首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Headwater streams represent the key sites of nutrient retention, but little is known about temporal variation in this important process. We used monthly measurements over 2 years to examine variation in retention of soluble reactive phosphorus (SRP) and ammonium (NH4+) in two Mediterranean headwater streams with contrasting hydrological regimes (that is, perennial versus intermittent). Differences in retention between streams were more evident for NH4+, likely due to strong differences in the potential for nitrogen limitation. In both streams, nutrient-retention efficiency was negatively influenced by abrupt discharge changes, whereas gradual seasonal changes in SRP demand were partially controlled by riparian vegetation dynamics through changes in organic matter and light availability. Nutrient concentrations were below saturation in the two streams; however, SRP demand increased relative to NH4+ demand in the intermittent stream as the potential for phosphorus limitation increased (that is, higher dissolved inorganic nitrogen:SRP ratio). Unexpectedly, variability in nutrient retention was not greater in the intermittent stream, suggesting high resilience of biological communities responsible for nutrient uptake. Within-stream variability of all retention metrics, however, increased with increasing time scale. A review of studies addressing temporal variation of nutrient retention at different time scales supports this finding, indicating increasing variability of nutrient retention with concomitant increases in the variability of environmental factors from the diurnal to the inter-annual scale. Overall, this study emphasizes the significance of local climate conditions in regulating nutrient retention and points to potential effects of changes in land use and climate regimes on the functioning of stream ecosystems.  相似文献   

2.
This experiment aims to test the traits responsible for the increase in yield potential of winter wheat released in Henan Province, China. Seven established cultivars released in the last 20 years and three advanced lines were assayed. The results showed that grain yield was positively correlated with harvest index(HI), kernel number per square meter, and aboveground biomass. In addition, the HI and aboveground biomass showed an increasing trend with the year of release.Therefore, we can conclude that bread wheat breeding advances during recent decades in Henan Province, China,have been achieved through an increase in HI, kernel number per square meter, and aboveground biomass. A higher d13C seems also to be involved in these advances, which suggests a progressive improvement in constitutive water use efficiency not associated with a trend towards lower stomatal conductance in the most recent genotypes. However, genetic advance Researchdoes not appear related to changes in photosynthesis rates on area basis when measured in the flag leaf or the spike,but only to a higher, whole‐spike photosynthesis. Results also indirectly support the concept that under potential yield conditions, the spike contributed more than the flag leaf to kernel formation.  相似文献   

3.
This experiment aims to test the traits responsible for the increase in yield potential of winter wheat released in Henan Province, China. Seven established cultivars released in the last 20 years and three advanced lines were assayed. The results showed that grain yield was positively correlated with harvest index(HI), kernel number per square meter, and aboveground biomass. In addition, the HI and aboveground biomass showed an increasing trend with the year of release.Therefore, we can conclude that bread wheat breeding advances during recent decades in Henan Province, China,have been achieved through an increase in HI, kernel number per square meter, and aboveground biomass. A higher d13C seems also to be involved in these advances, which suggests a progressive improvement in constitutive water use efficiency not associated with a trend towards lower stomatal conductance in the most recent genotypes. However, genetic advance Researchdoes not appear related to changes in photosynthesis rates on area basis when measured in the flag leaf or the spike,but only to a higher, whole‐spike photosynthesis. Results also indirectly support the concept that under potential yield conditions, the spike contributed more than the flag leaf to kernel formation.  相似文献   

4.
To feed an estimated world population of 8.9 billion by 2050, strategies for increasing grain production must be developed. Several agronomically important traits for increasing yield, such as plant height, grain number, and leaf erectness, have recently been characterized in rice (Oryza sativa L.). These traits are regulated primarily by three phytohormones: gibberellins, cytokinins, and brassinosteroids. The control of biosynthesis and degradation of these key phytohormones is discussed in terms of its importance for normal plant growth. Genes involved in the biosynthesis and regulation of these phytohormones can be used to develop effective strategies to increase grain yield. Genetic manipulation of phytohormone-related gene expression is thus a practical strategy to generate high-yielding transgenic plants through the modification of levels and profile of endogenous phytohormones.  相似文献   

