首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have indicated that α-d-1-fluoroglucose is a glycosyl donor for glucosyl transferases (5, 6) including dextransucrases formed by Leuconostoc and Streptococcus mutans. The present report confirms these observations with dextransucrase isolated from S. sanguis and conclusively establishes the details of this reaction as well as proving that mechanism of fluoroglucose transfer is comparable to that glucosyl transfer from sucrose. A new procedure for monitoring the reaction is reported, and is based on the measurement of proton formation using the pH indicator, bromcresol purple. Production of F? was found to be stoichiometric with proton production. Rate studies with the substrate indicate that α-1-fluoroglucose undergoes spontaneous hydrolysis, which is greatly increased in the presence of nucleophilic buffers. When [14C]maltose and α-1-fluoroglucose or [14C]α-1-fluoroglucose and maltose were incubated with dextransucrase, a series of oligosaccharide products was observed. The results indicate that the glucosyl moiety of α-1-fluoroglucose transferred to the acceptor. The nature of formation of the products are consistent with a series of precursor-product reactions. Product analysis of the saccharides by borohydride reduction analysis demonstrated that the glucosyl unit was added to the nonreducing end of maltose. When either [14C]fructose or [14C]-α-1-fluoroglucose were incubated with enzyme, a reaction was observed which was analogous to the isotopic-exchange reaction catalyzed by the enzyme in the presence of [14C]fructose and sucrose.  相似文献   

2.
Metallothionein saturated with copper is able to donate copper to apodopamine beta-monooxygenase. The complete recovery of dopamine beta-monooxygenase activity is observed at the molar ratio Cu-thionein/apoenzyme of 25. On the other hand, apothionein accepts copper easily from the holoenzyme.  相似文献   

3.
Dopamine beta-hydroxylase is present in the bovine adrenal medulla in two forms: soluble and membrane-bound. In a previous study, it was shown that the tetrameric, soluble form of the enzyme undergoes dissociation into two identical dimeric subunits and that this subunit dissociation is dependent on pH and ADP binding (Dhawan, S., Hensley, P., Osborne, J. C., Jr., and Fleming, P. J. (1986) J. Biol. Chem. 261, 7680-7684). Here we report the effect of pH and ADP on the dissociation of the membranous form of dopamine beta-hydroxylase into two nonidentical subunits. Negative stain electron microscopy of purified membranous hydroxylase showed largely tetrameric species together with occasional dimeric species. The tetrameric images of membranous hydroxylase were similar to, but clearly different from, previously published negative stain images of soluble hydroxylase (Duong, L. T., Fleming, P. J., and Ornberg, R. L. (1985) J. Biol. Chem. 260, 2393-2398). Quantitative binding of ADP to the membranous hydroxylase revealed the existence of two binding sites per dimeric subunit. ADP binding and low pH both promote dissociation of a hydrophilic, catalytically active subunit from the membranous enzyme reconstituted onto phospholipid vesicles. Kinetic analyses of reconstituted membranous hydroxylase activity were consistent with the existence of tetrameric and dimeric catalytic species in equilibrium. All of the hydrophilic subunits of the purified soluble hydroxylase bind to the hydrophobic subunits of the reconstituted membranous hydroxylase. We propose that, in the chromaffin granules, the soluble hydroxylase subunits are in equilibrium association with the membrane-bound hydroxylase subunits and that the hydrophilic subunits of both soluble and membranous hydroxylase are identical.  相似文献   

4.
Expression of dopamine beta-monooxygenase (DBM), the enzyme that converts dopamine into norepinephrine, is limited to adrenal chromaffin cells and a small population of neurons. We studied DBM trafficking to regulated granules by stably expressing rat DBM in AtT-20 corticotrope tumor cells, which contain regulated granules, and in Chinese hamster ovary (CHO) cells, which lack regulated granules. The behavior of exogenous DBM in both cell lines was compared with endogenous DBM in adrenal chromaffin cells. CHO cells secreted active DBM, indicating that production of active enzyme does not require features unique to neuroendocrine cells. Pulse-chase experiments indicated that early steps in DBM maturation followed a similar time course in AtT-20, CHO, and adrenal chromaffin cells. Use of a conformation-sensitive DBM antiserum indicated that acquisition of a folded structure occurred with a similar time course in all three cell types. Cell type-specific differences in DBM trafficking became apparent only when storage in granules was examined. As expected, DBM was stored in secretory granules in chromaffin cells; CHO cells failed to store DBM. Despite the fact that AtT-20 cells have regulated granules, exogenous DBM was not stored in these granules. Thus storage of DBM in secretory granules requires cell type specific factors.  相似文献   

