首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用盆栽法研究了丛枝菌根(AM)真菌摩西球囊霉(Glomus mosseae)对水分胁迫条件下百喜草(Paspalum notatum)生长、渗透调节及抗氧化酶的影响。结果表明:接种AM真菌显著提高了百喜草的株高、地上部与根部鲜重、地上部P、K、Mn及根部P、Ca、Mn含量,明显降低了地上部Zn及根部Fe、B、Cu水平;随着干旱程度的加深,接种株的地上部相对含水量及叶绿素含量相对稳定且均显著高于未接种株,接种株地上部相对电导率、MDA含量均显著低于未接种株,接种株的地上部POD活性与脯氨酸含量均显著增加且均显著高于未接种株,AM侵染对SOD活性的影响较小。可见,接种AM真菌Glomusmossecte提高了植株体内保护酶活性(如POD)及渗透调节能力(如脯氨酸、P、K、Ca等渗透调节物含量的增加),从而显著增强了百喜草的抗旱性。  相似文献   

2.
Grewal  Harsharn Singh  Williams  Rex 《Plant and Soil》1999,214(1-2):39-48
Response of 13 alfalfa (Medicago sativa L.) genotypes to varied Zn supply (+Zn: 2 mg kg−1 soil, −Zn: no added Zn) was studied in a pot experiment under controlled environmental conditions. Plants were grown for four weeks in a Zn-deficient siliceous sandy soil. Plants grown at no added Zn showed typical Zn deficiency symptoms i.e. interveinal chlorosis of leaves, yellowish-white necrotic lesions on leaf blades, necrosis of leaf margins, smaller leaves and a marked reduction in growth. There was solute leakage from the leaves of Zn-deficient plants, while no solute leakage from Zn-sufficient plants. The ratios of P:Zn, Fe:Zn, Cu:Zn and Mn:Zn in Zn-deficient plants were extremely high compared with Zn-sufficient plants indicating disturbance of P:Zn, Fe:Zn, Cu:Zn and Mn:Zn balance within plant system by Zn deficiency. Genotypes differed markedly in Zn efficiency based on shoot dry matter production. Alfalfa genotypes also differed markedly in P:Zn ratio, Cu:Zn ratio and Fe:Zn ratio under —Zn treatment. The shoot dry weight, shoot:root ratio, chlorophyll content of fresh leaf tissue, solute leakage from the leaves, Zn uptake and distribution of Zn in shoots and roots were the most sensitive parameters of Zn efficiency. Zn-efficient genotypes had less solute leakage but higher shoot:root ratio and higher Zn uptake compared with Zn-inefficient genotypes. Under —Zn treatment, Zn-inefficient genotypes had less Zn partitioning to shoots (33–37%) and more Zn retained in roots (63–67%), while Zn-efficient genotypes had about equal proportions of Zn in roots (50%) and shoots (50%). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
丛枝菌根真菌对百喜草的生理特性的影响   总被引:1,自引:0,他引:1  
采用盆栽法研究了丛枝菌根(AM)真菌摩西球囊霉(Glomus mosseae)对水分胁迫条件下百喜草(Paspalum notatum)生长、渗透调节及抗氧化酶的影响。结果表明:接种AM真菌显著提高了百喜草的株高、地上部与根部鲜重、地上部P、K、Mn及根部P、Ca、Mn含量,明显降低了地上部Zn及根部Fe、B、Cu水平;随着干旱程度的加深,接种株的地上部相对含水量及叶绿素含量相对稳定且均显著高于未接种株,接种株地上部相对电导率、MDA含量均显著低于未接种株,接种株的地上部POD活性与脯氨酸含量均显著增加且均显著高于未接种株,AM侵染对SOD活性的影响较小。可见,接种AM真菌Glomus mosseae提高了植株体内保护酶活性(如POD)及渗透调节能力(如脯氨酸、P、K、Ca等渗透调节物含量的增加),从而显著增强了百喜草的抗旱性。  相似文献   

