首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A non-ideal, hydrated, non-dilute pseudo-binary salt-protein-water solution model of the erythrocyte intracellular solution is presented to describe the osmotic behavior of human erythrocytes. Existing experimental activity data for salts and proteins in aqueous solutions are used to formulate van Laar type expressions for the solvent and solute activity coefficients. Reasonable estimates can therefore be made of the non-ideality of the erythrocyte intracellular solution over a wide range of osmolalities. Solution non-ideality is shown to affect significantly the degree of solute polarization within the erythrocyte intracellular solution during freezing. However, the non-ideality has very little effect upon the amount of water retained within erythrocytes cooled at sub-zero temperatures.  相似文献   

2.
A thermodynamic model describing the concentration polarization of solutes within cells during osmotic experiments is presented. The intracellular RBC solution is modeled as an ideal, hydrated and non-dilute salt-protein-water electrolyte solution in which the various solute species are allowed to diffuse independently. Application of this model to the case of human erythrocytes being cooled at subzero temperatures indicates that at the optimum cooling rate for the cryopreservation of RBCs a significant amount of solute polarization occurs within the intracellular solution, resulting in the temporary spatial separation of the salt and protein components. The concentration polarization process also significantly affects the transport of water out of RBCs during the cooling process. On the basis of these results, we believe that the concentration polarization phenomenon plays a significant role in determining the survival probability of cells at both high and low cooling rates.  相似文献   

3.
Trapped water of human erythrocytes and its application in cryopreservation   总被引:3,自引:0,他引:3  
Zhao G  He L  Zhang H  Ding W  Liu Z  Luo D  Gao D 《Biophysical chemistry》2004,107(2):189-195
The novel differential scanning calorimetry method as a technique for determining human red cell volume during freezing process has been reexamined and has been shown to provide a final erythrocyte volume to be 53% of its isotonic value after freezing from 0 to -40 degrees C. A new type of electronic particle counter (Multisizer 3, Beckman Coulter Inc., USA) was used to measure cell volume changes in response to equilibration in anisotonic media, and which gave out an equilibrated volume to be 57% of cell isotonic value in solution of 3186 mOsm. Both of these results indicate that 34-40% of intracellular water is trapped and is unavailable for participation in osmotic shifts. These findings are consistent with the published data that at least 20-32% (v/v) of the isotonic cell water is retained within RBCs. Then the application of trapped water in both simulation of freezing models and freezing-drying control was pointed out.  相似文献   

4.
Effective methods for long-term preservation of cord red blood cells (RBCs) are needed to ensure a readily available supply of RBCs to treat fetal and neonatal anemia. Cryopreservation is a potential long-term storage strategy for maintaining the quality of cord RBCs for the use in intrauterine and neonatal transfusion. However, during cryopreservation, cells are subjected to damaging osmotic stresses during cryoprotectant addition and removal and freezing and thawing that require knowledge of osmotic tolerance limits in order to optimize the preservation process. The objective of this study was to characterize the osmotic tolerance limits of cord RBCs in conditions relevant to cryopreservation, and compare the results to the osmotic tolerance limits of adult RBCs. Osmotic tolerance limits were determined by exposing RBCs to solutions of different concentrations to induce a range of osmotic volume changes. Three treatment groups of adult and cord RBCs were tested: (1) isotonic saline, (2) 40% w/v glycerol, and (3) frozen–thawed RBCs in 40% w/v glycerol. We show that cord RBCs are more sensitive to shrinkage and swelling than adult RBCs, indicating that osmotic tolerance limits should be considered when adding and removing cryoprotectants. In addition, freezing and thawing resulted in both cord and adult RBCs becoming more sensitive to post-thaw swelling requiring that glycerol removal procedures for both cell types ensure that cell volume excursions are maintained below 1.7 times the isotonic osmotically active volume to attain good post-wash cell recovery. Our results will help inform the development of optimized cryopreservation protocol for cord RBCs.  相似文献   

5.
A one-dimensional model has been developed to describe the kinetics of water transport in a cluster of closely packed cells. For the case of human red blood cells, the intracellular medium has been treated as an ideal, hydrated, nondilute multicomponent electrolyte solution. Results show that the volume flux of water out of the interior cells of the cluster lags behind that of the exterior cells. At any given temperature (or time), the amount of water retained within a cluster of closely packed cells of a given type exceeds (on an overall percentage basis) the amount of water retained within a single isolated cell of the same type. For a given cooling rate the probability of intracellular ice nucleation at any given temperature will therefore be greater for cells in the interior of a cluster, and the survival signature for a cell cluster should peak at a cooling rate which is less than the corresponding optimal value for a single, isolated cell. These results are consistent with experimental observations.  相似文献   