5.
Of the two Taraxacum microspecies used. Taraxacum sellandii Dahlst. usually occurs in grasslands with a high nutrient level; Taraxacum nordstedtii Dahlst. is generally restricted to undisturbed and mineral-poor habitats. Growth response curves for internal N and P were established, based on relative yield of (whole) plant tissue water and (whole plant) internal mineral concentration on a tissue water basis. Critical nutrient concentrations of N and P were determined from the response curves derived. For both macroelements, T. nordstedtii showed lower critical nutrient concentrations. The difference in critical N concentrations coincided with differences in internal NO3-3 concentrations between the microspecies. Finally, we discuss the use of tissue water as a (whole) plant growth parameter and internal mineral concentration on tissue water basis as a parameter describing the mineral status.  相似文献   

6.
The value of cellular N:P that corresponds to co‐limitation by N and P, the critical (Rcrit) or optimum ratio, has been used to infer the competitive advantage of phytoplankton growing in P‐impoverished systems. Using a revised quota model, with a normalized quota function and capable of simulating surge transport, the interactions between the minimum P‐quota (PCo), the shape of the P‐quota–cell growth relationship (affected by constant KQP), and transport kinetics in affecting the utility of Rcrit are considered. For a low PCo to endow an organism with a high Rcrit over a wide range of growth rates, the P‐quota curve must be more hyperbolic (KQP low) rather than linear (KQP high). PCo and KQP also affect the half saturation constant for growth, KgP ; this and the capacity to transport nutrients at rates above those required to sustain steady‐state growth endows a competitive advantage. However, the kinetics of transport into the organism have a greater potential for affecting KgP than changing the kinetics of internal P usage. Thus, the value of Rcrit is not a critical factor affecting competition except in extreme oligotrophic conditions. For competition between species, nutrient transport, accumulation, and resource utilization are all important. However, the efficiency of internal resource utilization is of lesser importance, and certainly not of greater importance, than resource acquisition. Multinutrient models intended to describe competition need to recognize these interactions; the traditional quota model is poorly equipped to do so.  相似文献   

7.
Global wheat yields are suffering due to differences in regional climatic conditions and soil fertility. Plant breeders are continuously working to improve the yield per unit area of wheat crop through selecting superior lines as parents. The screening and field evaluation of available lines allow the selection of superior ones and subsequently improved varieties. Therefore, heritable distinctions among 33 bread wheat lines for yield and related attributes were assessed under field conditions. The experiment included thirty lines and three check varieties. Data relating to different plant characteristics was collected at maturity. Significant differences were recorded for yield and related traits of tested wheat lines and check varieties. Wheat lines V6, V12 and V20 proved better with reduced number of days to reach anthesis and other desirable traits compared to check varieties. Days to start heading had strong correlation with spike length and number of spikelets spike-1. Flag leaf area had positive relationship with peduncle length and yield related traits. The 1000-garin weight and grain yield were also correlated with each other. It is concluded that V6, V10 and V20 proved better for all studied traits than the rest of the lines. Therefore, these lines could be used in wheat breeding program as parents to improve yield.  相似文献   

8.
以长达18年的微量元素肥料定位试验为背景,研究了长期施用微肥对小麦产量及氮磷养分吸收量的影响。结果表明,在施NP肥的基础上施Zn、B、Mn可显著提高小麦生物学产量,较NP KH2PO4分别提高6%以上;施Zn、B可显著提高小麦籽粒产量,较NP增产分别为5.5%和6.0%,较NP KH2PO4分别增产8.4%和8.9%;施Cu使小麦吸氮量提高3.1%,吸磷量提高7.7%,较NP KH2PO4吸氮量、吸磷量分别提高6.0%和5.5%;施Zn使小麦吸氮量提高4.1%,吸磷量提高2.5%,分别较NP KH2PO4处理吸氮量、吸磷量分别提高8.0%和6.9%;同时,施Zn、Mn、Cu肥较NP KH2P04更有利于籽粒对氮素的吸收。  相似文献   