4.
The effects of arbuscular mycorrhizal (AM) fungus, Glomus mosseae, on growth, osmotic adjustment and antioxidant enzymes of bahia grass (Paspalum notatum) were studied in potted plants under water stress conditions. AM colonization significantly enhanced the plant height, root and shoot fresh weight, Phosphorus (P), potasium (K), manganese (Mn) contents in shoots, P, calcium (Ca), Mn contents in roots, whereas obviously decreased zinc (Zn) content in shoots, iron (Fe), boron (B), copper (Cu) contents in roots. During water stress, the relative water and chlorophyll contents were relatively stable and signifciantly higher in AM than in non-AM plants, AM inoculation notabley decreased the shoot relative conductivity and malondialdehyde (MDA) content, markedly increased shoot peroxidase (POD) activity and proline content, while AM infection did not affect the dismutase (SOD) activity of shoots. Our results suggested that AM colonization improved the protective enzyme activity (such as POD) and osmotic adjustment originating from proline P, K, Ca, resulting in the enhancement of drought tolerance.  相似文献   

5.
Summary Experiments on sitka-spruce seedlings grown in acidic peaty gley soils under green-house conditions, where the soils where doped with increasing amounts of Cd, Cu and Pb up to maximum levels of metal added of 16 ppm, 32 ppm and 400 ppm respectively, showed that the levels of Cd and Pb in shoots and roots increased with increasing levels in the soil, whereas levels of copper appeared to be independent. The addition of these three metals to the soils did not influence the uptake of other heavy metals, or of the nutrients potassium or calcium. Increases in the shoot cadmium levels significantly reduced the yields of the plant shoots. However, the plant yields were only affected by the highest level of lead that was added to the soil (400 ppm Pb) and unaffected by all the copper treatments (0–32 ppm Cu in the soil). The lengths of the sitka-spruce roots were reduced when cadmium and lead levels in the soil exceeded certain threshold concentrations (2.5 ppm total Cd, where 0.3 ppm was extractable with 0.5 M acetic acid; and 48 ppm total Pb, where 1.7 ppm was extractable). However, root lengths were not reduced by copper. This was probably related to the fact that copper appears to be relatively unavailable in the type of soil used, as only 1.1. ppm Cu was extractable from a total of 32 ppm Cu added. Root branching was apparently reduced by increases in the soil levels of cadmium, copper and lead. The roots of some control plants had symbiotic mycorrhizal associations (4 out of 19 plants), whereas the roots of all the plants grown in the soils with added heavy metals did not develop these.  相似文献   

6.
The aim of this study was to investigate the effects of temperature and Cu on the morphological and physiological traits of Elsholtzia haichowensis grown in soils amended with four Cu concentrations (0, 50, 500, and 1000 mg kg?1) under ambient temperature and slight warming. At the same Cu concentration, the height, shoot dry weight, total plant dry weight, and root morphological parameters such as length, surface area and tip number of E. haichowensis increased due to the slight warming. The net photosynthetic rate, stomatal conductance, transpiration, light use efficiency were also higher under the slight warming than under ambient temperature. The increased Cu concentrations, total Cu uptake, bioaccumulation factors and tolerance indexes of shoots and roots were also observed at the slight warming. The shoot dry weight, root dry weight, total plant dry weight and the bioaccumulation factors of shoots and roots at 50 mg Cu kg?1 were significantly higher than those at 500 and 1000 mg Cu kg?1 under the slight warming. Therefore, the climate warming may improve the ability of E. haichowensis to phytoremediate Cu-contaminated soil, and the ability improvement greatly depended on the Cu concentrations in soils.  相似文献   

