首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exploring the mechanisms of tolerance in microorganisms to vanillin, which is derived from lignin, will benefit the design of robust cell factories that produce biofuels and chemicals using lignocellulosic materials. Our objective was to identify the genes related to vanillin tolerance in Saccharomyces cerevisiae. We investigated the effects on vanillin tolerance of several genes that have site mutations in the highly vanillin-tolerant strain EMV-8 compared to its parental line NAN-27. The results showed that overexpression of GCY1, a gene that encodes an aldo-keto reductase that also has mRNA-binding activity, YPR1, a paralog of GCY1 that encodes an aldo-keto reductase, PEX5, a gene that encodes a peroxisomal membrane signal receptor and MBF1, a gene that encodes a multiprotein bridging factor increase the specific growth rates (μ) by 49%, 41%, 44% and 48 %, respectively, in medium containing 6 mmol l−1 vanillin. Among these gene products, Gcy1p and Ypr1p showed NADPH-dependent and NAD(P)H-dependent vanillin reductase activity, respectively. The reductase-inactive mutant Gcy1pY56F also increased vanillin tolerance in S. cerevisiae, suggesting that other mechanisms exist. Although TRS85 and PEX5, genes for which the mRNAs are binding targets of Gcy1p, were shown to be related to vanillin tolerance, both the mRNA and protein levels of these genes were not changed by overexpression of GCY1. The relationship between the mRNA-binding activity of Gcy1p and its positive effect on vanillin tolerance is still not clear. Finally, we found that the point mutation D112A in Mbf1p, which disrupts the binding of Mbf1p and the TATA element-binding protein (TBP), did not decrease the positive effect of Mbf1p on vanillin tolerance. This indicates that the binding of Mbf1p and TBP is not necessary for the positive effect on vanillin tolerance mediated by Mbf1p. We have successfully identified new genes related to vanillin tolerance and provided novel targets that can be used to improve the vanillin tolerance of S. cerevisiae. Moreover, we have extended our understanding of the proteins encoded by these genes.  相似文献   

2.
Xylitol is commercially used in chewing gum and dental care products as a low calorie sweetener having medicinal properties. Industrial yeast strain of S. cerevisiae was genetically modified to overexpress an endogenous aldose reductase gene GRE3 and a xylose transporter gene SUT1 for the production of xylitol. The recombinant strain (XP-RTK) carried the expression cassettes of both the genes and the G418 resistance marker cassette KanMX integrated into the genome of S. cerevisiae. Short segments from the 5′ and 3′ delta regions of the Ty1 retrotransposons were used as homology regions for integration of the cassettes. Xylitol production by the industrial recombinant strain was evaluated using hemicellulosic hydrolysate of the corn cob with glucose as the cosubstrate. The recombinant strain XP-RTK showed significantly higher xylitol productivity (212 mg L?1 h?1) over the control strain XP (81 mg L?1 h?1). Glucose was successfully replaced by glycerol as a co-substrate for xylitol production by S. cerevisiae. Strain XP-RTK showed the highest xylitol productivity of 318.6 mg L?1 h?1 and titre of 47 g L?1 of xylitol at 12 g L?1 initial DCW using glycerol as cosubstrate. The amount of glycerol consumed per amount of xylitol produced (0.47 mol mol?1) was significantly lower than glucose (23.7 mol mol?1). Fermentation strategies such as cell recycle and use of the industrial nitrogen sources were demonstrated using hemicellulosic hydrolysate for xylitol production.  相似文献   

3.
Ji L  Shen Y  Xu L  Peng B  Xiao Y  Bao X 《Bioresource technology》2011,102(17):8105-8109
Saccharomyces cerevisiae is affected by the presence of certain phenolic compounds such as vanillin during fermentation of pretreated lignocellulosic hydrolysates. Since vanillin can be polymerized in the presence of laccase into compounds with lower toxicity, the laccase gene, lacA, from Trametes sp. AH28-2 was fused to the α-factor signal sequence and transferred into S. cerevisiae CEN.PK strains for secretory expression. Furthermore, the chaperone gene, KAR2, was overexpressed to promote the translocation of laccase. In the presence of 8 mmol/L vanillin, a shorter lag phase was observed in the lacA gene expressing strains. The vanillin-specific conversion rate of the lacA-expressing strain BSJX0A2 was 0.069 g g−1 biomass h−1, while it was 0.065 g g−1 biomass h−1 in the reference strain.  相似文献   