9.
本研究以大豆为材料,采用盆栽和田间试验,探讨丛枝菌根真菌(AMF)对豆科作物生长的影响.盆栽试验设置了接种(+AMF)和不接种(-AMF)丛枝菌根真菌处理,田间试验设置了 AMF菌丝非限制与限制处理.盆栽试验结果表明:接种AMF显著提高了大豆地上部生物量(16.5%)和大豆根瘤数(131.4%),地上部磷含量、磷吸收量...  相似文献   

10.
Phytoextraction of excess nutrients by crops in soils with a long history of manure application may be a viable option for reducing the nutrient levels. This greenhouse study examined the effectiveness of six growth cycles (40 d each) of barley, canola, corn, oat, pea, soybean, and triticale at extracting nitrogen (N) and phosphorus (P) from a Dark Brown Chernozem that had received 180 Mg ha?1 (wet wt.) of beef cattle feedlot manure annually for 38 years. Moisture content during the study was maintained at either 100% or 50% soil field capacity (SFC). Repeated cropping resulted in an overall decrease in dry matter yield (DMY). The decrease in N and P uptake relative to Cycle 1 was fastest for the cereal grains and less pronounced for the two legumes. However, cumulative N uptake values were significantly greater for corn than the other crops under both moisture regimes. The reduction in soil N was greater under the 100% than the 50% SFC. These results indicate that repeated cropping can be a useful management practice for reducing N and P levels in a heavily manured soil. The extent of reduction will be greater for crops with high biomass production under adequate moisture supply.  相似文献   

11.
Seedlings of Lotus glaberMill., were grown in a native saline-sodic soil in a greenhouse for 50 days and then subjected to waterlogging for an additional period of 40 days. The effect of soil waterlogging was evaluated by measuring plant growth allocation, mineral nutrition and soil chemical properties. Rhizobiumnodules and mycorrhizal colonisation in L. glaberroots were measured before and after waterlogging. Compared to control plants, waterlogged plants had decreased root/shoot ratio, lower number of stems per plant, lower specific root length and less allocation of P and N to roots. Waterlogged plants showed increased N and P concentrations in plant tissues, larger root crown diameter and longer internodes. Available N and P and organic P, pH and amorphous iron increased in waterlogged soil, but total N, EC and exchangeable sodium were not changed. Soil waterlogging decreased root length colonised by arbuscular mycorrhizal (AM) fungi, arbuscular colonisation and number of entry points per unit of root length colonised. Waterlogging also increased vesicle colonisation and Rhizobium nodules on roots. AM fungal spore density was lower at the end of the experiment in non-waterlogged soil but was not reduced under waterlogging. The results indicate that L. glaber can grow, become nodulated by Rhizobium and colonised by mycorrhizas under waterlogged condition. The responses of L. glaber may be related its ability to form aerenchyma.  相似文献   

12.
Silicon is a non-essential element for plant growth. Nevertheless, it affects plant stress resistance and in some plants, such as grasses, it may substitute carbon (C) compounds in cell walls, thereby influencing C allocation patterns and biomass production. How variation in silicon supply over a narrow range affects nitrogen (N) and phosphorus (P) uptake by plants has also been investigated in some detail. However, little is known about effects on the stoichiometric relationships between C, N and P when silicon supply varies over a broader range. Here, we assessed the effect of silicon on aboveground biomass production and C:N:P stoichiometry of common reed, Phragmites australis, in a pot experiment in which three widely differing levels of silicon were supplied. Scanning electron microscopy (SEM) showed that elevated silicon supply promoted silica deposition in the epidermis of Phragmites leaves. This resulted in altered N:P ratios, whereas C:N ratios changed only slightly. Plant growth was slightly (but not significantly) enhanced at intermediate silicon supply levels but significantly decreased at high levels. These findings point to the potential of silicon to impact plant growth and elemental stoichiometry and, by extension, to affect biogeochemical cycles in ecosystems dominated by Phragmites and other grasses and sedges.  相似文献   