7.
A pot culture experiment was carried out to study heavy metal (HM) phytoaccumulation from soil contaminated with Cu, Zn, Pb, and Cd by maize (Zea mays L.) inoculated with arbuscular mycorrhizal (AM) fungi (AMF). Two AM fungal inocula--MI containing only one AM fungal strain (Glomus caledonium 90036) and MII consisting of Gigaspora margarita ZJ37, Gigaspora decipens ZJ38, Scutellospora gilmori ZJ39, Acaulospora spp., and Glomus spp.--were applied to the soil under unsterilized conditions. The control received no mycorrhizal inoculation. The maize plants were harvested after 10 wk of growth. MI-treated plants had higher mycorrhizal colonization than MII-treated plants. Both MI and MII increased P concentrations in roots, but not in shoots. Neither MI nor MII had significant effects on shoot or root dry weight (DW). Compared with the control, shoot Cu, Zn, Pb, and Cd concentrations were decreased by MI but increased by MII. Cu, Zn, Pb, and Cd uptake into shoots and roots all increased in MII-treated plants, while in MI-treated plants Cu, Zn, and Pb uptake into shoots and Cd uptake into roots decreased but Cu, Zn, and Pb uptake into roots and Cd into shoots increased. MII was more effective than MI in promoting HM extraction efficiencies. The results indicate that MII can benefit HMphytoextraction and, therefore, show potential in the phytoremediation of HM-contaminated soils.  相似文献   

8.
We investigated the effects on physiological response, trace elements and nutrients accumulation of sunflower plants grown in soil contaminated with: 5 mg kg(-1) of Cd; 5 and 300 mg kg(-1) of Cd and Zn, respectively; 5, 300, and 400 mg kg(-1) of Cd, Zn, and Cu, respectively. Contaminants applied did not produce large effects on growth, except in Cd-Zn-Cu treatment in which leaf area and total dry matter were reduced, by 15%. The contamination with Cd alone did not affect neither growth nor physiological parameters, despite considerable amounts of Cd accumulated in roots and older leaves, with a high bioconcentration factor from soil to plant. By adding Zn and then Cu to Cd in soil, significant were the toxic effects on chlorophyll content and water relations due to greater accumulation of trace elements in tissues, with imbalances in nutrients uptake. Highly significant was the interaction between shoot elements concentration (Cd, Zn, Cu, Fe, Mg, K, Ca) and treatments. Heavy metals concentrations in roots always exceeded those in stem and leaves, with a lower translocation from roots to shoots, suggesting a strategy of sunflower to compartmentalise the potentially toxic elements in physiologically less active parts in order to preserve younger tissues.  相似文献   

9.
The efficacy for phytoremediation of five willow species was tested by experimental copper and cadmium uptake in a greenhouse hydroponic system. Five treatments included two concentrations (5 and 25 microM for each metal) and a control. Metal concentrations in solution as well as solution uptake were monitored. Metal resistance was assessed through effects on the dry weight of roots and shoots. The willow species tested were generally resistant of increased Cu and Cd content. Metal accumulation was found in all plant organs of all species. Growth and transpiration were not decreased by 5 microM of copper and 25 microM of cadmium in the solution for most species. 25 microM copper caused injury and reduced the dry weight for all species after 21 d. Salix nigra was highly resistant of both Cu and Cd and accumulated more metals than other species. Future field study should be conducted to confirm the findings and feasibility of the phytoremediation technology using those species.  相似文献   

10.
研究不同浓度(10^-6-10^-4mol/L)硫酸铜(CuSO4,5H2O)溶液对大蒜(Allium satiuwn L.)根,叶和蒜瓣生影响及其这些器官对Cu^2 的积累能力,研究结果指出:在106-5-10^-4mol/L,Cu的处理下,Cu严重影响大蒜根和叶生长,大蒜具有较强吸收和积累Cu^2 的能力,随着Cu^2 处理浓度的增加,大蒜根中的Cu^2 含量递增,大蒜经10^-4mol/L,Cu处理,根部积累了大量的Cu,其含量是对照的52倍,在10^-5和10^-6mol/L Cu处理中,根中Cu的含量分别是对照的13倍和1.4倍,Cu主要积累在极中(10^-5-10^-4mol/L Cu处理),只有少量的转移到叶子和蒜瓣中。  相似文献   

