首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Limitations in available techniques to separate autotrophic (root) and soil heterotrophic respiration have hampered the understanding of forest C cycling. The former is here defined as respiration by roots, their associated mycorrhizal fungi and other micro‐organisms in the rhizosphere directly dependent on labile C compounds leaked from roots. In order to separate the autotrophic and heterotrophic components of soil respiration, all Scots pine trees in 900 m2 plots were girdled to instantaneously terminate the supply of current photosynthates from the tree canopy to roots. Högberg et al. (Nature 411, 789–792, 2001) reported that autotrophic activity contributed up to 56% of total soil respiration during the first summer of this experiment. They also found that mobilization of stored starch (and likely also sugars) in roots after girdling caused an increased apparent heterotrophic respiration on girdled plots. Herein a transient increase in the δ13C of soil CO2 efflux after girdling, thought to be due to decomposition of 13C‐enriched ectomycorrhizal mycelium and root starch and sugar reserves, is reported. In the second year after girdling, when starch reserves of girdled tree roots were exhausted, calculated root respiration increased up to 65% of total soil CO2 efflux. It is suggested that this estimate of its contribution to soil respiration is more precise than the previous based on one year of observation. Heterotrophic respiration declined in response to a 20‐day‐long 6 °C decline in soil temperature during the second summer, whereas root respiration did not decline. This did not support the idea that root respiration should be more sensitive to variations in soil temperature. It is suggested that above‐ground photosynthetic activity and allocation patterns of recent photosynthates to roots should be considered in models of responses of forest C balances to global climate change.  相似文献   

2.
何念鹏  刘远  徐丽  温学发  于贵瑞  孙晓敏 《生态学报》2018,38(11):4045-4051
土壤有机质分解的温度敏感性(Q_(10))不仅是生态学和土壤学研究的核心科学问题之一,也是全球变化生态学研究的热点领域。国内外学者对Q_(10)的影响因素或机制开展了大量卓有成效的研究工作,并有不少相关的综述或展望;然而,迄今为止有关培养与测定模式的探讨却非常少。鉴于培养和测定模式对研究结果的重要性,在简要描述Q_(10)定义、基本理论和计算方法的基础上,重点比较了当前Q_(10)研究的不同培养和测定模式及其优缺点。结合最新研究进展,重点介绍了新发展的连续变温培养+连续自动测试模式,并简要阐述了新模式的应用前景。通过探讨,希望能为国内从事Q_(10)研究的学者提供一定的经验与借鉴;同时,希望能引起青年科研人员重视研究方法、技术和仪器的研发,更好更快地推动原创性研究。  相似文献   

3.
Eighty-eight per cent of the amylase activity of cultures of Cytophaga johnsonae is cell-associated. The cell-associated amylase has optimal activity at pH 7 and 45°C and is completely inhibited by 50 mmol/1 EDTA. Starch in the growth medium induces amylase activity and the respiration rate of starch-grown cells of C. johnsonae is stimulated by starch, glycogen, maltose or glucose.  相似文献   

4.
The temperature sensitivity of soil organic matter (SOM) decomposition has been a crucial topic in global change research, yet remains highly uncertain. One of the contributing factors to this uncertainty is the lack of understanding about the role of rhizosphere priming effect (RPE) in shaping the temperature sensitivity. Using a novel continuous 13C‐labeling method, we investigated the temperature sensitivity of RPE and its impact on the temperature sensitivity of SOM decomposition. We observed an overall positive RPE. The SOM decomposition rates in the planted treatments increased 17–163% above the unplanted treatments in three growth chamber experiments including two plant species, two growth stages, and two warming methods. More importantly, warming by 5 °C increased RPE up to threefold, hence, the overall temperature sensitivity of SOM decomposition was consistently enhanced (Q10 values increased 0.3–0.9) by the presence of active rhizosphere. In addition, the proportional contribution of SOM decomposition to total soil respiration was increased by soil warming, implying a higher temperature sensitivity of SOM decomposition than that of autotrophic respiration. Our results, for the first time, clearly demonstrated that root–soil interactions play a crucial role in shaping the temperature sensitivity of SOM decomposition. Caution is required for interpretation of any previously determined temperature sensitivity of SOM decomposition that omitted rhizosphere effects using either soil incubation or field root‐exclusion. More attention should be paid to RPE in future experimental and modeling studies of SOM decomposition.  相似文献   