13.
1. Agriculture is a major contributor of non‐point source pollution to surface waters in the midwestern United States, resulting in eutrophication of freshwater aquatic ecosystems and development of hypoxia in the Gulf of Mexico. Agriculturally influenced streams are diverse in morphology and have variable nutrient concentrations. Understanding how nutrients are transformed and retained within agricultural streams may aid in mitigating increased nutrient export to downstream ecosystems. 2. We studied six agriculturally influenced streams in Indiana and Michigan to develop a more comprehensive understanding of the factors controlling nutrient retention and export in agricultural streams using nutrient addition and isotopic tracer studies. 3. Metrics of nutrient uptake indicated that nitrate uptake was saturated in these streams whereas ammonium and phosphorus uptake increased with higher concentrations. Phosphorus uptake was likely approaching saturation as evidenced by decreasing uptake velocities with concentration; ammonium uptake velocity also declined with concentration, though not significantly. 4. Higher whole‐stream uptake rates of phosphorus and ammonium were associated with the observed presence of stream autotrophs (e.g. algae and macrophytes). However, there was no significant relationship between measures of nutrient uptake and stream metabolism. Water‐column nutrient concentrations were positively correlated with gross primary production but not community respiration. 5. Overall, nutrient uptake and metabolism were affected by nutrient concentrations in these agriculturally influenced streams. Biological uptake of ammonium and phosphorus was not saturated, although nitrate uptake did appear to be saturated in these ecosystems. Biological activity in agriculturally influenced streams is higher relative to more pristine streams and this increased biological activity likely influences nutrient retention and transport to downstream ecosystems.  相似文献   

14.
1. We developed empirical models for predicting the release of nutrients [nitrogen (N) and phosphorus (P)] by aquatic metazoans (zooplankton, mussels, benthic macroinvertebrates and fish). 2. The number of species represented in each model ranged from 9 to 74 (n = 40 – 1122), organism dry mass from 1 × 10?5 to 8 × 104 mg and water temperature from ?1.8 to 32 °C for all models. Organisms were from marine and freshwater (both lotic and lentic) environments. 3. Rates and ratios of nutrient excretion were modelled and intra‐ and intertaxon differences in excretion were examined. Rates of N and P excretion were not significantly different between marine and freshwater species within the same taxon (e.g. zooplankton). However, rates of excretion (as a function of organism dry mass and water temperature) were significantly different among different orders of zooplankton, mussels and fish. However, excretion of N was similar among different orders of benthic macroinvertebrates. 4. Detritivorous fish excreted both N and P at rates greater than all other taxa; whereas mussels excreted N and P generally at rates less than other taxa. There were no significant differences in the rate of N and P excretion between zooplankton and fish (i.e. the allometry of N and P excretion was similar between zooplankton and fish). 5. Molar N : P ratios of nutrients excreted increased with increasing organism dry mass for each group of metazoans, except for zooplankton and detritivorous fish (where N : P ratios declined with increasing organism dry mass). Molar N : P ratios in the excretions of aquatic metazoans were generally below the Redfield ratio of 16:1. 6. We examined the influence of variable abundance of zooplankton, benthic macroinvertebrates and fish on assemblage excretion rates. Rates of N and P excretion were calculated by applying our models to metazoan biomass and abundance data over seven consecutive years in two oligotrophic lakes. Rates of N and P excretion (g ha?1 day?1) increased linearly with increasing assemblage biomass (kg ha?1). However, rates of N and P excretion were significantly and negatively correlated with the relative abundance of fish and positively correlated with the relative abundance of zooplankton.  相似文献   

