首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
猕猴桃属种间体细胞杂种   总被引:10,自引:0,他引:10  
利用PEG融合方法,分别进行了中华猕猴桃(Actinidia chinensis var.chinensis)(2n=2x=58)子叶愈伤组织来源的原生质体与美味猕猴桃(A.deliciosa var.deiciosa)(2n=6x=174)子叶愈伤组织原生质体、以及狗枣猕猴桃(A.kolomikta)(2n=2x=58)叶肉原生质体种间原生质体融合。结果表明:中华猕猴桃与美味猕猴桃融合的1个克隆和中华猕猴桃与狗枣猕猴桃融合的4个克隆的RAPD谱带分别具有双亲特异的DNA谱带;经流式细胞仪分析,前者细胞核倍性推测为8倍体,后者细胞核为3倍体、4倍体和5倍体。初步鉴定这5个克隆是猕猴桃属种间体细胞杂种。  相似文献   

2.
To understand the genomic organization of Diospyros species with different ploidy levels, we cloned three different repetitive DNAs and compared their genomic distributions in ten Diospyros species, including hexaploid D. kaki and D. virginiana. Genomic Southern hybridization demonstrated that the EcoRV-repetitive DNA was present in tandem in the genomes of D. glandulosa (2n=2x=30), D. oleifera (2n=2x=30), D. lotus (2n=2x=30), D. virginiana (2n=6x=90) and D. kaki (2n=6x=90). All of these species except D. virginiana also contained the HincII-repetitive DNA in tandem. Fluorescent in situ hybridization showed that the EcoRV- and HincII-repetitive DNAs were predominantly located at the proximal or centromeric regions of chromosomes. The DraI-repetitive sequence cloned from D. ehretioides (2n=2x=30) was not found in the other Diospyros species tested. This suggests that D. ehretioides has a genomic organization different from that of the other Diospyros species. Speciation of hexaploid Diospyros species is also discussed with respect to the genomic distribution of the three repetitive DNAs cloned.  相似文献   

3.
Highly asymmetric somatic hybrid plants were obtained by PEG/DMSO fusion of gamma-irradiated mesophyll protoplasts of the kanamycin-resistant (KmR+) interspecific hybrid Lycopersicon esculentum x L. pennellii (EP) with mesophyll protoplasts of Solanum melongena (eggplant, E). Elimination of the EP chromosomes was obtained by irradiating the donor genome with different doses of gamma rays (100, 250, 500, 750 and 1000 Gy). The selection of somatic hybrid calli was based on kanamycin resistance; EP and E protoplasts did not divide due to the irradiation treatment and sensitivity to kanamycin, respectively. KmR+ calli were recovered following all irradiation doses of donor EP protoplasts. The hybrid nature of the recovered calli was confirmed by PCR amplification of the NptII gene, RAPD patterns and Southern hybridizations using potato ribosomal DNA and pTHG2 probes. Ploidy levels of calli confirmed as hybrid were further analyzed by flow cytometry. Such analyses revealed that the vast majority of hybrid calli that did not regenerate shoots were 5–9n polyploids. The three asymmetric somatic hybrid plants obtained were regenerated only from callus with a ploidy level close to 4n, and such calli occurred only when the donor EP had been exposed to 100 Gy. The amount of DNA in somatic hybrid calli, from 100-Gy exposure, was found by dot blot hybridization with the species-specific probe, pTHG2, to be equivalent with 3.1–25.8% of the tomato genome. Thus, DNA contained in 3.8–13.2 average-size tomato chromosomes was present in these hybrid calli. The asymmetric somatic hybrid plants had the eggplant morphology and were regenerated from one hybrid callus that contained an amount of tomato DNA equivalent to 6.29 average-size tomato chromosomes.  相似文献   

4.
Intergeneric somatic hybrids have been produced between Brassica juncea (2n=36, AABB) cv. RLM-198 and Moricandia arvensis (2n=28, MM) by protoplast fusion. Hypocotyl protoplasts of B. juncea were fused with mesophyll protoplasts of M. arvensis using polyethylene glycol. Fusion frequency, estimated on the basis of differential morphological characterstics of parental protoplasts was about 5%. Of the 156 calli obtained, four calli produced shoots intermediate in morphology between the parents. Hybrid nature of the plants was confirmed using wheat nuclear rDNA probe. Hybridization of total DNA with a mitochondrial DNA probe carrying 5s–18s rRNA genes of maize showed that the mitochondria of the somatic hybrids were derived from the wild species M. arvensis. Meiosis in the only hybrid that produced normal flowers revealed the occurrence of 64 chromosomes, the sum of chromosomes of parental species. Inspite of complete pollen sterility, siliquas were produced in this hybrid by back-crossing with B. juncea. These siliquas on in vitro culture produced 12 seeds.  相似文献   