6.
Isolated rat lungs were perfused with suspensions containing normal and stiffened erythrocytes (RBCs) during normoxic and hypoxic ventilation to assess the effect of reduced RBC deformability on the hypoxic pressor response. RBC suspensions were prepared with cells previously incubated in isotonic phosphate-buffered saline with or without 0.0125% glutaraldehyde. The washed RBCs were resuspended in isotonic bicarbonate-buffered saline (with 4% albumin) to hematocrits of approximately 35%. The lungs were perfused with control and experimental cell suspensions in succession while pulmonary arterial pressure was measured during normoxic (21% O2) and hypoxic (3% O2) ventilation. On the attainment of a peak hypoxic pressor response, flow rate was changed so that pressure-flow curves could be constructed for each suspension. RBC deformability was quantified by a filtration technique using 4.7-microns-pore filters. Glutaraldehyde treatment produced a 10% decrease in RBC deformability (P less than 0.05). Over the range of flow rates, Ppa was increased by 15-17% (P less than 0.05) and 26-31% (P less than 0.05) during normoxic and hypoxic ventilation, respectively, when stiffened cells were suspended in the perfusate. The magnitude of the hypoxic pressor response was 50-54% greater with stiffened cells over the three flow rates. In a separate set of experiments, normoxic and hypoxic arterial blood samples from conscious unrestrained rats were used to investigate the effects of acute hypoxia on RBC deformability. Deformability was measured with the same filtration technique. There was no difference in the deformability of hypoxic compared with normoxic RBCs. We conclude that the presence of stiffened RBCs enhances the hemodynamic response to hypoxia but acute hypoxia does not affect RBC deformability.  相似文献   

7.
Loading red blood cells with trehalose: a step towards biostabilization   总被引:22,自引:0,他引:22  
A method for freeze-drying red blood cells (RBCs) while maintaining a high degree of viability has important implications in blood transfusion and clinical medicine. The disaccharide trehalose, found in animals capable of surviving dehydration can aid in this process. As a first step toward RBC preservation, we present a method for loading RBCs with trehalose. The method is based on the thermal properties of the RBC plasma membranes and provides efficient uptake of the sugar at 37 degrees C in a time span of 7 h. The data show that RBCs can be loaded with trehalose from the extracellular medium through a combination of osmotic imbalance and the phospholipid phase transition, resulting in intracellular trehalose concentrations of about 40 mM. During the loading period, the levels of ATP and 2,3-DPG are maintained close to the levels of fresh RBCs. Increasing the membrane fluidity through the use of a benzyl alcohol results in a higher concentration of intracellular trehalose, suggesting the importance of the membrane physical state for the uptake of the sugar. Osmotic fragility data show that trehalose exerts osmotic protection on RBCs. Flow cytometry data demonstrate that incubation of RBCs in a hypertonic trehalose solution results in a fraction of cells with different complexity and that it can be removed by washing and resuspending the RBCs in an iso-osmotic medium. The data provide an important first step in long-term preservation of RBCs.  相似文献   

8.
Water transport across the red blood cell (RBC) membrane is an essential cell function that needs to be preserved during ex vivo storage. Progressive biochemical depletion during storage can result in significant conformational and compositional changes to the membrane. Characterizing the changes to RBC water permeability can help in evaluating the quality of stored blood products and aid in the development of improved methods for the cryopreservation of red blood cells. This study aimed to characterize the water permeability (Lp), osmotically inactive fraction (b), and Arrhenius activation energy (Ea) at defined storage time-points throughout storage and to correlate the observed results with other in vitro RBC quality parameters. RBCs were collected from age- and sex-matched blood donors. A stopped flow spectrophotometer was used to determine Lp and b by monitoring changes in hemoglobin autofluorescence when RBCs were exposed to anisotonic solutions. Experimental values of Lp were characterized at three different temperatures (4, 20 and 37 °C) to determine the Ea. Results showed that Lp, b, and Ea of stored RBCs significantly increase by day 21 of storage. Degradation of the RBC membrane with length of storage was seen as an increase in hemolysis and supernatant potassium, and a decrease in deformability, mean corpuscular hemoglobin concentration and supernatant sodium. RBC osmotic characteristics were shown to change with storage and correlate with changes in RBC membrane quality metrics. Monitoring water parameters is a predictor of membrane damage and loss of membrane integrity in ex vivo stored RBCs.  相似文献   