11.
Yedidia  Iris  Srivastva  Alok K  Kapulnik  Yoram  Chet  Ilan 《Plant and Soil》2001,235(2):235-242
The potential of the biocontrol agent Trichoderma harzianum strain T-203 to induce a growth response in cucumber plants was studied in soil and under axenic hydroponic growth conditions. When soil was amended with T. harzianum propagules, a 30% increase in seedling emergence was observed up to 8 days after sowing. On day 28, these plants exhibited a 95 and 75% increase in root area and cumulative root length, respectively, and a significant increase in dry weight (80%), shoot length (45%) and leaf area (80%). Similarly, an increase of 90 and 30% in P and Fe concentration respectively, was observed in T. harzianum inoculated plants. To better characterize the effect of T. harzianum during the early stages of root colonization, experiments were carried out in a gnotobiotic hydroponic system. An increased growth response was apparent as early as 5 days post-inoculation with T. harzianum, resulting in an increase of 25 and 40% in the dry weight of roots and shoots, respectively. Similarly a significant increase in the concentration of Cu, P, Fe, Zn, Mn and Na was observed in inoculated roots. In the shoots of these plants, the concentration of Zn, P and Mn increased by 25, 30 and 70%, respectively. Using the axenic hydroponic system, we showed that the improvement of plant nutritional level may be directly related to a general beneficial growth effect of the root system following T. harzianum inoculation. This phenomenon was evident from 5 days post-inoculation throughout the rest of the growth period, resulting in biomass accumulation in both roots and shoots.  相似文献   

12.
Five strains of Trichoderma with known biocontrol activities were assessed for their effect upon pea growth and their antagonistic activity against large Pythium ultimum inocula. The effect of Trichoderma inocula upon the indigenous soil microflora and soil enzyme activities in the presence and absence of Pythium is assessed. In the absence of Pythium, Trichoderma strain N47 significantly increased the wet shoot weight by 15% but did not significantly affect the dry weight, whilst strains T4 and N47 significantly increased the root weights by 22% and 80%) respectively. Strains TH1 and N47 resulted in significantly greater root lengths. Pythium inoculation significantly reduced the root length and the number of lateral roots and nodules, and significantly increased the root and rhizosphere soil fungal populations. Pythium inoculation significantly reduced the plant wet and dry shoot weights and significantly increased the wet and the dry shoot/root ratio. All the Trichoderma strains reduced the number of lesions caused by Pythium and increased the number of lateral roots. The effect of the Pythium on emergence and shoot growth was significantly reduced by all the Trichoderma strains except strain To10. Inoculation with Trichoderma strains TH1 and T4 resulted in significantly greater wet root weights (62% and 57%, respectively) in the presence of Pythium compared to the Pythium control. Strain N47 significantly increased the shoot/root ratio compared to the Pythium control. Inoculation with Trichoderma strains T4, T12 and N47 significantly reduced Pythium populations. Pythium increased the activity of C, N and P cycle enzymes, whilst four Trichoderma strains reduced this effect, indicating reduced plant damage and C leakage. Overall, strains T4 and N47 had the greatest beneficial characteristics, as both these strains improved plant growth in the absence of Pythium and reduced plant damage in the presence of Pythium. The dual properties of these strains improve the commercial application, giving them an advantage over single action inocula, especially in the absence of plant pathogens.  相似文献   

13.
Summary The absorption and transport of Cu were studied in perennial ryegrass grwon on 21 soils under controlled environment conditions. Neither the concentration, nor the total amount, of Cu in the shoots was related to available Cu in the soils as assessed by extraction with 0.05M EDTA, 0.005M DTPA, or 1.95 per cent HNO3. The concentration in the roots and, more especially, absorption per unit weight of root (i.e. μg Cu g dry wt−1) were, however, highly correlated with available soil Cu. This suggests that, unless the extent of exploitation of the soil by roots is taken into account, measurements of available Cu will not be effective in predicting uptake by plants. On average, 63 per cent of the Cu absorbed by the roots was retained in the roots, and variation in the proportion retained was related to the transport of nitrogen from roots to shoots. On some soils the concentrations of N and Cu in the shoots were significantly correlated, and variation in N concentration accounted for a considerable proportion of the variance in the Cu concentration at later harvests. The relative importance of the measured soil (pH, organic matter) and plant (dry weight, N content) factors changed markedly over 6 successive harvests.  相似文献   