5.
电场诱导粗柠檬(CitrusjambhiriLush,2n=2x=18)叶肉原生质体与澳洲指橘(MicrocitruspapuanaSwingle,2n=2x=18)悬浮系原生质体融合,融合产物培养后再生出丛芽,经试管嫁接得到完整植株。再生植株的细胞学检查表明它们具有18条染色体,为二倍体;植株的叶片形态与叶肉亲本(粗柠檬)一样;用6个10-mer随机引物分析再生植株的杂种特性:在4个引物(OPA-07、OPAN-07、OPE-05和OPA-08)的扩增带型图中,再生植株的带型与粗柠檬完全一样,澳洲指橘的特征带未在植株中出现;在引物OPS-13和引物OPA-04的扩增带型图中,再生植株都具有澳洲指橘的特征带。细胞学和RAPD分析的结果表明,通过对称融合得到了澳洲指橘与粗柠檬的属间二倍体体细胞杂种植株。这是柑橘属间对称融合再生二倍体叶肉亲本类型植株的首例报道。  相似文献   

6.
 Results are reported on the production and characterization of somatic hybrids between Allium ampeloprasum and A. cepa. Both symmetric and asymmetric protoplast fusions were carried out using a polyethylene-based mass fusion protocol. Asymmetric fusions were performed using gamma ray-treated donor protoplasts of A. cepa and iodoacetamide-treated A. ampeloprasum protoplasts. However, the use of gamma irradiation to eliminate or inactivate the donor DNA of A. cepa proved to be detrimental to the development of fusion calli, and thus it was not possible to obtain hybrids from asymmetric fusions. The symmetric fusions yielded a high number of hybrid calli and regenerated plants. The analysis of the nuclear DNA composition using interspecific variation of rDNA revealed that most of the regenerated plants were hybrids. Flow cytometric analysis of nuclear DNA showed that these hybrid plants contained a lower DNA content than the sum of the DNA amounts of the parental species, suggesting that they were aneuploid. A shortage of chromosomes in the hybrids was confirmed by genomic in situ hybridization. Chromosome counts in metaphase cells of six hybrids revealed that these plants lacked 2–7 leek chromosomes. One hybrid showed also the loss of onion chromosomes. The hybrids had an intermediate phenotype in leaf morphology. The application of these somatic hybrids in breeding is discussed. Received: 7 April 1997 / Accepted: 10 September 1997  相似文献   

7.
Solanum acaule Bitt. is a disomic tetraploid (4x) wild potato species which is resistant to several potato diseases. Introgression of disease resistance and abiotic stress tolerance to the tetrasomic tetraploid (4x) cultivated potato (S. tuberosum L.) gene pool via crossing has been limited due to the difference in the endosperm balance number. In the present study, protoplast fusion was applied to produce hexaploid (6x) somatic hybrids between the parental lines, tetraploid (4x) S. acaule and two anther-derived dihaploid (2x) lines of S. tuberosum cv. White Lady. One callus (0.4%) of a total of 229 calli obtained regenerated into shoots in the fusion combination S. acaule (+) White Lady 15.dh.8.2.2. All the regenerated shoots were confirmed to be interspecific somatic hybrids using species-specific RAPD markers. In another fusion combination, S. acaule (+) White Lady 7.dh.23.1.1, fifteen calli (5%) regenerated into a total of sixteen shoots from 289 calli. All the analysed somatic hybrids between S. acaule and S. tuberosum were hexaploid. The mean DNA content (2C value) of the combination S. acaule (+) White Lady 15.dh.8.2.2 somatic hybrids (4.55 pg), was approximately the sum (4.69 pg) of the DNA contents of the parental lines, S. acaule (2.95 pg) and S. tuberosum (1.74 pg). In the greenhouse, the two somatic hybrids analysed were normal in their morphological characteristics and more vigorous than their parental lines. Most of the morphological characteristics were closer to the tetraploid S. acaule than to the dihaploid S. tuberosum. The interspecific somatic hybrids are currently being tested for frost tolerance and glycoalkaloid composition. Received: 19 January 1998 / Revision received: 27 March 1998 / Accepted: 20 April 1998  相似文献   