9.
Polymer has been used as substitute to replace glycerol for cryopreservation of red blood cells (RBCs). But polymer can not penetrate cell membrane, it can not efficiently protect the inner membrane. In this study, RBCs were incubated with glucose, fructose, galactose or trehalose and frozen in liquid nitrogen for 24 h using dextran as the extracellular protectant. The postthaw quality was assessed by RBC hemolysis, RBC morphology, PS distribution, osmotic fragility, and the 4 °C stability. The results indicated the loading efficiency of monosaccharide was significantly higher than that of trehalose. Adding trehalose and 40% dextran caused more serious hemolysis before freezing. The percent hemolysis of RBCs loaded with high concentration of trehalose was approximately 16% and significantly more than that of RBCs loaded with glucose (approximately 5%, P < 0.05). Intracellular trehalose can not increase the postthaw recovery of RBCs compared with cells frozen without sugar. However, low concentration of intracellular glucose or galactose can reduce the percent hemolysis to less than 5% and significantly less than that of RBCs frozen without sugar (P < 0.05). Finally, the ability of galactose or fructose to maintain the 4 °C stability was significantly more than that of glucose. In conclusion, the injuries caused by trehalose loading may directly lead to postthaw hemolysis and poor quality of RBCs. However, monosaccharide can enhance the recovery of frozen RBCs. The cryoprotective effect of galactose may be better than that of glucose or fructose. In the future, we will continue to look for a safe and efficient trehalose loading process and try to decrease the osmotic fragility of RBCs frozen with polymers and sugars.  相似文献   

10.
Isolated cortical collecting tubules from rabbit kidney were studied during perfusion with solutions made either isotonic or hypotonic to the external bathing medium. Examination of living tubules revealed a reversible increase in thickness of the cellular layer, prominence of lateral cell membranes, and formation of intracellular vacuoles during periods of vasopressin-induced osmotic water transport. Examination in the electron microscope revealed that vasopressin induced no changes in cell structure in collecting tubules in the absence of an osmotic difference and significant bulk water flow across the tubule wall. In contrast, tubules fixed during vasopressin-induced periods of high osmotic water transport showed prominent dilatation of lateral intercellular spaces, bulging of apical cell membranes into the tubular lumen, and formation of intracellular vacuoles. It is concluded that the ultrastructural changes are secondary to transepithelial bulk water flow and not to a direct effect of vasopressin on the cells, and that vasopressin induces osmotic flow by increasing water permeability of the luminal cell membrane. The lateral intercellular spaces may be part of the pathway for osmotically induced transepithelial bulk water flow.  相似文献   

11.
The purpose of this study was to determine if differences in antioxidant status between the red blood cells (RBCs) of sickle cell anemia (SCA) patients and controls are responsible for the differential responses to oxidative and osmotic stress-induced hemolysis. Susceptibility to hemolysis was examined by incubating oxygenated and deoxygenated RBCs at 37°C with 73 mM 2,2' azobis (2-amidinopropane) HC1 (AAPH), a peroxyl radical generator, for up to 3.5 hours. The ability of RBCs to maintain membrane integrity under osmotic stress was determined over a range of diluted saline-phosphate buffer. Sickled RBCs showed a lesser degree of AAPH-induced hemolysis than control groups and were more resistant to osmotic stress-induced hemolysis. SCA patients had higher levels of RBC vitamin E and RBC lipids, but lower RBC GSH, plasma lipids and plasma carotenes than those of the hospital controls. No significant differences were observed in the levels of retinol, vitamin C, vitamin E, MDA and conjugated dienes in plasma, or the levels of MDA and conjugated dienes in RBCs. The results obtained suggest that the differences in antioxidant status between sickled RBCs and controls do not appear to be responsible for their different susceptibility to oxidative or osmotic stress-induced hemolysis observed.  相似文献   