15.
本研究利用位于河北省保定市的7年田间定位试验,探讨了 4个磷水平(不施磷、70%优化施磷、优化施磷、130%优化施磷)对玉米-小麦轮作系统作物产量的影响,分析了作物磷素吸收和磷肥利用效率以及土壤磷盈亏的变化.结果表明:长期(7年)施磷能够显著提高玉米和小麦产量及磷素吸收量,且玉米和小麦产量与磷素吸收量随着施磷量的增加均...  相似文献   

16.
Human activities have more than doubled the inputs of nitrogen (N) into terrestrial systems globally. The sources and distribution of anthropogenic N, including N fertilization and N fixed during fossil fuel combustion, are rapidly shifting from the temperate zone to a more global distribution. The consequences of anthropogenic N deposition for ecosystem processes and N losses have been studied primarily in N-limited ecosystems in the temperate zone; there is reason to expect that tropical ecosystems, where plant growth is most often limited by some other resource, will respond differently to increasing deposition. In this paper, we assess the likely direct and indirect effects of increasing anthropogenic N inputs on tropical ecosytem processes. We conclude that anthropogenic inputs of N into tropical forests are unlikely to increase productivity and may even decrease it due to indirect effects on acidity and the availability of phosphorus and cations. We also suggest that the direct effects of anthropogenic N deposition on N cycling processes will lead to increased fluxes at the soilwater and soil-air interfaces, with little or no lag in response time. Finally, we discuss the uncertainties inherent in this analysis, and outline future research that is needed to address those uncertainties.  相似文献   

17.
Nutrient uptake in eastern deciduous tree seedlings   总被引:3,自引:0,他引:3  
K. Lajtha 《Plant and Soil》1994,160(2):193-199
Tree seedlings that colonize large treefall gaps are generally shade-intolerant species with high potential relative growth rates. Nutrient availability may be significantly elevated in disturbance-induced gaps, however, little is known about the role of differences in nutrient uptake capacities of different species in structuring the community response to gap openings in eastern North American deciduous forests. Seven tree species were grown from seed under both a high and a low nutrient regime, and uptake kinetics of phosphate, ammonium, and nitrate were studied. Yellow birch, a species with intermediate shade tolerance and relative growth rate, had the highest maximum rates of uptake of all ions, while tulip tree, a gap-colonizing species with high relative growth rate, had the lowest rate of phosphate uptake and intermediate rates of ammonium and nitrate uptake. Beech and hickory, which have low relative growth rates and are not gap-colonizing species, had intermediate levels of nutrient uptake. There was no evidence that species with the highest maximum uptake rates measured at high supply concentrations had relatively low uptake at low nutrient supply concentrations. Although birch increased phosphate absorption capacity when grown under a low nutrient regime, this pattern did not hold for nitrate or ammonium uptake, and other species showed no change in nutrient uptake capacity according to nutrient growth regime. Clearly, factors other than nutrient absorption capacity, such as nutrient use efficiency or allocation to root vs. shoot biomass, underlie differences in species' capacities to colonize and maintain a high relative growth rate in canopy gaps.  相似文献   

18.
A foliar application of paclobutrazol (1 litre a.i. ha“1) was applied before flowering of lentils grown with different levels of phosphorus (0, 20, 40, 60, 80 and 100 kg P205 ha”1). Increasing amounts of P up to 80 kg ha“1 increased plant height, crop dry matter and grain yields but also increased crop lodging. Paclobutrazol decreased plant height and lodging and increased grain yield. Maximum yields were obtained with a combination of 80 kg P ha”1 and paclobutrazol.  相似文献   