8.
Leaf-derived protoplasts of Rough lemon ( Citrus jambhiri Lush, 2n = 2x = 18) were electrofused with embryogenic suspension protoplasts of its relative, Microcitrus papuana 5wingle (2n = 2x = 18), with an intention of creating novel germplasm. Six plants were regenerated following protoplasts fusion. Cytological examination demonstrated that they were diploids with 18 chromosomes (2n = 2x = 18). RAPD (random amplified polymorphic DNA) analyses with six arbitrary 10-mer primers showed that the regenerated plants had identical band pattems to those of Rough lemon for primers OPA-07, OPAN-07, OPE-05 and OPA-08, whereas for the other two primers, OPA-04 and OPS-13, bands specific to M. papuana could be detected in the regenerated plants. Cytological and RAPD analysis revealed that the regenerated plants were diploid somatic hybrids between M. papuana and Rough lemon. The putative hybrids were morphologically similar to Rough lemon. This is the first report on production of diploid somatic hybrid plants between citrus with its related genus via symmetric fusion.  相似文献   

9.
Cai Y  Xiang F  Zhi D  Liu H  Xia G 《Plant cell reports》2007,26(10):1809-1819
In order to genotype hybrid genomes of distant asymmetric somatic hybrids, we synthesized hybrid calli and plants via PEG-mediated protoplast fusion between recipient tall fescue (Festuca. arundinacea Schreb.) and donor wheat (Triticum aestivum L.). Seventeen and 25 putative hybrid clones were produced from the fusion combinations I and II, each with the donor wheat protoplast treated by UV light for 30 s and 1 min, respectively. Isozyme and RAPD profiles confirmed that ten hybrid clones were obtained from combination I and 19 from combination II. Out of the 29 hybrids, 12 regenerated hybrid plants with tall fescue phenotype. Composition and methylation-variation of the nuclear and cytoplasmic genomes of some hybrids, either with or without regenerative ability, were compared by genomic in situ hybridization, restriction fragment length polymorphism, and DNA methylation-sensitive amplification polymorphism. Our results indicated that these selected hybrids all contained introgressed nuclear and cytoplasmic DNA as well as obvious methylation variations compared to both parents. However, there were no differences either in nuclear/cytoplasmic DNA or methylation degree between the regenerable and non-regenerable hybrid clones. We conclude that both regeneration complementation and genetic material balance are crucial for hybrid plant regeneration.  相似文献   

10.
5S rDNA间隔序列分析和RAPD技术用于鉴定体细胞杂种   总被引:2,自引:0,他引:2  
主要对狭叶柴胡(Bupleurum scoronerifolium)与川西獐芽菜(Swerita musstii Franch) 的科间体细胞杂种愈伤组织、小麦(Triticum aestivum)与燕麦(Avena sativa)的族间体细胞杂种愈伤组织及再生植株进行5S rDNA 间隔序列及RAPD 分析鉴定, 确证了它们为体细胞杂种。  相似文献   

11.
Reciprocal crosses were performed between Brassica napus (AACC, 2n = 38) cv. Brutor and Sinapis alba (SalSal, 2n = 24) cv. Carine. Using fertilized ovary culture, 2.2 and 1.9% of interspecific hybrids were produced when white mustard was the female and the male parent, respectively. On S. alba cytoplasm, three plants with a BC1-like structure (SalSalAC, 2n = 43) were obtained and ACSal (2n = 31) and AACCSal (2n = 50) hybrids on reciprocal crosses. At the same ploidy level, no differences in meiotic behavior were observed. The amphidiploids (AACCSalSal, 2n = 62), produced after colchicine treatment of ACSal hybrids, were compared with the somatic hybrids previously obtained from the same parental varieties. Only two somatic hybrids differed and one of them lost Idh-2 rapeseed isozymes, whereas all the plants presented an hybrid pattern for all the other molecular markers. The plants with 50 chromosomes (AACCSal) from sexual hybrids were similar whatever their origins. Their comparison with back-cross progeny of somatic hybrids revealed that the latter one differed either by chromosome number, ranging from 42 to 54, or by the percentage of cells with less than 12 univalents and with multivalents. From our results, the efficiency of protoplast fusion compared with sexual crosses as a tool to introduce new traits in a crop is discussed.  相似文献   

