首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study is to define stem design related factors causing both gaps in the metal-bone cement interface and cracks within the cement mantle. Six different stem designs (Exeter; Lubinus SP II; Ceraver Osteal; Mueller-straight stem; Centega; Spectron EF) (n=15 of each design) were cemented into artificial femur bones. Ten stems of each design were loaded, while five stems served as an unloaded control. Physiologically adapted cyclical loading (DIN ISO 7206-4) was performed with a hip simulator. After loading both interfaces and the bone cement itself were analysed regarding gaps and cracks in the cement mantle. Significant differences between the stem designs concerning gaps in the metal-bone cement interface and cracks in the cement mantle became apparent. Additionally, a high correlation between gaps in the metal-bone cement interface and cracks within the cement mantle could be proven. Gaps in the metal-bone cement interface but no cracks within the cement mantle were seen in the unloaded specimens. Differences between the unloaded control groups and the cyclical loaded stems regarding the longitudinal extension and width of gaps in the metal-bone cement interface were obvious. The designs of cemented femoral stems have an influence on both the quality of the metal-bone cement contact and the failure rate of the cement mantle. Less interface gaps and less cement defects were found with anatomically formed, collared, well-rounded stem designs without undercuttings.  相似文献   

2.
Pre-clinical tests are often performed to screen new implant designs, surgical techniques, and cement formulations. In this work, we developed a technique to simulate the cement–bone morphology found with postmortem retrieved cemented hip replacements. With this technique, a soy wax barrier is created along the endosteal surface of the bone, prior to cementing of the femoral component. This approach was applied to six fresh frozen human cadaver femora and the resulting cement–bone morphology and micromotion following application of torsional loads were measured on a transverse section of each bone. The contact fraction between cement and bone for the wax barrier specimens (6.4±5.7%, range: 0.5–15%) was similar to that found in postmortem retrievals (10.5±10.3%, range: 0.4–32.5%). Micro-motions at the cement–bone interface for the wax barrier specimens (0.5±1.06 mm, range: 0.005–2.66) were similar, but on average larger than those found with postmortem retrievals (0.092±0.22 mm, range: 0.002–0.73). The use of a wax barrier coating technique could improve experimental pre-clinical tests because it produces a cement–bone interface similar to those of functioning cemented components obtained following in vivo service.  相似文献   

3.
Although hip simulators for in vitro wear testing of prosthetic materials used in total hip arthroplasty (THA) have been available for a number of years, similar equipment has yet to appear for endurance testing of fixation in cemented THA, despite considerable evidence of late aseptic loosening as one of the most significant failure mechanisms in this type of replacements. An in vitro study of fatigue behavior in cemented acetabular replacements has been carried out, utilizing a newly developed hip simulator. The machine was designed to simulate the direction and the magnitude of the hip contact force under typical physiological loading conditions, including normal walking and stair climbing, as reported by Bergmann et al. (2001, Hip 98, Freie Universitaet, Berlin). A 3D finite element analysis has been carried out to validate the function of the hip simulator and to evaluate the effects of boundary conditions and geometry of the specimen on the stress distribution in the cement mantle. Bovine pelvic bones were implanted with a Charnley cup, using standard manual cementing techniques. Experiments were carried out under normal walking and descending stairs loading conditions with selected load levels from a body weight of 75-125 kg. Periodically, the samples were removed from the test rigs to allow CT scanning for the purpose of monitoring damage development in the cement fixation. The hip simulator was found to be satisfactory in reproducing the hip contact force during normal walking and stair climbing, as reported by Bergmann et al. Finite element analysis shows that the stress distributions in the cement mantle and at the bone-cement interface are largely unaffected by the geometry and the boundary conditions of the model. Three samples were tested up to 17 x 10(6) cycles and sectioned post-testing for microscopic studies. Debonding at the bone-cement interface of various degrees in the posterior-superior quadrant was revealed in these samples, and the location of the failures corresponds to the highest stressed region from the finite-element analysis. Preliminary experimental results from a newly developed hip simulator seem to suggest that debonding at the bone-cement interface is the main failure mechanism in cemented acetabular replacements, and descending stairs seem to be more detrimental than normal walking or ascending stairs with regard to fatigue integrity of cement fixation.  相似文献   