5.
Boreal forests contain significant quantities of soil carbon that may be oxidized to CO2 given future increases in climate warming and wildfire behavior. At the ecosystem scale, decomposition and heterotrophic respiration are strongly controlled by temperature and moisture, but we questioned whether changes in microbial biomass, activity, or community structure induced by fire might also affect these processes. We particularly wanted to understand whether postfire reductions in microbial biomass could affect rates of decomposition. Additionally, we compared the short‐term effects of wildfire to the long‐term effects of climate warming and permafrost decline. We compared soil microbial communities between control and recently burned soils that were located in areas with and without permafrost near Delta Junction, AK. In addition to soil physical variables, we quantified changes in microbial biomass, fungal biomass, fungal community composition, and C cycling processes (phenol oxidase enzyme activity, lignin decomposition, and microbial respiration). Five years following fire, organic surface horizons had lower microbial biomass, fungal biomass, and dissolved organic carbon (DOC) concentrations compared with control soils. Reductions in soil fungi were associated with reductions in phenol oxidase activity and lignin decomposition. Effects of wildfire on microbial biomass and activity in the mineral soil were minor. Microbial community composition was affected by wildfire, but the effect was greater in nonpermafrost soils. Although the presence of permafrost increased soil moisture contents, effects on microbial biomass and activity were limited to mineral soils that showed lower fungal biomass but higher activity compared with soils without permafrost. Fungal abundance and moisture were strong predictors of phenol oxidase enzyme activity in soil. Phenol oxidase enzyme activity, in turn, was linearly related to both 13C lignin decomposition and microbial respiration in incubation studies. Taken together, these results indicate that reductions in fungal biomass in postfire soils and lower soil moisture in nonpermafrost soils reduced the potential of soil heterotrophs to decompose soil carbon. Although in the field increased rates of microbial respiration can be observed in postfire soils due to warmer soil conditions, reductions in fungal biomass and activity may limit rates of decomposition.  相似文献   

6.
Callus-forming discs from potato tubers lose 80% of their starch during one month of incubation on nutrient medium containing either 0, 3 or 6% (w/v) sucrose. The content of soluble sugar in the discs varies from 5 mg (incubated without sucrose) to 22 mg (on 3% sucrose) and 40 mg (on 6% sucrose) per g fresh weight. The activity of the cytochrome pathway (Vcyt) increases during the first week of incubation on all media. Thereafter Vcyt decreases again on 0% sucrose medium, while it remains constant on 3 and 6% sucrose media. Alternative pathway capacity (Valt), absent in freshly sliced tissue, shows a sharp increase during the first days of incubation, independent of the sucrose concentration in the medium. This capacity further increases during prolonged incubation on 3 and 6% sucrose but decreases on 0% sucrose. The in vivo activity of the alternative pathway (the participation in uninhibited respiration, ?Valt) varies with the sucrose concentration and with the culture time. In tissue incubated for 2-3 weeks on 6% sucrose as much as 45% of the electrons are transfered to oxygen via the alternative pathway. In this tissue the factor Q (the part of the alternative pathway capacity that is operative) is about 0.8, while in tissue incubated on 0 and 3% sucrose media p generally does not exceed 0.5. When chloramphenicol, an inhibitor of mitochondrial protein synthesis, is added to the medium together with 3% sucrose, the increase in Vyet does not occur, while the induction of Valt during the first week of incubation is the same as without chloramphenicol. A greater part of the alternative pathway capacity becomes operative in this tissue, leading to values of Q of almost 1 after prolonged incubation. Apparently, incubation on high sugar medium leads to extra participation in respiration of the energetically inefficient alternative oxidase pathway Excess sugar leads to wasteful respiration suggesting that the alternative oxidase functions as an ‘energy overflow’.  相似文献   