12.
We tested the application of RAPD technology for identification of hybrid genomes originated from a maternal clone of Lolium perenne L. (2n = 2x = 14) bearing cytoplasmic male sterility, which was pollinated separately by five clones of Festuca arundinacea Schreb. cv. Barocco (2n = 6x = 42). Six classes of RAPD markers were recognized, specific to: 1) Festuca genome and inherited into F1 hybrid genomes, 2) Lolium genome inherited into F1 hybrid genomes, 3) Lolium-specific bands not found in F1 progeny, 4) Festuca-specific bands not found in F1 progeny, 5) new bands found only in F1 hybrid profiles, 6) bands common to all parental and F1 hybrid genotypes. RAPD data were shown to have full potential a) to serve as an unequivocal proof of genome recombination in perennial ryegrass × tall fescue hybrids, b) to identify hybrid genomes, c) to reveal phenetic relationships of the accessions from crossing families, d) to enhance, by fingerprinting, the selection of superior hybrid material for further breeding. RAPD data were found to be consistent with the festucoid phenotype of F1 hybrids. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Somatic hybrids between the wild incongruent species Solanum bulbocastanum (2n = 2x = 24) and S. tuberosum haploids (2n = 2x = 24) have been characterized for their nuclear and cytoplasmic genome composition. Cytologic observations revealed the recovery of 8 (near-)tetraploid and 3 hexaploid somatic hybrids. Multicolor genomic in situ hybridization (GISH) analysis was carried out to study the genomic dosage of the parental species in 5 somatic hybrids with different ploidy. The GISH procedure used was effective in discriminating parental genomes in the hybrids; most chromosomes were unambiguously colored. Two (near-)tetraploid somatic hybrids showed the expected 2:2 cultivated-to-wild genomic dosage; 2 hexaploids revealed a 4:2 cultivated-to-wild genomic dosage, and 1 hexaploid had a 2:4 cultivated-to-wild genomic dosage. Characterization of hybrid cytoplasmic genomes was performed using gene-specific primers that detected polymorphisms between the fusion parents in the intergenic regions. The analysis showed that most of the somatic hybrids inherited the plastidial and mitochondrial DNA of the cultivated parent. A few hybrids, with a rearranged mitochondrial genome (showing fragments derived from both parents), were also identified. These results confirmed the potential of somatic hybridization in producing new variability for genetic studies and breeding.  相似文献   

14.
In the present investigation, the interspecific somatic hybridization between tuber mustard and red cabbage was established in order to introduce valuable genes from red cabbage (Brassica oleracea) into Brassica juncea. Prior to fusion treatment, protoplasts of red cabbage were inactivated with 2 mM iodoacetamide to inhibit cell division. Micro-calluses were obtained at a frequency of 10.3% after approximately 5 weeks culture following protoplast fusion. Some of the fusion-derived calluses possessed red pigmented cells after being transferred to proliferation medium, and they were presumably considered to be somatic hybrid cell lines. Plantlets were regenerated from 12 cell lines, of which nine plantlets exhibited characteristics intermediate of both parents in terms of plant morphology. With the exception of common protein bands featured by two parents, there were unique banding patterns produced in the hybrids by using SDS-PAGE analysis. By chromosome countings, it was showed that they ranged approximately from 2n=30 to 42 in chromosome numbers. Their hybridity were further confirmed by RAPD analysis revealing that genes of both parents were partially incorporated into the hybrids. Positively, all these hybrids were capable of seed-setting. The pod-setting was 4.2 in somatic hybrid H7 when backcrossed with tuber mustard.  相似文献   

15.
 Twenty eight somatic hybrid plants were identified following protoplast fusions between peppermint (Mentha piperita L. cv Black Mitcham), producing high-quality oil, and spearmint (Mentha spicata L. cv Native Spearmint), likewise producing high-quality oil and also possessing resistance to verticillium wilt. Prior to fusion, peppermint protoplasts were subjected to iodoacetic acid to inhibit cell division. Protoplasts of peppermint and spearmint were fused using polyethylene glycol plus DMSO. Fusion products were cultured according to an efficient protoplast-to-plant-cycle protocol developed for peppermint. Using this protocol, iodoacetic acid-treated peppermint protoplasts were not able to divide, whereas untreated spearmint protoplasts had the ability to produce callus but not shoots. Therefore, selection of somatic hybrid calli was based on the presumed capability of hybrid cells to form calli and shoots. Shoots in vitro were initially identified as hybrids using RAPD profiles. Subsequently, observations on morphology, chromosome counts, and Southern-hybridization patterns confirmed their hybrid status. The results of verticillium tests revealed that 18 somatic hybrids were more susceptible than Native Spearmint, while hybrid II-14 had a level of susceptibility intermediate between that of the fusion parents. Oil-analysis of hybrid plants indicated that they all have a GC-profile typical of spearmint oil. Received: 8 February 1997 / Accepted: 9 April 1997  相似文献   

