synthesis of ANP in larvae is enhanced at a critical period of development when the developing toad switches from an aquatic environment to terrestrial life. The cardiac hormones seem to play a key role in the regulation of the osmolarity of body fluids at this developmental stage.  相似文献   

6.
7.
We have isolated a cDNA that encodes the human regulatory myosin light chain isoform predominant in adult atrial muscle. The cDNA contains an open reading frame of 175 amino acids and encodes a hydrophilic protein of a largely helical structure with two potential phosphorylation sites. The protein is different from any other regulatory myosin light chain so far described and is the product of a previously uncharacterized single copy gene. An isoform-specific probe was used to analyze the expression of this isoform in adult muscle and in cardiac and skeletal muscle development in vivo and in vitro. Parallel analysis of the corresponding human alkali myosin light chain (predominant in adult atrium) showed that both isoforms are expressed in early heart development, in both atrium and ventricle. Although the atrial alkali light chain is expressed throughout embryonic striated muscle development, the regulatory myosin light chain was not detected in skeletal myogenesis in vivo or in vitro. Thus the atrial isoforms are not universally or exclusively "paired" and can be independently regulated. We propose that the manner in which these particular isoforms fulfill the functional requirements of the muscle at different developmental times may have direct impact on their regulation.  相似文献   

8.
The pituitary is a rich source of peptidylglycine alpha-amidating monooxygenase (PAM). This bifunctional protein contains peptidylglycine alpha-hydroxylating monooxygenase (PHM) and peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL) catalytic domains necessary for the two-step formation of alpha-amidated peptides from their peptidylglycine precursors. In addition to the four forms of PAM mRNA identified previously, three novel forms of PAM mRNA were identified by examining anterior and neurointermediate pituitary cDNA libraries. None of the PAM cDNAs found in pituitary cDNA libraries contained exon A, the 315-nucleotide (nt) segment situated between the PHM and PAL domains and present in rPAM-1 but absent from rPAM-2. Although mRNAs of the rPAM-3a and -3b type encode bifunctional PAM precursors, the proteins differ significantly. rPAM-3b lacks a 54-nt segment encoding an 18-amino acid peptide predicted to occur in the cytoplasmic domain of this integral membrane protein; rPAM-3a lacks a 204-nt segment including the transmembrane domain and encodes a soluble protein. rPAM-5 is identical to rPAM-1 through nt 1217 in the PHM domain; alternative splicing generates a novel 3'-region encoding a COOH-terminal pentapeptide followed by 1.1 kb of 3'-untranslated region. The soluble rPAM-5 protein lacks PAL, transmembrane, and cytoplasmic domains. These three forms of PAM mRNA can be generated by alternative splicing. The major forms of PAM mRNA in both lobes of the pituitary are rPAM-3b and rPAM-2. Despite the fact that anterior and neurointermediate pituitary contain a similar distribution of forms of PAM mRNA, the distribution of PAM proteins in the two lobes of the pituitary is quite different. Although integral membrane proteins similar to rPAM-2 and rPAM-3b are major components of anterior pituitary granules, the PAM proteins in the neurointermediate lobe have undergone more extensive endoproteolytic processing, and a 75-kDa protein containing both PHM and PAL domains predominates. The bifunctional PAM precursor undergoes tissue-specific endoproteolytic cleavage reminiscent of the processing of prohormones.  相似文献   

9.
The embryonic vertebrate heart is composed of two major chambers, a ventricle and an atrium, each of which has a characteristic size, shape and functional capacity that contributes to efficient circulation. Chamber-specific gene expression programs are likely to regulate key aspects of chamber formation. Here, we demonstrate that epigenetic factors also have a significant influence on chamber morphogenesis. Specifically, we show that an atrium-specific contractility defect has a profound impact on ventricular development. We find that the zebrafish locus weak atrium encodes an atrium-specific myosin heavy chain that is required for atrial myofibrillar organization and contraction. Despite their atrial defects, weak atrium mutants can maintain circulation through ventricular contraction. However, the weak atrium mutant ventricle becomes unusually compact, exhibiting a thickened myocardial wall, a narrow lumen and changes in myocardial gene expression. As weak atrium/atrial myosin heavy chain is expressed only in the atrium, the ventricular phenotypes in weak atrium mutants represent a secondary response to atrial dysfunction. Thus, not only is cardiac form essential for cardiac function, but there also exists a reciprocal relationship in which function can influence form. These findings are relevant to our understanding of congenital defects in cardiac chamber morphogenesis.  相似文献   