7.
The metabolism of rat retina was found to be sensitive to the concentration of the carbon dioxide-bicarbonate buffer system. Increasing the carbon dioxide from 1 per cent to 5 per cent at constant pH nearly doubled both respiration and glycolysis. Increasing the carbon dioxide at constant pH from 5 per cent to 20 per cent had no effect on glycolysis, but depressed the Q OO2 from 31 to 19. In a medium containing glucose and the 1 per cent carbon dioxide-bicarbonate buffer, the addition of succinate increased the Q OO2 from 12 to 26, without affecting glycolysis. In a medium containing glucose and phosphate, succinate had no significant effect.  相似文献   

8.
In the present study, `natural 13C tracer method' was used to partition the belowground respiration into rhizosphere respiration and soil microbial respiration to test the hypothesis that defoliation affects rhizosphere respiration and rhizosphere priming effect on decomposition of soil organic matter (SOM). A C3 plant species, Helianthus annuus (sunflower), was grown in `C4' soil in microcosms so that the CO2 evolved from plant-soil system can be partitioned. Four levels of defoliation intensities were established by manual clipping. CO2 evolved from plant-soil system was trapped during 0–4 h after defoliation (HAD), 5–22 HAD and 23–46 HAD using a closed circulating system, respectively. We found that both rhizosphere respiration and soil microbial respiration of the clipped plants were either unchanged or significantly enhanced compared to unclipped plants at 45% defoliation level during all sampling intervals. Soil microbial respiration increased significantly at all defoliation levels during 0–4 HAD, however, both rhizosphere respiration and soil microbial respiration decreased significantly during 5–22 HAD or 23–46 HAD when 20% or 74 clearly demonstrated that the defoliation treatments modified the rhizosphere priming effect on SOM decomposition. The total cumulative rhizosphere priming effects on SOM decomposition during 0–46 HAD were 146%, 241%, 204% and 205% when 0%, 20%, 45% and <74%.  相似文献   

9.
The present experiment was designed to isolate bacterial strains from the brick kiln soil and to check the activity and enzyme kinetics of amylase from these isolates. The bacterial colonies were isolated from soil samples through the serial dilution method. The bacterial isolates were identified through morphological, electron microscopic and molecular analysis. The 16S ribosomal RNA sequences of the isolates IR-1, IR-2, IR-3, IR-8, and IR-9 showed high similarities with Bacillus tequilensis, Bacillus paramycoides, Proteus alimentorum, Bacillus wiedmannii, and Pseudomonas aeruginosa, respectively. All of the bacterial isolates showed a positive catalase activity except IR-9. Furthermore, the isolates showed variable antagonistic effects against different bacterial pathogens. All of the strains produced indole acetic acid (IAA), and the concentrations increased in the presence of tryptophan application. The isolates showed the amylase enzyme activity and maximum activity of isolates was achieved in 4% starch concentration. The IR-9 isolate showed the highest amylase activity of 5.9 U/ml. The Vmax values of the extracellular amylase from different bacterial isolates ranged between 12.90 and 50.00 IU ml−1. The lowest Km value of 6.33 mg starch was recorded for IR-8 and the maximum Kcat value of 2.50 min−1 was observed for IR-3. The amylase activity of the isolates was significantly affected by a range of different incubation time, temperature, and pH values. Further tests are required before the potential utilization of these isolates for amylase production, and in the biopesticide and biofertilizer applications.  相似文献   

10.

Aims

The aims were to identify the effects of interactions between litter decomposition and rhizosphere activity on soil respiration and on the temperature sensitivity of soil respiration in a subtropical forest in SW China.

Methods

Four treatments were established: control (CK), litter removal (NL), trenching (NR) and trenching together with litter removal (NRNL). Soil CO2 efflux, soil temperature, and soil water content were measured once a month over two years. Soil respiration was divided into four components: the decomposition of basic soil organic matter (SOM), litter respiration, root respiration, and the interaction effect between litter decomposition and rhizosphere activity. A two-factor regression equation was used to correct the value of soil CO2 efflux.

Results

We found a significant effect of the interaction between litter decomposition and rhizosphere activity (R INT) on total soil respiration, and R INT exhibited significant seasonal variation, accounting for 26 and 31 % of total soil respiration in the dry and rainy seasons, respectively. However, we found no significant interaction effect on the temperature sensitivity of soil respiration. The temperature sensitivity was significantly increased by trenching compared with the control, but was unchanged by litter removal.