4.
The increase in intramedullary pressure during implantation of a cemented total hip prosthesis is the decisive pathogenic factor in the development of an embolism. The logical countermeasure aimed at preventing bone marrow and fat emboli is reduction of pressure. Drainage of the femoral canal enabled by the bone-vacuum cementing technique substantially reduces intraoperative fat embolism and cardiopulmonary events. The aim of the present study was to compare the efficiency of two suction pumps used with this technique. In-vitro and In-vivo measurements of pressure were obtained to characterize the properties of the Vakufix pump and the Sterivap pump. In vitro experiments showed that the length of the suction tube has no influence on the performance of the pumps. A useful vacuum in the medullary canal was achieved In-vivo with both pumps (mean-209.3 mbar). The vacuum obtained with the Vakufix pump was higher (+16%) than that obtained with the Sterivap pump. Owing to the complexity of the system, we would not recommend the use of the Sterivap pump for evacuating the femoral canal.  相似文献   

5.
Our survey of current practice among UK orthopaedic surgeons shows wide variations in fixation techniques. The aim of this study, is to investigate the effect of drilling different configurations of anchorage holes in the acetabulum on implant stability. To avoid variables that could incur during in vitro testing, we used commercially available COSMOS finite element analysis package to investigate the stress distributions, deformations, and strains on the cement mantle when drilling three large anchorage holes and six smaller ones, with straight and rounded cement pegs. The results, which are in line with our in vitro studies on simulated reconstructed acetabulae, indicate better stability of the acetabular component when three larger holes than six smaller holes are drilled and when the necks of the anchorage holes are rounded. The longevity of total hip replacements could be improved by drilling three large anchorage holes, rather than many smaller ones, as initially proposed by Charnley.  相似文献   

6.
Ever since Movin in (1950) and McKee in (1951) introduced the use of acrylic cement for fixation of hip prosthesis components a number of investigators have proposed various hip prosthesis designs using this cement fixation concept (Neale, 1967). This study was undertaken to support the hypothesis that certain dental materials could provide a more satisfactory bone-prosthesis bond than that presently possible with acrylic bone cement. Two restorative resins were found to have superior strength and resistance to thermal degradation when compared to acrylic bone cement. Tests of acrylic cement combined with apatite fillers suggest that restorative resin-anorganic bone composites would exhibit improved strength and toxicity properties and would also promote improved bonding due to resorption of the surface anorganic bone particles with subsequent bone infiltration and anchorage. Relatively high degradation of acrylic bone cement in accelerated aging tests suggests caution in using this material for implantation.  相似文献   

7.
Stress shielding of the femur is known to be a principal factor in aseptic loosening of hip replacements. This paper considers the use of a hollow stemmed hip implant for reducing the effects of stress shielding, while maintaining acceptably low levels of stress in the cement. Using finite element modelling, the stresses in the proximal femur using different shapes of hollow stem were compared with those produced using comparable sizes of solid stem with different values of elastic modulus. A reduction in stress shielding could be achieved with a hollow stem. A cylindrical hollow stem design was then optimised in order to control the maximum allowable stress in the cement, the minimum allowable stresses in the bone, and a combination of the two. The resulting stems achieved an increase in proximal bone stress of about 15% for the first case and 32% for a model using high strength cement, compared with solid stems of the same nominal outside diameter. The gains of these theoretically optimised designs dropped off rapidly further down the stem. Linearly tapered hollow stems reached a 22% gain, which could be a good compromise between acceptable cement stresses and ease of manufacture.  相似文献   

8.
Our survey of current practice among UK orthopaedic surgeons shows wide variations in fixation techniques. The aim of this study, is to investigate the effect of drilling different configurations of anchorage holes in the acetabulum on implant stability. To avoid variables that could incur during in vitro testing, we used commercially available COSMOS finite element analysis package to investigate the stress distributions, deformations, and strains on the cement mantle when drilling three large anchorage holes and six smaller ones, with straight and rounded cement pegs. The results, which are in line with our in vitro studies on simulated reconstructed acetabulae, indicate better stability of the acetabular component when three larger holes than six smaller holes are drilled and when the necks of the anchorage holes are rounded. The longevity of total hip replacements could be improved by drilling three large anchorage holes, rather than many smaller ones, as initially proposed by Charnley.  相似文献   