4.
Sugarcane bagasse is one of the low-cost substrates used for bioethanol production. In order to solubilize sugars in hemicelluloses like xylan, a new thermotolerant isolate of Candida tropicalis HNMA-1 with xylan-hydrolyzing ability was identified and characterized. The strain showed relative tolerance to high temperature. Our results demonstrated 0.211 IU ml?1 xylanase activity at 40 °C compared to 0.236 IU ml?1 at 30 °C. The effect of high temperature on the growth and fermentation of xylose and sugarcane bagasse hydrolysate were also investigated. In both xylose or hydrolysate medium, increased growth was recorded at 40 °C. Meanwhile, the efficiency of ethanol fermentation was adversely affected by temperature since yields of 0.088 g g?1 and 0.076 g g?1 in the xylose medium, in addition to 0.090 g g?1 and 0.078 g g?1 in the hydrolysate medium were noticed at 30 °C and 40 °C, respectively. Inhibitory compounds in the hydrolysate medium demonstrated negative effects on fermentation and productivity, with maximum ethanol concentration attained after 48 h in the hydrolysate, as opposed to 24 h in the xylose medium. Our data show that the newly thermotolerant isolate, C. tropicalis HNMA-1, is able to efficiently ferment xylose and hydrolysate, and also has the capacity for application in ethanol production from hemicellulosic sources.  相似文献   

5.
Evaluation of antioxidant capacities of green microalgae   总被引:2,自引:0,他引:2  
Three strains of green microalgae, Chlorococcum sp.C53, Chlorella sp. E53, and Chlorella sp.ED53 were studied for their antioxidant activities. Crude extracts of these microalgae in hot water and in ethanol were examined for their total phenolic contents and for their antioxidant capacities. In order to determine their phenolic contents, the Folin–Ciocalteu method was used. As for the determination of their antioxidant capacities, four different assays were used: (1) total antioxidant capacity determination; (2) DPPH radical scavenging assay; (3) ferrous ion chelating ability assay; and (4) inhibition of lipid peroxidation (using thiobarbituric acid reactive substance). For all the strains we have studied, their ethanolic extract showed more antioxidant activities than their hot water extract. Categorically, the ethanolic extract of Chlorella sp.E53 exhibited both the highest total phenolic content of 35.5?±?0.14 mg gallic acid equivalent (GAE) g?1 dry weight and the highest DPPH radical scavenging of 68.18?±?0.38 % at 1.4 mg mL?1 (IC50 0.81 mg mL?1), whereas Chlorella sp.ED53 showed both the highest ferrous ion chelation activity of 42.78?±?1.48 % at 1 mg mL?1 (IC50 1.23 mg mL?1) and the highest inhibition of lipid peroxidation of 87.96?±?0.59 % at 4 mg mL?1. This high level of inhibition is comparable to 94.42?±?1.39 % of butylated hydroxytoluene, a commercial synthetic antioxidant, at the same concentration.  相似文献   

6.
The cost-effective production of bioethanol from lignocellulose requires the complete conversion of plant biomass, which contains up to 30 % mannan. To ensure utilisation of galactomannan during consolidated bioprocessing, heterologous production of mannan-degrading enzymes in fungal hosts was explored. The Aspergillus aculeatus endo-β-mannanase (Man1) and Talaromyces emersonii α-galactosidase (Agal) genes were expressed in Saccharomyces cerevisiae Y294, and the Aspergillus niger β-mannosidase (cMndA) and synthetic Cellvibrio mixtus β-mannosidase (Man5A) genes in A. niger. Maximum enzyme activity for Man1 (374 nkat ml?1, pH 5.47), Agal (135 nkat ml?1, pH 2.37), cMndA (12 nkat ml?1, pH 3.40) and Man5A (8 nkat ml?1, pH 3.40) was observed between 60 and 70 °C. Co-expression of the Man1 and Agal genes in S. cerevisiae Y294[Agal-Man1] reduced the extracellular activity relative to individual expression of the respective genes. However, the combined action of crude Man1, Agal and Man5A enzyme preparations significantly decreased the viscosity of galactomannan in locust bean gum, confirming hydrolysis thereof. Furthermore, when complemented with exogenous Man5A, S. cerevisiae Y294[Agal-Man1] produced 56 % of the theoretical ethanol yield, corresponding to a 66 % carbohydrate conversion, on 5 g l?1 mannose and 10 g l?1 locust bean gum.  相似文献   