Conclusions

Though the interaction between litter decomposition and rhizosphere activity had no effects on temperature sensitivity, it had a significant positive effect on soil respiration. Our results not only showed strong influence of rhizosphere activity on temperature sensitivity, but provided a viable way to identify the contribution of SOM to soil respiration, which could help researchers gain insights on the carbon cycle.  相似文献   

11.
Organic matter decomposition and soil CO2 efflux are both mediated by soil microorganisms, but the potential effects of temporal variations in microbial community composition are not considered in most analytical models of these two important processes. However, inconsistent relationships between rates of heterotrophic soil respiration and abiotic factors, including temperature and moisture, suggest that microbial community composition may be an important regulator of soil organic matter (SOM) decomposition and CO2 efflux. We performed a short-term (12-h) laboratory incubation experiment using tropical rain forest soil amended with either water (as a control) or dissolved organic matter (DOM) leached from native plant litter, and analyzed the effects of the treatments on soil respiration and microbial community composition. The latter was determined by constructing clone libraries of small-subunit ribosomal RNA genes (SSU rRNA) extracted from the soil at the end of the incubation experiment. In contrast to the subtle effects of adding water alone, additions of DOM caused a rapid and large increase in soil CO2 flux. DOM-stimulated CO2 fluxes also coincided with profound shifts in the abundance of certain members of the soil microbial community. Our results suggest that natural DOM inputs may drive high rates of soil respiration by stimulating an opportunistic subset of the soil bacterial community, particularly members of the Gammaproteobacteria and Firmicutes groups. Our experiment indicates that variations in microbial community composition may influence SOM decomposition and soil respiration rates, and emphasizes the need for in situ studies of how natural variations in microbial community composition regulate soil biogeochemical processes.  相似文献   

12.
Forest soil respiration is the sum of heterotrophic (microbes, soil fauna) and autotrophic (root) respiration. The contribution of each group needs to be understood to evaluate implications of environmental change on soil carbon cycling and sequestration. Three primary methods have been used to distinguish hetero- versus autotrophic soil respiration including: integration of components contributing to in situ forest soil CO2 efflux (i.e., litter, roots, soil), comparison of soils with and without root exclusion, and application of stable or radioactive isotope methods. Each approach has advantages and disadvantages, but isotope based methods provide quantitative answers with the least amount of disturbance to the soil and roots. Published data from all methods indicate that root/rhizosphere respiration can account for as little as 10 percent to greater than 90 percent of total in situ soil respiration depending on vegetation type and season of the year. Studies which have integrated percent root contribution to total soil respiration throughout an entire year or growing season show mean values of 45.8 and 60.4 percent for forest and nonforest vegetation, respectively. Such average annual values must be extrapolated with caution, however, because the root contribution to total soil respiration is commonly higher during the growing season and lower during the dormant periods of the year.  相似文献   

13.
郭涛  张思兰 《生态学报》2017,37(10):3553-3560
植株残体降解可直接或间接地影响土壤磷素的有效性,为探讨不同磷浓度植株残体降解对紫色土磷分级体系的影响,结合31P核磁共振分析技术,选取了3种磷浓度不同的植物残体与两种紫色土进行室内模拟培养试验,得出了以下研究结论:(1)添加植株残体显著增强了紫色土呼吸强度,且紫色土分级体系中的活性磷含量均高于对照处理(2)31P-NMR分析结果得知,植株残体的正磷酸盐、磷酸单酯占浓缩液全磷比例的90%以上,高磷植株的正磷酸盐和磷酸单酯含量显著高于中磷和低磷植株,土壤磷素有效性的变化与植株残体的正磷酸盐和磷酸单酯含量有关;(3)紫色土分级体系中的活性磷在0 d含量最高,随着培养周期的延长,土壤磷素有效性会出现降低的趋势;酸性紫色土的累积呼吸强度、分级体系中活性磷(Resin-P、Na HCO3-Pt)所占比例均高于中性紫色土,与土壤钙含量有关。综上所述,植株残体的磷浓度越高,更有利于提高土壤磷素的有效性,本研究结果为农业生产中秸秆还田技术提供了理论参考。  相似文献   