10.
PAM14 has been found to associate in complexes with the MORF4/MRG family of proteins as well as Rb, the tumor suppressor protein. This suggested that it might be involved in cell growth, immortalization, and/or senescence. To elucidate the in vivo function of PAM14, we characterized the expression pattern of mouse Pam14 and generated PAM14-deficient (Pam14(-/-)) mice. Pam14 was widely expressed in all mouse tissues and as early as 7 days during embryonic development. Despite this ubiquitous expression in wild-type mice, Pam14(-/-) mice were healthy and fertile. Response to mitogenic stimulation and production of interleukin-2 were the same in stimulated splenic T cells from Pam14(-/-) mice as in control littermates. Cell growth rates of mouse embryonic fibroblasts (MEFs) from all three genotypes were the same, and immortalized cells were obtained from all cell cultures during continuous culture. There was also no difference in expression of growth-related genes in response to serum stimulation in the null versus control MEFs. These data demonstrate that PAM14 is not essential for normal mouse development and cell cycle control. PAM14 likely acts as an adaptor protein in nucleoprotein complexes and is probably compensated for by another functionally redundant protein(s).  相似文献   

11.
12.
The COOH-terminal alpha-amidation of bioactive peptides is a 2-step process catalyzed by two separable enzymatic activities both derived from the peptidylglycine alpha-amidating monooxygenase (PAM) precursor. Two forms of PAM mRNA (rPAM-1 and -2), differing by the presence or absence of optional Exon A, were previously characterized; both encode precursors predicted to have an NH2-terminal signal sequence, an intragranular domain containing both enzymatic activities, and a single transmembrane domain followed by a short, cytoplasmic COOH-terminal domain. In this report, two novel types of PAM mRNA were identified in adult rat atrium. A cDNA of each type was sequenced, and the results indicate that rPAM-3 and -4 could be related to each other and to the previously characterized rat PAM cDNAs by alternative mRNA splicing. Deletion of a 258-nucleotide segment (optional Exon B) encoding the transmembrane domain from rPAM-3 and the presence of a novel 3'-exon in rPAM-4 mean that both rPAM-3 and -4 mRNAs encode precursor proteins that have an NH2-terminal signal peptide but lack a transmembrane domain. The rPAM-4 precursor protein lacks the region of the PAM precursor catalyzing the second step in the alpha-amidation reaction. Low levels of rPAM-3 and -4 type mRNA were detected in atrium. Utilizing the polymerase chain reaction, two major patterns of distribution of forms of PAM mRNA were found. In the heart and central nervous system, PAM mRNAs both containing and lacking optional Exon A were prevalent and almost all of the PAM mRNAs detected contained optional Exon B. In the pituitary and submaxillary glands, PAM mRNAs lacking optimal Exon A were prevalent, as were PAM mRNAs lacking all or part of optional Exon B. Since the distribution of PAM activity between soluble and membrane fractions is tissue-specific and developmentally regulated and since rPAM-4 lacks an enzymatic portion of the PAM precursor, the tissue-specific expression of these forms of rat PAM mRNA is expected to be of functional significance.  相似文献   

13.
PAM (protein associated with Myc) is a potent inhibitor of adenylyl cyclases (ACs) which is primarily expressed in neurones. Here we describe that PAM is highly expressed in dorsal horn neurones and motoneuron of the spinal cord, as well as in neurones of dorsal root ganglia in adult rats. PAM mRNA expression is differentially regulated during development in both spinal cord and dorsal root ganglia of rats, being strongest during the major respective synaptogenic periods. In adult rats, PAM expression was up-regulated in the spinal cord after peripheral nociceptive stimulation using zymosan and formalin injection, suggesting a role for PAM in spinal nociceptive processing. Since PAM inhibited Galphas-stimulated AC activity in dorsal root ganglia as well as spinal cord lysates, we hypothesized that PAM may reduce spinal nociceptive processing by inhibition of cAMP-dependent signalling. Accordingly, intrathecal treatment with antisense but not sense oligonucleotides against PAM increased basal and Galphas-stimulated AC activity in the spinal cord and enhanced formalin-induced nociceptive behaviour in adult rats. Taken together our findings demonstrate that PAM is involved in spinal nociceptive processing.  相似文献   

14.
The embryonic vertebrate heart is divided into two major chambers, an anterior ventricle and a posterior atrium. Although the fundamental differences between ventricular and atrial tissues are well documented, it is not known when and how cardiac anterior-posterior (A-P) patterning occurs. The expression patterns of two zebrafish cardiac myosin genes, cardiac myosin light chain 2 (cmlc2) and ventricular myosin heavy chain (vmhc), allow us to distinguish two populations of myocardial precursors at an early stage, well before the heart tube forms. These myocardial subpopulations, which may represent the ventricular and atrial precursors, are organized in a medial-lateral pattern within the precardiac mesoderm. Our examinations of cmlc2 and vmhc expression throughout the process of heart tube assembly indicate the important role of an intermediate structure, the cardiac cone, in the conversion of this early medial-lateral pattern into the A-P pattern of the heart tube. To gain insight into the genetic regulation of heart tube assembly and patterning, we examine cmlc2 and vmhc expression in several zebrafish mutants. Analyses of mutations that cause cardia bifida demonstrate that the achievement of a proper cardiac A-P pattern does not depend upon cardiac fusion. On the other hand, cardiac fusion does not ensure the proper A-P orientation of the ventricle and atrium, as demonstrated by the heart and soul mutation, which blocks cardiac cone morphogenesis. Finally, the pandora mutation interferes with the establishment of the early medial-lateral myocardial pattern. Altogether, these data suggest new models for the mechanisms that regulate the formation of a patterned heart tube and provide an important framework for future analyses of zebrafish mutants with defects in this process.  相似文献   