9.
During the operation of total hip arthroplasty, when the cement polymerizes between the stem implant and the bone, residual stresses are generated in the cement. The purpose of this study was to determine whether including residual stresses at the stem-cement interface of cemented hip implants affected the cement stress distributions due to externally applied loads. An idealized cemented hip implant subjected to bending was numerically investigated for an early post-operative situation. The finite element analysis was three-dimensional and used non-linear contact elements to represent the debonded stem-cement interface. The results showed that the inclusion of the residual stresses at the interface had up to a 4-fold increase in the von Mises cement stresses compared to the case without residual stresses.  相似文献   

10.
One possible loosening mechanism of the femoral component in total hip replacement is fatigue cracking of the cement mantle. A computational method capable of simulating this process may therefore be a useful tool in the preclinical evaluation of prospective implants. In this study, we investigated the ability of a computational method to predict fatigue cracking in experimental models of the implanted femur construct. Experimental specimens were fabricated such that cement mantle visualisation was possible throughout the test. Two different implant surface finishes were considered: grit blasted and polished. Loading was applied to represent level gait for two million cycles. Computational (finite element) models were generated to the same geometry as the experimental specimens, with residual stress and porosity simulated in the cement mantle. Cement fatigue and creep were modelled over a simulated two million cycles. For the polished stem surface finish, the predicted fracture locations in the finite element models closely matched those on the experimental specimens, and the recorded stem displacements were also comparable. For the grit blasted stem surface finish, no cement mantle fractures were predicted by the computational method, which was again in agreement with the experimental results. It was concluded that the computational method was capable of predicting cement mantle fracture and subsequent stem displacement for the structure considered.  相似文献   

11.
Existing standards for the preclinical testing of femoral hip implants have been successful in the objective of guaranteeing the implant's fatigue strength. There is a need for an experimental test which could ensure prostheses were not susceptible to aseptic loosening. In this study we measure the relative movement between the prosthesis and the bone of four different cemented femoral component designs in in vitro tests. The aim is to determine if differences can be distinguished and whether the differences correlate with clinical performance. The four designs are the Charnley (DePuy International Ltd., UK), the Exeter (Stryker Osteonics Howmedica Corp., USA), the Lubinus SPII (Waldemar-Link GmbH, Germany), and the Miiller Curved (JRI Ltd, UK). Five tests were carried out for each femoral component type, giving a total of 20 tests, and their permanent relative displacement (termed migration) and recoverable (i.e., elastic) relative displacement (termed inducible displacement) monitored over one million loading cycles. Considerable variation occurred in the tests. Nonetheless, most femoral components migrated medially, posteriorly, and distally. Most also rotated into varus. Translations of the Charnley (64 microns) and Lubinus (67 microns) implants were less than the Müller (72 microns) and Exeter (94 microns) implants, but this difference is not statistically significant. Most of the femoral components had rapid early migration followed by slower steady-state migration. With regard to the steady state inducible displacements of the prostheses, those of the Charnley, Exeter, and Lubinus decreased or were stable with respect to time, whilst those of the Müller typically increased with respect to time. It is concluded that migration is not a suitable basis for in vitro comparison of prosthesis designs. However inducible displacement trends provide a clinically comparable performance ranking.  相似文献   

12.
The basic stress pathway above the acetabular dome is important for the maintenance of implant stability in press-fit acetabular reconstruction of total hip arthroplasty. However, information on the basic stress pathway and its impact factors remains unclear. The objective of this study was to investigate the effects of the orientations and positions of the acetabular component on the basic stress pathway. The basic stress pathway above the acetabular dome was defined as two parts: 3D basic trabecular bone stress distribution and quantified basic cortical bone stress level, using two subject-specific finite element normal hip models. The effects were then analysed by generating 32 reconstructed acetabular cases with different cup abduction and anteversion angles within a range of 35–50° and 10–25°, respectively, and 12 cases with different hip centre heights within a range of 0–15 mm above the acetabular dome. The 3D trabecular stress distribution decreased remarkably in all cases, while the 80% of the basic cortical bone stress level was maintained in cases when the acetabular component was positioned at 10° or 15° anteversion and 40° or 45° abduction angles. The basic stress pathway above the acetabular dome was disturbed when the superior displacement of the hip centre exceeded 5 mm above the anatomical hip centre. Positioning the acetabular component correctly contributes to maintain the stress balance between the acetabular cup and the bone during acetabular reconstruction, thus helping restore the normal hip biomechanics and preserve the stability of the implants.  相似文献   