14.
Mycelial dry weight of Papulaspora thermophilia reached a maximum of about 96 mg after six days of growth in a starch-yeast medium. Extracellular amylase activity was not measurable during this growth period and remained thereafter only about 0.1 unit per ml for 30 days, yet starch concentration reduced rapidly, and reducing sugar appeared in the extracellular medium within the first few days of incubation.The author wishes to thank Dr. J. Deploey for helpful discussions and constructive criticism of this work.  相似文献   

15.
Summary 1. Techniques are described for relating the oxygen concentrations in the soil water on the surfaces of micro-organisms to their metabolizing activities.2. Studies were made on the decomposition of organic materials in water-saturated crumbs (mean radius 1.55 × 10–1 cm) of a loam soil.3. Respiration of water-saturated crumbs was not inhibited unless the oxygen concentration was less than about 10–6 M. Evidence was obtained that above a similar low oxygen concentration there was no inhibition of respiration in soils of widely different type.4. Anaerobic decomposition of the soil organic matter was very slow. Anaerobic decomposition of casein digest was more rapid than that of any other material tested; the products were water soluble and included 83 µ-equivalents of volatile fatty acid per mg of -amino-N decomposed.5. Casein digest percolation of soil crumbs under air resulted in the formation of micro-organisms that respired at 70 per cent of their maximum rate when the oxygen concentration was about 2.7 × 10–6 M.6. No products of anaerobic casein digest decomposition could be detected on percolating casein digest through soil crumbs when 80 per cent of the soil contained no oxygen and the maximum concentration in any part of the soil was about 3 × 10–5 M.7. The kinetics of oxygen uptake consequent on the decomposition of casein digest and of other simple organic compounds in soil crumbs were similar and were only slightly affected by reduction of oxygen partial pressure in the atmosphere from 15 to 1.7 cm of mercury.8. It is concluded that change-over from aerobic to anaerobic metabolism of organic materials takes place in widely different soils at an oxygen concentration less than about 3 × 10–6 M.  相似文献   

16.
Elevated atmospheric CO2 may alter decomposition rates through changes in plant material quality and through its impact on soil microbial activity. This study examines whether plant material produced under elevated CO2 decomposes differently from plant material produced under ambient CO2. Moreover, a long‐term experiment offered a unique opportunity to evaluate assumptions about C cycling under elevated CO2 made in coupled climate–soil organic matter (SOM) models. Trifolium repens and Lolium perenne plant materials, produced under elevated (60 Pa) and ambient CO2 at two levels of N fertilizer (140 vs. 560 kg ha?1 yr?1), were incubated in soil for 90 days. Soils and plant materials used for the incubation had been exposed to ambient and elevated CO2 under free air carbon dioxide enrichment conditions and had received the N fertilizer for 9 years. The rate of decomposition of L. perenne and T. repens plant materials was unaffected by elevated atmospheric CO2 and rate of N fertilization. Increases in L. perenne plant material C : N ratio under elevated CO2 did not affect decomposition rates of the plant material. If under prolonged elevated CO2 changes in soil microbial dynamics had occurred, they were not reflected in the rate of decomposition of the plant material. Only soil respiration under L. perenne, with or without incorporation of plant material, from the low‐N fertilization treatment was enhanced after exposure to elevated CO2. This increase in soil respiration was not reflected in an increase in the microbial biomass of the L. perenne soil. The contribution of old and newly sequestered C to soil respiration, as revealed by the 13C‐CO2 signature, reflected the turnover times of SOM–C pools as described by multipool SOM models. The results do not confirm the assumption of a negative feedback induced in the C cycle following an increase in CO2, as used in coupled climate–SOM models. Moreover, this study showed no evidence for a positive feedback in the C cycle following additional N fertilization.  相似文献   