14.
A pot culture experiment and a field experiment were carried out separately to study heavy metal (HM) uptake from soil contaminated with Cu, Zn, Pb and Cd by Elsholtzia splendens Nakai ex F. Maekawa inoculated with arbuscular mycorrhizal (AM) fungi and the potential for phytoremediation. The HM-contaminated soil in the pot experiment was collected from the field experiment site. Two AM fungal inocula, MI containing only one AM fungal strain, Glomus caledonium 90036, and M II consisting of Gigaspora margarita ZJ37, Gigaspora decipens ZJ38, Scutellospora gilmori ZJ39, Acaulospora spp. andGlomus spp., were applied to the soil under unsterilized conditions. In the pot experiment, the plants were harvested after 24 weeks of growth. Mycorrhizal colonization rate, plant dry weight (DW) and P, Cu, Zn, Pb, Cd concentrations were determined. MI-treated plants had higher mycorrhizal colonization rates than MII-treated plants. Both MI and MII increased shoot and root DW, and MII was more effective than MI. In shoots, the highest P, Cu, Zn and Pb concentrations were all observed in the plants treated with MII, while MI decreased Zn and Pb concentrations and increased P but did not alter Cu, and Cd concentrations were not affected by either of two inocula. In roots, MII increased P, Zn, Pb concentrations but did not alter Cu and Cd, and MI did not affect P, Cu, Zn, Pb, Cd concentrations. Cu, Zn, Pb, Cd uptake into shoots and roots all increased in MII-treated plants, while in MI-treated plants, Cu and Zn uptake into shoots and Cu, Zn, Pb, Cd into roots increased but Pb and Cd uptake into shoots decreased. In general, MII was more effective than MI in promoting plant growth and HM uptake. The field experiment following the pot experiment was carried out to investigate the effects of MII under field conditions. The 45-day-old nonmycorrhizal and MII-colonized seedlings of E. splendens were transplanted to HM-contaminated plots and harvested after 5 months. MII-inoculation increased shoot DW and shoot P, Cu, Zn, Pb concentrations significantly but did not alter shoot Cd concentrations, which led to higher uptake of Cu, Zn, Pb, Cd by E. splendens shoots. These results indicate that the AM fungal consortium represented by MII can benefit phytoextraction of HMs and therefore play a role in phytoremediation of HM-contaminated soils.  相似文献   

15.
Heavy metals, being phytotoxic, cause growth inhibition and even plant death. Siderophore-producing bacterial strain KNP9 is growth promoting and has been isolated from Panki Power Plant, Kanpur, India. It simulated significant (p > 5%) root and shoot growth of mung bean to the extent of 16.48% and 28.80%, respectively in the presence of CdCl2 (110 M). However, the increase in root and shoot growth was 20% and 19.5%, respectively, in the presence of (CH3COO)2Pb (660 M). Moreover, concentration of accumulated lead and cadmium in root and shoot was also reduced in the presence of this isolate ranging from 37.5 to 93.19%. A moderate reduction in chlorophyll content (39.14%) in the presence of 110 M CdCl2 was rescued by bioinoculant KNP9. However, the 19.58% decrease in chlorophyll content in the case of lead acetate remained unchanged even in the presence of KNP9. Nevertheless, 16S ribosomal DNA (rDNA) sequencing identified KNP9 as a strain of Pseudomonas putida.  相似文献   

16.
Background

Copper oxide nanomaterials’ (NMs) are important for the critical roles of Cu as a micronutrient that its improper concentration could cause toxicity or deficiency in plant. The Nano form of CuO could amplify the effects due to special characteristic of nano materials.

Method

Treatments of 0.1, 0.5, and 2.5 μM and NM of copper with three replications were applied to plants under hydroponic conditions. Physiological parameters and expression of IRT1 and CAT genes were investigated.

Results

Copper absorption decreased according to MMs-CuO ? NMs-CuO ?? CuSO4 pattern. The positive effects of MMs-CuO on plant copper content were higher than those of nanomaterials and CuSO4. MMs-CuO effect was more significant on plant biomass increase compared to the control. Rue plant needed lower amounts of copper for better plant growth. The treatments increased protein and carotenoids content in leaves compared with control. Changes in total chlorophyll content under three copper forms were very low and were only increased in leaves at 0.1 μM CuSO4. The NMs-CuO and MMs-CuO similarly reduced leaves’ Cu, MDA and ROS contents, and SOD activities. CAT enzyme activity had a similar pattern in three copper forms. CAT enzyme activity was only induced under the lowest level of three forms, while at other levels of Cu, it was reduced. NMs-CuO had a more negative effect on IRT1 relative gene expression in root compared with other iron forms. The IRT1 relative gene expression in shoots was positively affected under 2.5 μM CuSO4, 0.5 μM MMs-CuO, and 0.1 and 2.5 μM NMs CuO treatments.