12.
We examined short-chain fatty acids (SCFAs) with 1 (C1) to 5 (C5) carbon atoms for osmotic fragility (OF) in isolated red blood cells (RBCs) in rats. The RBCs were used as prototypical plasma membrane model. The dense packed RBC was incubated in a phosphate-NaCl buffer solution containing each SCFA at 0 to 100 mM. The RBC suspensions were transferred into the OF test tubes containing NaCl from 0.2 to 0.9%. The hemoglobin concentration was determined and the EC50 in hemolysis was calculated. The OF in RBCs was dose-dependently increased by exposure to SCFAs, except for C1, with an increasing number of carbon atoms. Branched-chain fatty acids (isomers of C4 and C5) have a smaller effect on OF than straight-chain fatty acids (C4 and C5). The SCFA-induced increases in OF were not affected by pretreatment of RBCs with trypsin. The response of the RBC membrane to SCFAs depends on their concentration, carbon chain length and chain structure (straight or branched). The SCFAs probably disturb the lipid bilayer of the RBC membrane and result in a decrease in osmotic resistance. The plasma membrane in rat RBCs could respond to the structure of the SCFAs in detail by using the OF as an indicator.  相似文献   

13.
We examined short-chain fatty acids (SCFAs) with 1 (C1) to 5 (C5) carbon atoms for osmotic fragility (OF) in isolated red blood cells (RBCs) in rats. The RBCs were used as prototypical plasma membrane model. The dense packed RBC was incubated in a phosphate-NaCl buffer solution containing each SCFA at 0 to 100 mM. The RBC suspensions were transferred into the OF test tubes containing NaCl from 0.2 to 0.9%. The hemoglobin concentration was determined and the EC50 in hemolysis was calculated. The OF in RBCs was dose-dependently increased by exposure to SCFAs, except for C1, with an increasing number of carbon atoms. Branched-chain fatty acids (isomers of C4 and C5) have a smaller effect on OF than straight-chain fatty acids (C4 and C5). The SCFA-induced increases in OF were not affected by pretreatment of RBCs with trypsin. The response of the RBC membrane to SCFAs depends on their concentration, carbon chain length and chain structure (straight or branched). The SCFAs probably disturb the lipid bilayer of the RBC membrane and result in a decrease in osmotic resistance. The plasma membrane in rat RBCs could respond to the structure of the SCFAs in detail by using the OF as an indicator.  相似文献   

14.
A red blood cell (RBC) performs its function of adequately carrying respiratory gases in blood by its volume being ~60% of that of a sphere with the same membrane area. For this purpose, human and most other vertebrate RBCs regulate their content of potassium (K+) and sodium (Na+) ions. The focus considered here is on K+ efflux through calcium-ion (Ca2+)-activated Gárdos channels. These channels open under conditions that allow Ca2+ to enter RBCs through Piezo1 mechanosensitive cation-permeable channels. It is postulated that the fraction of open Piezo1 channels depends on the RBC shape as a result of the curvature-dependent Piezo1-bilayer membrane interaction. The consequences of this postulate are studied by introducing a simple model of RBC osmotic behavior supplemented by the dependence of RBC membrane K+ permeability on the reduced volume (i.e., the ratio of cell volume to its maximal possible volume) of RBC discoid shapes. It is assumed that because of its intrinsic curvature and strong interaction with the surrounding membrane, Piezo1 tends to concentrate in the dimple regions of these shapes, and the fraction of open Piezo1 channels depends on the membrane curvature in that region. It is shown that the properties of the described model can provide the basis for the formation of the negative feedback loop that interrelates cell volume and its content of potassium ions. The model predicts the relation, valid for each cell in an RBC population, between RBC volume and membrane area, thus explaining the large value of the measured membrane area versus the volume correlation coefficient. The mechanism proposed here for RBC volume regulation is in accord with the loss of this correlation in RBCs of Piezo1 knockout mice.  相似文献   

15.
Red blood cell (RBC) swelling and membrane hole formation in hypotonic external media were studied by measuring the time-dependent capacitance, C, and the conductance, G, in the beginning of the beta-dispersion range. At high and moderate osmolarities of the external solution the capacitance reaches a steady-state whereas at low osmolarities it reveals a biphasic kinetics. Examination of RBC suspensions exposed to different concentrations of HgCl(2) demonstrates that water transport through mercury-sensitive water channel controls RBC swelling. Unlike the capacitance, an increase in the conductance to a stationary level is observed after a certain delay. A comparison of G(t) curves recorded for the suspensions of the intact cells and those treated with cytochalasin B or glutaraldehyde demonstrates the significant effect of the membrane viscoelasticity on the pore formation. It is shown that the stretched membrane of completely swollen RBC retains its integrity for a certain time, termed as the membrane lifetime, t(memb). Therefore, the resistivity of RBCs to a certain osmotic shock may be quantified by the distribution function of RBC(t(memb)).  相似文献   