17.
This experiment was designed to study three determinant factors in decomposition patterns of soil organic matter (SOM): temperature, water and carbon (C) inputs. The study combined field measurements with soil lab incubations and ends with a modelling framework based on the results obtained. Soil respiration was periodically measured at an oak savanna woodland and a ponderosa pine plantation. Intact soils cores were collected at both ecosystems, including soils with most labile C burnt off, soils with some labile C gone and soils with fresh inputs of labile C. Two treatments, dry‐field condition and field capacity, were applied to an incubation that lasted 111 days. Short‐term temperature changes were applied to the soils periodically to quantify temperature responses. This was done to prevent confounding results associated with different pools of C that would result by exposing treatments chronically to different temperature regimes. This paper discusses the role of the above‐defined environmental factors on the variability of soil C dynamics. At the seasonal scale, temperature and water were, respectively, the main limiting factors controlling soil CO2 efflux for the ponderosa pine and the oak savanna ecosystems. Spatial and seasonal variations in plant activity (root respiration and exudates production) exerted a strong influence over the seasonal and spatial variation of soil metabolic activity. Mean residence times of bulk SOM were significantly lower at the Nitrogen (N)‐rich deciduous savanna than at the N‐limited evergreen dominated pine ecosystem. At shorter time scales (daily), SOM decomposition was controlled primarily by temperature during wet periods and by the combined effect of water and temperature during dry periods. Secondary control was provided by the presence/absence of plant derived C inputs (exudation). Further analyses of SOM decomposition suggest that factors such as changes in the decomposer community, stress‐induced changes in the metabolic activity of decomposers or SOM stabilization patterns remain unresolved, but should also be considered in future SOM decomposition studies. Observations and confounding factors associated with SOM decomposition patterns and its temperature sensitivity are summarized in the modeling framework.  相似文献   

18.
19.
Root carbon (C) inputs may regulate decomposition rates in soil, and in this study we ask: how do labile C inputs regulate decomposition of plant residues, and soil microbial communities? In a 14 d laboratory incubation, we added C compounds often found in root exudates in seven different concentrations (0, 0.7, 1.4, 3.6, 7.2, 14.4 and 21.7 mg C g(-1) soil) to soils amended with and without (13) C-labeled plant residue. We measured CO(2) respiration and shifts in relative fungal and bacterial rRNA gene copy numbers using quantitative polymerase chain reaction (qPCR). Increased labile C input enhanced total C respiration, but only addition of C at low concentrations (0.7 mg C g(-1)) stimulated plant residue decomposition (+2%). Intermediate concentrations (1.4, 3.6 mg C g(-1)) had no impact on plant residue decomposition, while greater concentrations of C (>7.2 mg C g(-1)) reduced decomposition (-50%). Concurrently, high exudate concentrations (>3.6 mg C g(-1)) increased fungal and bacterial gene copy numbers, whereas low exudate concentrations (<3.6 mg C g(-1)) increased metabolic activity rather than gene copy numbers. These results underscore that labile soil C inputs can regulate decomposition of more recalcitrant soil C by controlling the activity and relative abundance of fungi and bacteria.  相似文献   

20.
The vertical variation in soil microbial respiratory activity and its relationship to organic carbon pools is critical for modeling soil C stock and predicting impacts of climate change, but is not well understood. Mineral soil samples, taken from four Scottish soils at different depths (0–8, 8–16, 16–24, 24–32 cm), were analyzed and incubated in the laboratory under constant temperature and environmental conditions. The vegetation type/plant species showed significant effects on the absolute concentration of C components and microbial activity, but the relative distribution of C and respiration rate with soil depth are similar across sites. Soil C pools and microbial respiratory activity declined rapidly with soil depth, with about 30% of total organic carbon (TOC) and dissolved organic carbon (DOC), and about half microbial carbon (Cmic) and respired CO2 observed in the top 8 cm. The ratio of CO2:TOC generally decreased with soil depth, but CO2:DOC was significantly higher in the top 8 cm of soil than in the subsoil (8–32 cm). No general pattern between qCO2 (CO2:Cmic) and soil depth was found. The vertical distributions of soil C pools and microbial respiratory activity were best fitted with a single exponential equation. Compared with TOC and DOC, Cmic appears to be an adequate predictor for the variation in microbial respiration rate with soil depth, with 95% of variation in normalized respiration rate accounted for by a linear relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号