19.
利用盆栽试验研究两种不同配比的控释复合肥CRFA(4%树脂包膜,N∶P2O5∶K2O为14∶14∶14)和CRFB(4%树脂包膜,N∶P2O5∶K2O为20∶8∶10)及普通复合肥CCF(N∶P2O5∶K2O为15∶15∶15)对杭白菊营养吸收和生长效应的影响.结果表明:普通复合肥CCF1(每盆6 g氮素用量的CCF)和CCF2(每盆3 g氮素用量的CCF)施入土壤后30 d,土壤中碱解氮、有效磷、有效钾含量分别为163.29和145.26 mg·kg-1、180.39和163.13 mg·kg-1、300.08 和213.15 mg·kg-1,而后迅速下降.控释复合肥养分释放较慢,其土壤碱解氮含量在施肥后缓慢升高,在施肥后60 d达到高峰,此时CRFA1(每盆6 g氮素用量的CRFA)、CRFB1(每盆6 g氮素用量的CRFB)、CRFA2(每盆3 g氮素用量的CRFA)、CRFB2(每盆3 g氮素用量的CRFB)分别为129.51、138.65、118.36、126.31 mg·kg-1;CRFA1和CRFA2处理土壤有效磷含量与CCF处理变化趋势基本一致,施肥后30 d分别达到169.54和133.46 mg·kg-1,CRFB1和CRFB2处理在施肥后60 d左右达到释放高峰,含量分别为137.13和84.68 mg·kg-1,然后缓慢下降.两种不同养分配比的控释复合肥处理植株叶面积、叶面积系数、分枝数、开花率、每株花数、鲜花直径等农艺性状均明显优于等氮素用量的普通复合肥处理,其中CRFB控释效果优于CRFA,其更符合杭白菊对养分的需求,且在本试验条件下,CRFB2处理产量最高.  相似文献   

20.
Phosphorus deficiency is a very common problem in the acid soil of central China. Previous research has shown that starter N and N topdressing at the flowering stage (Rl) increased soybean (Glycine max) yield and N2 fixation (Gan et al, 1997, 2000). However, there is little information available concerning soybean response to P‐fertiliser in soybean production in central China (Gan, 1999). A field experiment was conducted to investigate the response to P (0 kg P ha?1, 22 kg P ha?1, 44 kg P ha?1 before sowing) and N fertiliser application (N1: 0 kg N ha?1, N2: 25 kg N ha?1 before sowing, N3: N2 + 50 kg N ha?1 at the V2 stage and N4: N2 + 50 kg N ha?1 at the R1 stage) on growth, yield and N2 fixation of soybean. Both N and P fertiliser increased growth and seed yield of soybean (P < 0.01). Application of basal P fertiliser at 22 kg P ha?1 or 44 kg P ha?1 increased total N accumulation by 11% and 10% (P < 0.01) and seed yield by 12% and 13% (P < 0.01), respectively, compared to the zero P treatment. Although application of starter N at 25 kg N ha?1 had no positive effect on seed yield at any P level (P > 0.05), an application of a topdressing of 50 kg N ha?1 at the V2 or R1 stage increased total N accumulation by 11% and 14% (P < 0.01) and seed yield by 16% and 21% (P < 0.01), respectively, compared to the zero N treatment. Soybean plants were grown on sterilised Perlite in the greenhouse experiment to study the physiological response to different concentrations of phosphate (P1: 0 mM; P2: 0.05 mM; P3: 0.5 mM; P4:1.0 mN) and nitrate (N1: 0 mM with inoculation, N2: 20 mM with inoculation). The result confirmed that N and P nutrients both had positive effects on growth, nodulation and yield (P < 0.01). The relative importance of growth parameters that contributed to the larger biomass with N and P fertilisation was in decreasing order: (i) total leaf area, (ii) individual leaf area, (iii) shoot/root ratio, (iv) leaf area ratio and (v) specific leaf area. The yield increase at N and P supply was mainly associated with more seeds and a larger pod number per plant, which confirmed the result from the field experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号