16.
Water rapidly crosses the plasma membranes of red blood cells (RBCs) and renal tubules through highly specialized channels. CHIP28 is an abundant integral membrane protein in RBCs and renal tubules, and Xenopus laevis oocytes injected with CHIP28 RNA exhibit high osmotic water permeability, Pf [Preston et al. (1992) Science 256, 385-387]. Purified CHIP28 from human RBCs was reconstituted into proteoliposomes in order to establish if CHIP28 is itself the functional unit of water channels and to characterize its physiological behavior. CHIP28 proteoliposomes exhibit Pf which is up to 50-fold above that of control liposomes, but permeability to urea and protons is not increased. Like intact RBC, the Pf of CHIP28 proteoliposomes is reversibly inhibited by mercurial sulfhydryl reagents and exhibits a low Arrhenius activation energy. The magnitude of CHIP28-mediated water flux (11.7 x 10(-14) cm3/s per CHIP28) corresponds to the known Pf of intact RBCs. These results demonstrate that CHIP28 protein functions as a molecular water channel and also indicate that CHIP28 is responsible for most transmembrane water movement in RBCs.  相似文献   

17.
A new assay has been developed to study the osmotic fragility of red blood cells (RBCs) and the involvement of oxygen-derived free radicals and other oxidant species in causing human red blood cell hemolysis. The amount of hemoglobin released into the supernatant, which is a measure of human red blood cell hemolysis, is monitored using an ELISA reader. This ELISA-based osmotic fragility test compared well with the established osmotic fragility test, with the added advantage of significantly reduced time and the requirement of only 60 mul of blood. This small amount of blood was collected fresh by finger puncture and was immediately diluted 50 times with PBS, thus eliminating the use of anticoagulants and the subsequent washings. Since exposure of RBCs to 400 Gy gamma radiation caused less than 5% hemolysis 24 h after irradiation, the RBC hemolysis induced by gamma radiation was amplified by irradiating the cell in hypotonic saline. The method was validated by examining the protective effect of Trolox, an analog of vitamin E and reduced glutathione (GSH), a well-known radioprotector, against human RBC hemolysis caused by the combined action of radiation and osmotic stress. Trolox, a known membrane stabilizer and an antioxidant, and GSH offered significant protection. This new method, which is simple and requires significantly less time and fewer RBCs, may offer the ability to study the effects of antioxidants and membrane stabilizers on human red blood cell hemolysis induced by radiation and oxidative stress and assess the osmotic fragility of erythrocytes.  相似文献   

18.
《Cryobiology》2009,58(3):251-256
The phenomenon of slow cooling cryoinjury has remained one of the primary areas of research in cryobiology since the early 1950s when it was first investigated thoroughly. Lovelock demonstrated that cell death from freezing and thawing was mainly due to exposure to hypertonic solutions and the subsequent dilution back to isotonic conditions. He suggested that the cell became permeable to sodium in hypertonic conditions leading to a loading of sodium during the hypertonic exposure, which caused the cell to swell past its elastic limit during resuspension in isotonic media (post-hypertonic lysis). This idea was pursued by Zade-Oppen, Farrant, and others who were able to show that the membrane became leaky to cations in hypertonic media but they could not provide any mechanism that would cause the cell to load up with sodium (other than an exchange of extracellular sodium for intracellular potassium, leaving the cell with the same cation concentration that it started out with). In the absence of such a mechanism, predicting post-hypertonic lysis from osmotic simulations cannot be done.A simplified model is proposed in which the intracellular milieu is composed of both KCl and a proteinaceous component that normally forms many salt bridges between amino acids with fixed charges. When the intracellular salt concentration increases, the proteins are “salted in” to solution (salt bridges are replaced with ionic interactions) thereby decreasing the intracellular cation concentration. Cation channels in the plasma membrane are opened by exposure to a high salt concentration (either inside or outside the membrane) allowing extracellular sodium to take the place of the intracellular potassium that is interacting with anionic groups on the proteins. Dilution of the external medium (which also occurs during melting) causes water to move into the cells, diluting the cytoplasm. The proteins are then “salted out” of solution and release the salt back to free ions in solution. The cell has an excess of intracellular ions and may swell past its elastic limit due to water influx. A simulation engine is developed based on the model and compared to results in the literature for freeze–thaw injury in human red blood cells.  相似文献   