7.
The present study consists in evaluating the inter- and intraspecific variability of phenolic contents and biological capacities of Limoniastrum monopetalum L. and L. guyonianum Boiss. extracts. Ultimately, they were subjected to HPLC for phenolic identification. Results showed a great variation of phenolic content as function of species and localities. In fact, L. guyonianum extracts (El Akarit) contained the highest polyphenol (57 mg GAE g?1 DW), flavonoid (9.47 mg CE g?1 DW) and condensed tannin contents (106.58 mg CE g?1 DW). These amounts were accompanied by the greatest total antioxidant activity (128.53 mg GAE g?1 DW), antiradical capacity (IC50 = 4.68 μg/ml) and reducing power (EC50 = 120 μg/ml). In addition, L. monopetalum and L. guyonianum extracts exhibited an important and variable antibacterial activity with a diameter of inhibition zone ranging from 6.00 to 14.83 mm. Furthermore, these extracts displayed considerable antifungal activity. L. monopetalum extracts (Enfidha) showed the strongest activity against Candida glabrata and C. krusei with a diameter exceeding 12 mm. The phytochemical investigation of these extracts confirmed the variability of phenolic composition, since the major phenolic compound varied as a function of species and locality. These findings suggest that these two halophytes may be a new source of natural antioxidants that are increasingly important for human consumption, as well as for agro-food, cosmetic and pharmaceutical industries.  相似文献   

8.
Cost-effective conversion of lignocellulose hydrolysate to optically pure lactic acid is commercially attractive but very challenging. Bacillus coagulans JI12 was isolated from natural environment and used to produce L-lactic acid (optical purity?>?99.5 %) from lignocellulose sugars and acid hydrolysate of oil palm empty fruit bunch (EFB) at 50 °C and pH 6.0 without sterilization of the medium. In fed-batch fermentation with 85 g/L initial xylose and 55 g/L xylose added after 7.5 h, 137.5 g/L lactic acid was produced with a yield of 98 % and a productivity of 4.4 g/L?h. In batch fermentation of a sugar mixture containing 8.5 % xylose, 1 % glucose, and 1 % L-arabinose, the lactic acid yield and productivity reached 98 % and 4.8 g/L?h, respectively. When EFB hydrolysate was used, 59.2 g/L of lactic acid was produced within 9.5 h at a yield of 97 % and a productivity of 6.2 g/L?h, which are the highest among those ever reported from lignocellulose hydrolysates. These results indicate that B. coagulans JI12 is a promising strain for industrial production of L-lactic acid from lignocellulose hydrolysate.  相似文献   

9.
Vanillin is one of the most important flavoring agents used today. That is why many efforts have been made on biotechnological production from natural abundant substrates. In this work, the nonpathogenic Pseudomonas putida strain KT2440 was genetically optimized to convert ferulic acid to vanillin. Deletion of the vanillin dehydrogenase gene (vdh) was not sufficiant to prevent vanillin degradation. Additional inactivation of a molybdate transporter, identified by transposon mutagenesis, led to a strain incapable to grow on vanillin as sole carbon source. The bioconversion was optimized by enhanced chromosomal expression of the structural genes for feruloyl-CoA synthetase (fcs) and enoyl-CoA hydratase/aldolase (ech) by introduction of the strong tac promoter system. Further genetic engineering led to high initial conversion rates and molar vanillin yields up to 86 % within just 3 h accompanied with very low by-product levels. To our knowledge, this represents the highest productivity and molar vanillin yield gained with a Pseudomonas strain so far. Together with its high tolerance for ferulic acid, the developed, plasmid-free P. putida strain represents a promising candidate for the biotechnological production of vanillin.  相似文献   

10.
The specific binding of DCMU and atrazine to the thylakoid membranes of a uniparentally inherited DCMU-resistant mutant dr-416 of Chlamydomonas reinhardii was measured. Whole cells of the mutant can tolerate a 15-fold concentration of DCMU as compared to the parent strain. The same tolerance is found for the photosystem II activity of isolated thylakoid membranes. The mutant is not resistant against atrazine. In equilibrium-binding studies with [14C]atrazine and unlabelled DCMU, the specific binding for atrazine was found to be identical in the mutant and in the parent strain. The competitive binding of DCMU is significantly weaker for membranes of the mutant than of the parent strain, the equilibrium dissociation constants being 2.0 × 10?7 M and 3.8 × 10?8 M, respectively.  相似文献   