16.
Li C  Xia G  Xiang F  Zhou C  Cheng A 《Plant cell reports》2004,23(7):461-467
Two types of protoplasts of wheat (Triticum aestivum L. cv. Jinan 177) were used in fusion experiments—cha9, with a high division frequency, and 176, with a high regeneration frequency. The fusion combination of either cha9 or 176 protoplasts with Russian wildrye protoplasts failed to produce regenerated calli. When a mixture of cha9 and 176 protoplasts were fused with those of Russian wildrye, 14 fusion-derived calli were produced, of which seven differentiated into green plants and two differentiated into albinos. The morphology of all hybrid plants strongly resembled that of the parental wheat type. The hybrid nature of the cell lines was confirmed by cytological, isozyme, random amplified polymorphic DNA (RAPD) and genomic in situ hybridization (GISH) analyses. GISH analysis revealed that only chromosome fragments of Russian wildrye were transferred to the wheat chromosomes of hybrid calli and plants. Simple sequence repeat (SSR) analysis of the chloroplast genome of the hybrids with seven pairs of wheat-specific chloroplast microsatellite primers indicated that all of the cell lines had band patterns identical to wheat. Our results show that highly asymmetric somatic hybrid calli and plants can be produced via symmetric fusion in a triparental fusion system. The dominant effect of two wheat cell lines on the exclusion of Russian wildrye chromosomes is discussed.Abbreviations GISH Genome in situ hybridization - RAPD Random amplified polymorphic DNA - SCF Small chromosome fragment - SSR Simple sequence repeat  相似文献   

17.
白菜与甘蓝之间体细胞杂交种获得与遗传特性鉴定   总被引:1,自引:0,他引:1  
廉玉姬 《生物工程学报》2012,28(9):1080-1092
为拓宽白菜育种的基因资源,改良白菜品质,以白菜(Brassica campestris,2n=20,AA)和甘蓝(B.oleracea L.var.capitata,2n=18,CC)的子叶和下胚轴为材料分离、制备原生质体。采用40%聚乙二醇(Polyethylene glycol,PEG)进行原生质体融合。融合细胞在以0.3 mol/L蔗糖、0.3 mol/L葡萄糖为渗透稳定剂,附加1.0 mg/L 2,4-D+0.5 mg/L 6-苄氨基嘌呤(6-BA)+0.1 mg/L 1-萘乙酸(NAA)+1.0 mg/L激动素(Kinetin,Kin)的改良K8p培养基中培养并诱导细胞分裂。小愈伤组织经增殖培养后在MS+0.2 mg/L玉米素(Zeatin,ZEA)+1 mg/L 6-BA+0.5 mg/L Kin+0.4 mg/L NAA的固体分化培养基上诱导出不定芽。30 d后再转入MS基本培养基,获得完整的再生植株。将生根的植株转移到花盆,并对其杂种性质进行形态学、细胞学和分子生物学鉴定。结果表明,经细胞融合分裂出的320个愈伤组织中,获得了35棵再生植株,其再生率达10.94%。形态学观察显示,绝大多数再生植株的叶面积较大,株型和叶型为两种杂交亲本的中间型,部分植株的叶片浓绿、肥厚。染色体计数结果显示,36.4%的再生植株染色体数为2n=38;36.4%的再生植株的染色体数为2n=58 60;27.2%的再生植株的染色体数为2n=70 76,超过两个融合亲本的染色体数的总和。流式细胞仪测定DNA含量显示,再生植株DNA含量变化比较大,其结果与染色体鉴定结果相吻合。随机扩增多态性DNA(Randomamplified polymorphic DNA,RAPD)和基因组原位杂交(Genomic in situ hybridization,GISH)分析结果证明再生植株具有双亲基因组。体细胞杂种花粉育性比较低,杂交、回交后其育性逐渐获得恢复,与白菜回交后代逐渐恢复了育性。通过体细胞杂交和回交、杂交获得了形态变化广泛的个体,为白菜的品种育种提供多样的种质资源。  相似文献   