19.
Muldrew K 《Cryobiology》2008,57(3):251-256
The phenomenon of slow cooling cryoinjury has remained one of the primary areas of research in cryobiology since the early 1950s when it was first investigated thoroughly. Lovelock demonstrated that cell death from freezing and thawing was mainly due to exposure to hypertonic solutions and the subsequent dilution back to isotonic conditions. He suggested that the cell became permeable to sodium in hypertonic conditions leading to a loading of sodium during the hypertonic exposure, which caused the cell to swell past its elastic limit during resuspension in isotonic media (post-hypertonic lysis). This idea was pursued by Zade-Oppen, Farrant, and others who were able to show that the membrane became leaky to cations in hypertonic media but they could not provide any mechanism that would cause the cell to load up with sodium (other than an exchange of extracellular sodium for intracellular potassium, leaving the cell with the same cation concentration that it started out with). In the absence of such a mechanism, predicting post-hypertonic lysis from osmotic simulations cannot be done.A simplified model is proposed in which the intracellular milieu is composed of both KCl and a proteinaceous component that normally forms many salt bridges between amino acids with fixed charges. When the intracellular salt concentration increases, the proteins are “salted in” to solution (salt bridges are replaced with ionic interactions) thereby decreasing the intracellular cation concentration. Cation channels in the plasma membrane are opened by exposure to a high salt concentration (either inside or outside the membrane) allowing extracellular sodium to take the place of the intracellular potassium that is interacting with anionic groups on the proteins. Dilution of the external medium (which also occurs during melting) causes water to move into the cells, diluting the cytoplasm. The proteins are then “salted out” of solution and release the salt back to free ions in solution. The cell has an excess of intracellular ions and may swell past its elastic limit due to water influx. A simulation engine is developed based on the model and compared to results in the literature for freeze–thaw injury in human red blood cells.  相似文献   

20.
Chick embryos rendered calcium (Ca) deficient by shell-less (SL) culture develop hypertension and tachycardia. Since hypocalcemia is accompanied by hypernatremia systemically but not by lower cellular Ca (Koide and Tuan, 1989), we speculate that cellular Ca handling may be altered in the SL embryo, perhaps involving Na transport. Using erythrocytes (RBC) from day-14 SL and normal (NL) embryos as the experimental cell, cellular Ca handling was studied under varying extracellular osmotic and ionic conditions by analyzing 45Ca uptake and cell volume regulation. Two agents, p-chloromercuriphenylsulfonate (PCM), and inosine/iodoacetamide (INI) were used to treat the RBCs to modify plasma membrane ion permeability and to deplete cellular ATP, respectively. Other cellular functions and activities related to Ca homeostasis, including ATP content and Ca(2+)-ATPase activity, were also analyzed. These analyses showed: (1) in NaCl, Ca uptake was similar in NL and SL cells, except after INI treatment, which resulted in slower Ca uptake by the SL cells, (2) in choline and sucrose, Ca uptake by SL RBCs was higher, (3) Ca uptake by RBCs of both embryos changed depending on the osmotic agent (Na < K < or = choline < sucrose), (4) Ca(2+)-ATPase activity was higher in SL RBC, although there was no change in the size or charge of the enzyme, and (5) in any osmotic agent, cellular Na was significantly lower, whereas cellular K was higher, in SL RBC. Based on these results, three features of RBC Ca handling were apparent: (1) Na-Ca exchange was functional and was more active in SL RBCs, (2) Ca uptake was dependent on the total ionic electrochemical gradient but not on bulk H2O movement, and (3) Ca pumping out capacity was directly correlated with Ca(2+)-ATPase activity. Elevated Ca uptake in sucrose-treated SL RBC is therefore indicative of its greater ion permeability. Taken together, these findings indicate that cellular Ca handling of the RBCs of SL chick embryos is characterized by a more active Na-Ca exchange system, greater ion permeability, and higher Ca pumping out capacity, thereby suggesting an up-regulated Ca handling function in the SL RBCs. The abnormal cellular Ca handling may be a direct result of the systemic Ca deficiency of the SL chick embryo and may be functionally related to its hypertension and tachycardia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号