13.
Mechanical fatigue of bone cement leading to damage accumulation is implicated in the loosening of cemented hip components. Even though cracks have been identified in autopsy-retrieved mantles, damage accumulation by continuous growth and increase in number of microcracks has not yet been demonstrated experimentally. To determine just how damage accumulation occurs in the cement layer of a hip replacement, a physical model of the joint was used in an experimental study. The model regenerates the stress pattern found in the cement layers whilst at the same time allowing visualisation of microcrack initiation and growth. In this way the gradual process of damage accumulation can be determined. Six specimens were tested to 5 million cycles and a total of 1373 cracks were observed. It was found that, under the flexural loading allowed by the model, the majority of cracks come from pores in the bulk cement and not from the interfaces. Furthermore, the lateral and medial sides have statistically different damage accumulation behaviours, and pre-load cracks significantly accelerate the damage accumulation process. The experimental results confirm that damage accumulation commences early on in the loading history and that it is continuously increasing with load in the form of crack initiation and crack propagation. The results highlight the importance of replicating the loading and restraint conditions of clinical cement mantles when endeavouring to accurately model the damage accumulation process.  相似文献   

14.
The long-term behavior of the stem-cement interface is one of the most frequent topics of discussion in the design of cemented total hip replacements, especially with regards to the process of damage accumulation in the cement layer. This effect is analyzed here comparing two different situations of the interface: completely bonded and debonded with friction. This comparative analysis is performed using a probabilistic computational approach that considers the variability and uncertainty of determinant factors that directly compromise the damage accumulation in the cement mantle. This stochastic technique is based on the combination of probabilistic finite elements (PFEM) and a cumulative damage approach known as B-model. Three random variables were considered: muscle and joint contact forces at the hip (both for walking and stair climbing), cement damage and fatigue properties of the cement. The results predicted that the regions with higher failure probability in the bulk cement are completely different depending on the stem-cement interface characteristics. In a bonded interface, critical sites appeared at the distal and medial parts of the cement, while for debonded interfaces, the critical regions were found distally and proximally. In bonded interfaces, the failure probability was higher than in debonded ones. The same conclusion may be established for stair climbing in comparison with walking activity.  相似文献   

15.
The distribution of bone cement around an endoprosthesis influences its stability over the long term. We have developed a new method for the experimental measurement of the cement mantle thickness of an endoprosthesis. The use of this computer-aided procedure is described in a hip prosthesis. Transverse sections of a human femur containing a cemented stem were prepared, recorded with a CCD camera and the images fed into a computer. The image-processing software differentiated the metal and bone cement on the basis of the different colours. Radial lines were drawn from the calculated centre of gravity of the stem, and the cement thickness was measured automatically along these lines. In our experiment, the accuracy of the method was 0.2 mm. This method of measuring the thickness of the cement mantle is accurate, rapid and practical.  相似文献   

16.
Periprosthetic bone resorption after tibial prosthesis implantation remains a concern for long-term fixation performance. The fixation techniques may inherently aggravate the "stress-shielding" effect of the implant, leading to weakened bone foundation. In this study, two cemented tibial fixation cases (fully cemented and hybrid cementing with cement applied under the tibial tray leaving the stem uncemented) and three cementless cases relying on bony ingrowth (no, partial and fully ingrown) were modelled using the finite element method with a strain-adaptive remodelling theory incorporated to predict the change in the bone apparent density after prosthesis implantation. When the models were loaded with physiological knee joint loads, the predicted patterns of bone resorption correlated well with reported densitometry results. The modelling results showed that the firm anchorage fixation formed between the prosthesis and the bone for the fully cemented and fully ingrown cases greatly increased the amount of proximal bone resorption. Bone resorption in tibial fixations with a less secure anchorage (hybrid cementing, partial and no ingrowth) occurred at almost half the rate of the changes around the fixations with a firm anchorage. The results suggested that the hybrid cementing fixation or the cementless fixation with partial bony ingrowth (into the porous-coated prosthesis surface) is preferred for preserving proximal tibial bone stock, which should help to maintain post-operative fixation stability. Specifically, the hybrid cementing fixation induced the least amount of bone resorption.  相似文献   