11.
A new xylose fermenting yeast was isolated from over-ripe banana by enrichment in xylose-containing medium. The phylogenetic analysis of ITS1-5.8S-ITS2 region sequences of ribosomal RNA of isolate BY2 revealed that it shows affiliation to genus Pichia and clades with Pichia caribbica. In batch fermentation, Pichia strain BY2 fermented xylose, producing 15 g l?1 ethanol from 30 g l?1 xylose under shaking conditions at 28°C, with ethanol yield of 0.5 g g?1 and volumetric productivity of 0.31 g l?1 h?1. The optimum pH range for ethanol production from xylose by Pichia strain BY2 was 5–7. Pichia strain BY2 also produced 6.08 g l?1 ethanol from 30 g l?1 arabinose. Pichia strain BY2 can utilize sugarcane bagasse hemicellulose acid hydrolysate for alcohol production, efficiency of fermentation was improved by neutralization, and sequential use of activated charcoal adsorption method. Percent total sugar utilized and ethanol yield for the untreated hydrolysate was 17.14% w/v and 0.33 g g?1, respectively, compared with 66.79% w/v and 0.45 g g?1, respectively, for treated hemicellulose acid hydrolysate. This new yeast isolate showed ethanol yield of 0.45 g g?1 and volumetric productivity of 0.33 g l?1 h?1 from sugarcane bagasse hemicellulose hydrolysate detoxified by neutralization and activated charcoal treatment, and has potential application in practical process of ethanol production from lignocellulosic hydrolysate.  相似文献   

12.
The use of lignocellulosic residues for ethanol production is limited by toxic compounds in fermenting yeasts present in diluted acid hydrolysates like acetic acid and 2-furaldehyde. The respiratory deficient phenotype gives the cell the ability to resist several toxic compounds. So the aim of this work was to evaluate the tolerance to toxic compounds present in lignocellulosic hydrolysates like acetic acid and 2-furaldehyde in Pichia stipitis and its respiratory deficient strains. The respiratory deficient phenotype was induced by exposure to chemical agents such as acriflavine, acrylamide and rhodamine; 23 strains were obtained. The selection criterion was based on increasing specific ethanol yield (g ethanol g?1 biomass) with acetic acid and furaldehyde tolerance. The screening showed that P. stipitis NRRL Y-7124 ACL 2-1RD (lacking cytochrome c), obtained using acrylamide, presented the highest specific ethanol production rate (1.82 g g?1 h?1). Meanwhile, the ACF8-3RD strain showed the highest acetic acid tolerance (7.80 g L?1) and the RHO2-3RD strain was able to tolerate up to 1.5 g L?1 2-furaldehyde with a growth and ethanol production inhibition of 23 and 22 %, respectively. The use of respiratory deficient yeast phenotype is a strategy for ethanol production improvement in a medium with toxic compounds such as hydrolysed sugarcane bagasse amongst others.  相似文献   

13.
Aim: Testing the ability of the alternative ethanol production yeast Dekkera bruxellensis to produce ethanol from lignocellulose hydrolysate and comparing it to Saccharomyces cerevisiae. Methods and Results: Industrial isolates of D. bruxellensis and S. cerevisiae were cultivated in small‐scale batch fermentations of enzymatically hydrolysed steam exploded aspen sawdust. Different dilutions of hydrolysate were tested. None of the yeasts grew in undiluted or 1 : 2 diluted hydrolysate [final glucose concentration always adjusted to 40 g l?1 (0·22 mol l?1)]. This was most likely due to the presence of inhibitors such as acetate or furfural. In 1 : 5 hydrolysate, S. cerevisiae grew, but not D. bruxellensis, and in 1 : 10 hydrolysate, both yeasts grew. An external vitamin source (e.g. yeast extract) was essential for growth of D. bruxellensis in this lignocellulosic hydrolysate and strongly stimulated S. cerevisiae growth and ethanol production. Ethanol yields of 0·42 ± 0·01 g ethanol (g glucose)?1 were observed for both yeasts in 1 : 10 hydrolysate. In small‐scale continuous cultures with cell recirculation, with a gradual increase in the hydrolysate concentration, D. bruxellensis was able to grow in 1 : 5 hydrolysate. In bioreactor experiments with cell recirculation, hydrolysate contents were increased up to 1 : 2 hydrolysate, without significant losses in ethanol yields for both yeasts and only slight differences in viable cell counts, indicating an ability of both yeasts to adapt to toxic compounds in the hydrolysate. Conclusions: Dekkera bruxellensis and S. cerevisiae have a similar potential to ferment lignocellulose hydrolysate to ethanol and to adapt to fermentation inhibitors in the hydrolysate. Significance and Impact of the study: This is the first study investigating the potential of D. bruxellensis to ferment lignocellulosic hydrolysate. Its high competitiveness in industrial fermentations makes D. bruxellensis an interesting alternative for ethanol production from those substrates.  相似文献   