15.
16.
In an attempt to identify a sensitive and improved marker of mammalian copper status during neonatal development experiments compared two plasma cuproenzymes, peptidylglycine alpha-amidating monooxygenase (PAM ), an enzyme involved in peptide posttranslational activation, to ceruloplasmin (Cp), a ferroxidase involved in iron mobilization. Dietary Cu deficiency (Cu-) was studied in dams and offspring at postnatal age 3 (P3), P12, and P28. Rodent Cp activity rose during lactation whereas PAM activity fell. Reduction in Cp activity was more severe than reduction in PAM activity in Cu- offspring and dams. Cp activity was greater in rats than mice whereas PAM activity was similar in adults but greater in mouse than rat pups. Both cuproenzymes changed during neonatal development and when dietary copper was limiting. With proper controls, each enzyme can be used to assess copper status.  相似文献   

17.
The effects of hirsutine, an indole alkaloid from Uncaria rhynchophylla MIQ. JACKSON with antihypertensive, negative chronotropic and antiarrhythmic activity, and its C3 structural epimer, dihydrocorynantheine, on membrane potentials of rabbit sino-atrial node and guinea-pig right ventricle and left atrium were studied with microelectrode techniques. In sino-atrial node preparations, hirsutine and dihydrocorynantheine (0.1 microM to 10 microM) concentration-dependently increased cycle length, decreased slope of the pacemaker depolarization (phase 4 depolarization), decreased maximum rate of rise and prolonged action potential duration. In atrial and ventricular preparations, both compounds (0.1 microM to 30 microM) concentration-dependently decreased maximum rate of rise and prolonged action potential duration. These results indicate that hirsutine and dihydrocorynantheine have direct effects on the action potential of cardiac muscle through inhibition of multiple ion channels, which may explain their negative chronotropic and antiarrhythmic activity.  相似文献   

18.
Complementary DNA sequences and structural genes encoding the atrial natriuretic peptide precursor (prepro-ANP) have been cloned. Analysis of DNA sequences, complementary to rat atrial prepro-ANP mRNA, has revealed that the various natriuretic peptides isolated from rat atrium reside at the carboxy terminus of a 152-amino-acid precursor protein. The human gene, comprised of three exons and two intervening sequences, encodes a protein of 151 amino acids highly homologous to the rat precursor. Although putative proteolytic processing sites can be identified throughout the prepro-ANP amino acid sequence, the natural form of the mature ANP has not been identified. Therefore, the sites and mechanisms of prepro-ANP processing to mature peptides forms are unknown. However, the successful cloning of the prepro-ANP gene and corresponding cDNAs provide the necessary molecular tools to address these fundamental questions relating to the regulation of ANP synthesis and processing in atrial and extraatrial tissues.  相似文献   

19.
Aldose reductase (AR), an enzyme which converts glucose to sorbitol, has been implicated in the pathogenesis of diabetic cataracts and retinopathy. The normal physiological role of this enzyme in ocular tissue, however, remains unclear. In a developmental study in the rat using in situ and Northern hybridization analyses, we have found that there is a high level of AR mRNA expression in optic cup and lens as early as embryonic day 13. Serial sections through whole embryos at this stage showed that the eye was the only site of AR mRNA hybridization. Levels of AR mRNA declined in the retina as differentiation proceeded and were very sparse there postnatally. As lens development progressed, epithelial AR mRNA levels remained high, especially in the germinative zone, which is the source of the cells that will become lens fibers, and in the bow region, where these cells undergo a dramatic morphogenetic differentiation into lens fibers. AR mRNA was undetectable in terminally differentiated lens fibers. Since it has been suggested that AR-catalyzed sorbitol production could be an osmoprotective device of lens epithelium during systemic hyperosmolar stress, AR mRNA levels from dehydrated hyperosmolar rats were compared with euvolemic control values, and no difference was found. In summary, AR appears to be of particular importance in the development of the eye, with its retinal role receding relative to lens as differentiation is completed. A continued high level of expression in lens epithelium in adulthood may be explained by the fact that lens tissue, unlike retina, normally continues to proliferate and differentiate after birth. The temporal and spatial pattern of distribution of AR mRNA is strongly suggestive of a role for this enzyme in lens fiber morphogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号