17.
The number of stem designs for total hip arthroplasty is increasing, and occasionally design changes have yielded unexpected clinical results. At present, we are not able to clearly identify which parameter of the stem is most important, and the optimum value of many parameters. The goals of this study were to identify which parameter is most important, to understand the effect of design change, and to find the optimum stem shape. For this purpose, we used adaptive p-method together with three-dimensional computer-aided design software program for the design sensitivity analysis (DSA) and shape optimization of the stem. The results suggested that increasing the lateral and medial width of the distal cross-section together with decreasing the medial-lateral width and the medial radius of the distal cross-section from the default value would lead to a decrease in the largest maximum principal stress of the distal cement. The medial width of middle cross-section, however, was not so simple. The result of DSA suggested that decreasing this parameter from the default value decreased the stress in the distal cement, but the optimum shape was obtained by increasing this parameter. The method used in this study will assist our engineers and surgeons in the process of modifying and optimizing the stem design.  相似文献   

18.
The interfacial micromotion is closely associated to the long-term success of cementless hip prostheses. Various techniques have been proposed to measure them, but only a few number of points over the stem surface can be measured simultaneously. In this paper, we propose a new technique based on micro-Computer Tomography (μCT) to measure locally the relative interfacial micromotions between the metallic stem and the surrounding femoral bone. Tantalum beads were stuck at the stem surface and spread at the endosteal surface. Relative micromotions between the stem and the endosteal bone surfaces were measured at different loading amplitudes. The estimated error was 10 μm and the maximal micromotion was 60 μm, in the loading direction, at 1400 N. This pilot study provided a local measurement of the micromotions in the 3 direction and at 8 locations on the stem surface simultaneously. This technique could be easily extended to higher loads and a much larger number of points, covering the entire stem surface and providing a quasi-continuous distribution of the 3D interfacial micromotions around the stem. The new measurement method would be very useful to compare the induced micromotions of different stem designs and to optimize the primary stability of cementless total hip arthroplasty.  相似文献   

19.
To restore femoral intramedullary bone stock loss in revision surgery of failed total hip arthroplasties, impacted morselized cancellous allograft is recommended. This study investigated the mechanical properties of both impacted cortical (group A) and cancellous (group B) morselized bone graft for reconstruction of femoral bones. Ten matched pairs of fresh frozen human femora were prepared by over-reaming to create a smooth-walled cortical shell. Each pair had one cortical and one cancellous impacted morselized allograft and cement. Stem subsidence was evaluated by a cyclic axial load, which was applied by a servohydraulic test. The stem subsidence was measured for initial subsidence (subsidence at the first 1000 cycles), the total axial subsidence (subsidence at the end of cycles under load) and the final axial subsidence (subsidence after the unloading phase). Torque test was measured by torsional loads through the prosthetic femoral heads. Total axial subsidence was significantly higher in group B (mean: 1.32+/-0.32 mm) compared to group A (mean: 0.94+/-0.26 mm) (P<0.01).There was no significant difference between the two groups in terms of initial subsidence (P=0.09) and final axial subsidence.The mean maximum torque before failure was 39.5+/-22.2 N-m for the cortical morselized allograft and 32.5+/-18.1N-m for cancellous.We concluded that impacted morselized cortical bone graft used for reconstruction of contained femoral bone loss in revision hip arthroplasty, may reduce the stem subsidence. Further animal experimentation for mechanical and histological evaluation of in vivo application is warranted.  相似文献   

20.
A novel concept for rib fixation is presented that involves the use of a bioresorbable polymer intramedullary telescoping splint. Bone cement is used to anchor each end of the splint inside the medullary canal on each side of the fracture site. In this manner, rib fixation is achieved without fixation device protrusion from the rib, making the splint completely intramedullary. Finite element analysis is used to demonstrate that such a splint/cement composite can preserve rib fixation subjected to cough-intensity force loadings. Computational fluid dynamics and porcine rib experiments were used to study the anchor formation process required to complete the fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号