14.
The traditional method to obtain phycocolloids from seaweeds implies successive extraction steps with cold and hot water. The residual cake derived from phycocolloids obtaining process of red seaweed Porphyra columbina is a waste containing 27 % protein and 10.7-mg gallic acid equivalents (100 g)?1. Seaweeds contain functional proteins, and the enzymatic hydrolysis of these proteins has been shown to release bioactive peptides. The aims of this study were to extract bioactive peptides and polyphenols after enzymatic hydrolysis of the residual cake and to evaluate their ACE inhibitory and antioxidant capacities (TEAC, DPPH, and copper-chelating activity). Residual cake hydrolysate has low molecular weight peptides containing Asp, Glu, Ala, and Leu. Residual cake hydrolysate had higher protein solubility than residual cake. ACE inhibition (≈45 %) and radical scavenging activity (TEAC and DPPH inhibition) were attributed mainly to low molecular weight peptides (500 Da) and polyphenols compounds released during proteolysis. The 50 % inhibition protein concentration value (IC50) corresponded to residual cake hydrolysate was 1.01?±?0.02 and 0.91?±?0.01 g L?1, for ABTS and DPPH, respectively. Also, residual cake hydrolysate had high copper-chelating activity (≈97.5 %). Hydrolysis could be used as a means to obtain ACE inhibitory and antioxidant compounds (peptides and polyphenols) from algae protein waste and add value to the phycocolloids extraction process.  相似文献   

15.
Occurrence of feruloyl-CoA synthetase (fcs) and enoyl-CoA hydratase (ech) genes responsible for the bioconversion of ferulic acid to vanillin have been reported and characterized from Amycolatopsis sp., Streptomyces sp., and Pseudomonas sp. Attempts have been made to express these genes in Escherichia coli DH5α, E. coli JM109, and Pseudomonas fluorescens. However, none of the lactic acid bacteria strain having GRAS status was previously proposed for heterologous expression of fcs and ech genes for production of vanillin through biotechnological process. Present study reports heterologous expression of vanillin synthetic gene cassette bearing fcs and ech genes in a dairy isolate Pediococcus acidilactici BD16. After metabolic engineering, statistical optimization of process parameters that influence ferulic acid to vanillin biotransformation in the recombinant strain was carried out using central composite design of response surface methodology. After scale-up of the process, 3.14 mM vanillin was recovered from 1.08 mM ferulic acid per milligram of recombinant cell biomass within 20 min of biotransformation. From LCMS-ESI spectral analysis, a metabolic pathway of phenolic biotransformations was predicted in the recombinant P. acidilactici BD16 (fcs +/ech +).  相似文献   

16.
To increase thermotolerance and ethanol tolerance in Saccharomyces cerevisiae strain YZ1, the strategies of high-energy pulse electron beam (HEPE) and three rounds of protoplast fusion were explored. The YF31 strain had the characteristics of resistant to high-temperature, high-ethanol tolerance, rapid growth and high yield. The YF31 could grow on plate cultures up to 47?°C, containing 237.5?g?L?1 of ethanol. In particular, the mutant strain YF31 generated 94.2?±?4.8?g?L?1 ethanol from 200?g glucose L?1 at 42?°C, which was 2.48 times the production of the wild strain YZ1. Results demonstrated that the variant phenotypes from the strains screening by HEPE irradiation could be used as parent stock for yeast regeneration and the protoplast fusion technology is sufficiently powerful in combining suitable characteristics in a single strain for ethanol fermentation.  相似文献   