18.
Symmetric and asymmetric somatic hybrids were produced via protoplast fusion between common wheat ( TRITICUM AESTIVUM L.) cv. "Jinan 177" and Italian ryegrass ( LOLIUM MULTIFLORUM Lam.). The ryegrass without or with UV irradiation was used as a donor, providing a small amount of chromatin. In these somatic hybrids, most ryegrass chromosomes have been confirmed preferential elimination and the somatic hybrid calli and plants showed wheat-like morphology. Some of the hybrid lines were used for the analysis of distribution and heredity of donor DNA in the hybrid genome and the possibility of establishing a radiation hybrid (RH) panel of the ryegrass in the present experiment. These hybrids, subcultured for two and three years, retained the ryegrass DNA examined by RFLP and GISH analysis, respectively. Distribution of the ryegrass DNA in the wheat genomes of 20 single-cell individuals, randomly selected from hybrid cell lines produced, were analyzed by 21 ryegrass genome specific SSR markers. The average frequencies of molecular marker retention in symmetric hybrid lines (UV 0), as well as asymmetric hybrid lines from UV 30 s and 1 min were 10.88, 15.48 and 33.86, respectively. It was suggested that the UV dose increased the introgression of donor DNA into wheat genome. The ryegrass SSR fragments in most asymmetric hybrid cell lines remained stable over a period of 2 approximately 3 years. This revealed that those asymmetric somatic hybrids are suitable for the introgression of ryegrass DNA into wheat, and for RH panel and RH mapping.  相似文献   

19.
Protoplast fusion experiments between Lycopersicon esculentum or L. peruvianum and Nicotiana tabacum or N. plumbaginifolia were performed to investigate the possibility of producing symmetric and asymmetric somatic hybrids between these genera. These fusions, which involved 1.7 × 108 protoplasts, yielded 35 viable hybrid calli. Plant regeneration was successful with two calli. One of these regenerants flowered, but developed no fruits. Analysis of the nuclear DNA by means of dot blot hybridization with species-specific repetitive DNA probes combined with flow cytometry, revealed that the nuclei of most hybrid calli contained the same absolute amount of Nicotiana DNA as the Nicotiana parent or (much) less, whereas the amount of Lycopersicon DNA per nucleus was 2–5 times that of the parental genotype. Eighteen of the 34 hybrids analyzed possessed Lycopersicon chloroplast DNA (cpDNA), whereas the other 16 had DNA from Nicotiana chloroplasts. The cpDNA type was correlated with the nuclear DNA composition; hybrids with more than 2C Nicotiana nuclear DNA possessed Nicotiana chloroplasts, whereas hybrids with 2C or less Nicotiana nuclear DNA contained Lycopersicon chloroplasts. Mitochondrial DNA (mtDNA) composition was correlated with both nuclear DNA constitution and chloroplast type. Hybrids possessed only or mainly species-specific mtDNA fragments from the parent predominating in the nucleus and often providing the chloroplasts. The data are discussed in relation to somatic incompatibility which could explain the low frequency at which hybrids between Lycopersicon and Nicotiana species are obtained and the limited morphogenetic potential of such hybrids.  相似文献   

20.
Protoplast fusion experiments between Lycopersicon esculentum or L. peruvianum and Nicotiana tabacum or N. plumbaginifolia were performed to investigate the possibility of producing symmetric and asymmetric somatic hybrids between these genera. These fusions, which involved 1.7 × 108 protoplasts, yielded 35 viable hybrid calli. Plant regeneration was successful with two calli. One of these regenerants flowered, but developed no fruits. Analysis of the nuclear DNA by means of dot blot hybridization with species-specific repetitive DNA probes combined with flow cytometry, revealed that the nuclei of most hybrid calli contained the same absolute amount of Nicotiana DNA as the Nicotiana parent or (much) less, whereas the amount of Lycopersicon DNA per nucleus was 2–5 times that of the parental genotype. Eighteen of the 34 hybrids analyzed possessed Lycopersicon chloroplast DNA (cpDNA), whereas the other 16 had DNA from Nicotiana chloroplasts. The cpDNA type was correlated with the nuclear DNA composition; hybrids with more than 2C Nicotiana nuclear DNA possessed Nicotiana chloroplasts, whereas hybrids with 2C or less Nicotiana nuclear DNA contained Lycopersicon chloroplasts. Mitochondrial DNA (mtDNA) composition was correlated with both nuclear DNA constitution and chloroplast type. Hybrids possessed only or mainly species-specific mtDNA fragments from the parent predominating in the nucleus and often providing the chloroplasts. The data are discussed in relation to somatic incompatibility which could explain the low frequency at which hybrids between Lycopersicon and Nicotiana species are obtained and the limited morphogenetic potential of such hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号