Conclusion

The effect of micro- and nano-CuO on physiology and gene expression mechanisms in rue plants is shown to be does-dependent.

  相似文献   

17.
The effect of copper excess on growth, H2O2 level and peroxidase activities were studied in maize shoots. Ten-day-old seedlings were cultured in nutrient solution that contained Cu2+ ions at various concentrations (50 and 100 microM) for seven days. High concentrations of Cu2+ ions caused significant decrease both in matter production and elongation of maize shoots. In addition, treatment with CuSO4 increased levels of H2O2 and induced changes in several peroxidase activities. Moreover, the disturbance of the physiological parameters was accompanied by the modulation of the peroxidase activities: GPX (Guaiacol peroxidase, EC 1.11.1.7), CAPX (Coniferyl alcohol peroxidase, EC 1.11.1.4) and APX (Ascorbate peroxidase, EC. 1.11.1.11). Furthermore, this modulation becomes highly significant, especially, in the presence of 100 microM of CuSO4.  相似文献   

18.
The influence of different foliar applications of Triacontanol (Tria.) on growth, CO2 exchange, capsule development and alkaloid accumulation in opium poppy was studied in glasshouse conditions. Plant height, capsule number and weight, morphine content, CO2 exchange rate, total chlorophyll and fresh and dry weight of the shoot were significantly maximum at 0.01 mg/l Tria. At the highest concentration (4 mg/l) total chlorophyll, CO2 exchange rate and plant height were significantly inhibited. Thebaine and codeine contents remained unaffected at all the concentrations. The concentration of Fe, Mn, Cu in shoots were maximum at .01 and Zn at 0.1 mg/l Tria. Increase in shoot weight, leaf area ratio and chlorophyll content were significantly correlated with morphine content.CIMAP Communication No. 839.  相似文献   

19.
Rice cultivar evaluation for phosphorus use efficiency   总被引:12,自引:1,他引:11  
Phosphorus deficiency is one of the most growth-limiting factors in acid soils in various parts of the world. The objective of this study was to screen 25 rice cultivars (Oryza sativa L.) at low, medium, and high levels of soil P. Number of tillers, root length, plant height, root dry weight and shoot dry weight were related to tissue P concentrations, P uptake and P-use efficiency. Shoot weight was found to be the plant parameter most sensitive to P deficiency. Significant cultivar differences in P use efficiency were found. Phosphorus use efficiency was higher in roots than shoots and decreased with increasing levels of soil P. Positive correlations were found among growth parameters such as plant height, tillers, root and shoot weight, and P content of roots and shoots. These results indicate selection of rice cultivars for satisfactory performance under low P availability can be carried out using shoot and root dry weight as criteria.  相似文献   

20.
Soybean plants cv. Corsoy were grown in greenhouse conditions on sterilized quartz sand. They were inoculated with Bradyrhizobium japonicum, strain 542. The plants were treated with different concentrations of quercetin (ranging from 10 nM to 1M) at regular intervals during the experiment. The experiment was terminated at flower development. The following parameters, important for symbiosis efficiency were determined: shoot, root and nodule weights, nodule number, total leghemoglobin in the nodules,total nitrogen and soluble protein concentrations in shoots and roots, as well as chlorophyll concentration in the leaves.The results obtained partly confirmed the earlier findings that quercetin inhibits nodulation since increasing quercetin concentration decreased the number of nodules. However, at very low concentrations, quercetin stimulated the number of nodules. Quercetin also exerted a stimulating influence on other characteristics of the plant and nodules which did not correlate with nodule number and quantity of N fixed. These are: nodule weight, leghemoglobin concentration, total soluble protein content in shoots and roots as well as shoot and root weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号