17.
Rehmannia glutinosa Libosch., a valuable medicinal plant, was successfully propagated in vitro using shoot tip explants. Shoot multiplication was performed in glass tubes and in a nutrient sprinkle bioreactor. A mixture of 0.1 mg L?1 indole-3-acetic acid (IAA) and 1.0 mg L?1 of 6-benzylaminopurine in Murashige and Skoog (MS) agar-solidified medium proved the best combination for multiple shoot induction, yielding 8.2 shoots per explant after 4 weeks of culture in glass tubes. The number of shoots increased to 21 per explant when the same combination of growth regulators was used in a nutrient sprinkle bioreactor. The shoots rooted with a frequency of 93 % after 6 weeks of culture on MS agar medium supplemented with IAA (0.1 mg L?1) before being acclimatized in the greenhouse. The antioxidant activities of methanolic extracts from the leaves and roots of the in vitro-regenerated plants of R. glutinosa cultivated in the greenhouse were evaluated using four in vitro assays: scavenging of free radicals (DPPH and ABTS), transition metal reduction and total antioxidant activity phosphomolybdenum test. In all cases, the methanolic extract from leaves demonstrated better antioxidant activity than those taken from roots. A strong correlation was found between total phenolic and flavonoid content, and the antioxidant capacity of the studied extracts.  相似文献   

18.
n-Butanol fermentation using Clostridium strains suffers from low titers due to the inability of the strains to tolerate n-butanol. The current study demonstrates a process to get high titer of n-butanol in a single batch mode from the renewable feedstock jatropha seed cake by employing Clostridium acetobutylicum. Chemical mutagenesis was done for improvement of the strain for better n-butanol tolerance and production. Optimization of the parameters resulted in 13.2 g L?1 of n-butanol in 120 h using acid-treated jatropha seed cake hydrolysate (7 %?w/v) in anaerobic sugar medium. The process was scaled up to 15 L level, yielding 18.6 g L?1 of n-butanol in 72 h. The strain was found to be tolerant up to 30 g L?1 n-butanol under optimized conditions. The n-butanol tolerance was accompanied by over-expression of the stress response protein, GroEL, change in fatty acid profile, and ability to accumulate rhodamine 6G in the strain. The study has a significant impact on economically producing n-butanol from biomass.  相似文献   

19.
The benzoylformate decarboxylase gene (mdlC) from Pseudomonas putida was expressed in Escherichia coli BL21(DE3). The recombinant strain together with E. coli/pET30a-mdlB converted (S)-3-ethoxy-4-hydroxymandelic acid (S-EMA) into ethyl vanillin without ethyl vanillin degradation. 4 g ethyl vanillin/l was obtained from 10 g EMA/l within 12 h at 30 °C. This is the first report on the biotransformation of (S)-EMA to ethyl vanillin.  相似文献   

20.
The photosynthetic characteristics through P-E curves and the effect of UV radiation on photosynthesis (measured as rapid adjustment of photochemistry, F v/F m) and DNA damage (as formation of CPDs) were studied in field specimens of green, red and brown algae collected from the eulittoral and sublittoral zone of Fildes Peninsula (King George Island, Antarctic). The content of phenolic compounds (phlorotannins) and the antioxidant activity were also studied in seven brown algae from 0 to 40 m depth. The results indicated that photosynthetic efficiency (α) was high and did not vary between different species and depths, while irradiances for saturation (E k) averaged 55 μmol m?2 s?1 in subtidal and 120 μmol m?2 s?1 in eulittoral species. The studied species exhibited notable short-term UV tolerance along the vertical zonation. In intertidal and shallow water species, decreases in F v/F m by UV radiation were between 0 and 18 %, while in sublittoral algae, decreases in F v/F m varied between 3 and 35 % relative to PAR treatment. In all species, recovery was high averaging 84–100 %. The formation of CPDs increased (15–150 %) under UV exposure, with the highest DNA damage found in some subtidal species. Phlorotannin content varied between 29 mg g?1 DW in Ascoseira mirabilis from 8 m depth and 156 mg g?1 DW in Desmarestia menziesii from 17 m depth. In general, phlorotannin concentrations were constitutively high in deeper sublittoral brown algae, which were correlated with higher antioxidant activities of algal extracts and low decreases in photosynthesis. UV radiation caused a strong decrease in phlorotannin content in the deep-water Himantothallus grandifolius, whereas in D. menziesii and Desmarestia anceps, induction of the synthesis of phlorotannins by UV radiation was observed. The antioxidant activity was in general less affected by UV radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号