5.
6.
7.
Functionalization of the beta-carbon of phenethylamines has been shown to produce a new class of substrate/inhibitor of dopamine beta-monooxygenase. Whereas both beta-hydroxy- and beta- chlorophenethylamine are converted to alpha-aminoacetophenone at comparable rates, only the latter conversion is accompanied by concomitant enzyme inactivation ( Klinman , J. P., and Krueger , M. (1982) Biochemistry 21, 67-75). In the present study, the nature of the reactive intermediates leading to dopamine beta-monooxygenase inactivation by beta- chlorophenethylamine has been investigated employing kinetic deuterium isotope effects and oxygen- 18 labeling as tools. Mechanistically significant findings presented herein include: 1) an analysis of primary deuterium isotope effects on turnover, indicating major differences in rate-determining steps for beta-chloro- and beta- hydroxyphenethylamine hydroxylation, Dkcat = 6.1 and 1.0, respectively; 2) evidence that dehydration of the gem-diol derived from oxygen- 18-labeled beta- hydroxyphenethylamine hydroxylation occurs in a random manner, attributed to dissociation of enzyme-bound gem-diol prior to alpha-aminoacetophenone formation; 3) the observation of a deuterium isotope effect for beta- chlorophenethylamine inactivation, Dkinact = 3.7, implicating C--H bond cleavage in the inactivation process; and 4) the demonstration that alpha-aminoacetophenone can replace ascorbic acid as exogenous reductant in the hydroxylation of tyramine. As discussed, these findings support the intermediacy of enzyme-bound alpha-aminoacetophenone in beta- chlorophenethylamine inactivation, and lead us to propose an intramolecular redox reaction to generate a ketone-derived radical cation as the dopamine beta-monooxygenase-inactivating species.  相似文献   

8.
L Stewart  J P Klinman 《FEBS letters》1999,454(3):229-232
Bovine dopamine beta-monooxygenase has been assayed over a 10,000-fold range in protein concentration, to approximate conditions where the enzyme was shown to be a dimer or tetramer. Michaelis-Menten kinetics are observed with k(cat) and k(cat)/Km for dissociated enzyme reduced 30% and 200-300% relative to tetramer. Addition of chloride ions to very dilute enzyme or the use of intermediate enzyme concentrations causes non-Michaelis-Menten behavior, attributed to an equilibration between dimer and tetramer. This is not expected to contribute to activity within the chromaffin vesicle, where enzyme and chloride ions are at high levels.  相似文献   

9.
A mechanism for beta-chlorophenethylamine inhibition of dopamine beta-monooxygenase has been postulated in which enzyme-bound alpha-aminoacetophenone is generated, followed by an intramolecular redox reaction to yield a ketone-derived radical cation as the enzyme inhibitory species (Mangold, J. B., and Klinman, J. P. (1984) J. Biol. Chem. 259, 7772-7779). If correct, additional compounds capable of producing enzyme-bound (formula; see text) reductant should inhibit dopamine beta-monooxygenase. Phenylacetaldehyde was chosen to test this model, since beta-hydroxyphenylacetaldehyde is expected to function as a reductant in a manner analogous to alpha-aminoacetophenone. Phenylacetaldehyde exhibits the properties of a mechanism-based inhibitor. Kinetic parameters are comparable to beta-chlorophenethylamine under both initial velocity and inactivation conditions. Since phenylacetaldehyde bears little resemblance to beta-chlorophenethylamine, its analogous inhibitory action provides support for an intramolecular redox reaction (via beta-hydroxyphenylacetaldehyde oxidation to a radical cation) in dopamine beta-monooxygenase inactivation. beta-Hydroxyphenylacetaldehyde was identified as the enzymatic product of phenylacetaldehyde turnover. As predicted, this product behaves both as a time-dependent inhibitor of dopamine beta-monooxygenase and as an electron donor in enzyme-catalyzed hydroxylation of tyramine to octopamine. Phenylacetamide and p-hydroxyphenylacetamide are also found to be mechanism-based inhibitors of dopamine beta-monooxygenase. In this case the product of hydroxylation (beta-hydroxyphenylacetamide) is redox inactive and, therefore, is unable to function as either a reductant or an inhibitor. Thus, mechanism-based inhibitors are divided into two types: type I, which undergoes hydroxylation prior to inactivation, and type II, which only requires hydrogen atom abstraction. A general mechanism for dopamine beta-monooxygenase inactivation is described, in which a common mechanistic radical intermediate is formed from both pathways.  相似文献   

10.
Tyramine beta-monooxygenase (TbetaM) catalyzes the synthesis of the neurotransmitter, octopamine, in insects. Kinetic and isotope effect studies have been carried out to determine the kinetic mechanism of TbetaM for comparison with the homologous mammalian enzymes, dopamine beta-monooxygenase and peptidylglycine alpha-hydroxylating monooxygenase. A new and distinctive feature of TbetaM is very strong substrate inhibition that is dependent on the level of the co-substrate, O(2), and reductant as well as substrate deuteration. This has led to a model in which tyramine can bind to either the Cu(I) or Cu(II) forms of TbetaM, with substrate inhibition ameliorated at very high ascorbate levels. The rate of ascorbate reduction of the E-Cu(II) form of TbetaM is also reduced at high tyramine, leading us to propose the existence of a binding site for ascorbate to this class of enzymes. These findings may be relevant to the control of octopamine production in insect cells.  相似文献   

11.
S M Miller  J P Klinman 《Biochemistry》1983,22(13):3091-3096
Intrinsic primary hydrogen isotope effects (kH/kD) have been obtained for the carbon-hydrogen bond cleavage step catalyzed by dopamine beta-monooxygenase. Irreversibility of this step is inferred from the failure to observe back-exchange of tritium from TOH into substrate under conditions of dopamine turnover; this result cannot be due to solvent inaccessibility at the enzyme active site, since we will demonstrate [Ahn, N., & Klinman, J. P. (1983) Biochemistry (following paper in this issue)] that a solvent-derived proton or triton must be at the enzyme active site prior to substrate activation. As shown by Northrop [Northrop, D. B. (1975) Biochemistry 14, 2644], for enzymatic reactions in which the carbon-hydrogen bond cleavage step is irreversible, comparison of D(V/K) to T(V/K) allows an explicit solution for kH/kD. Employing a double-label tracer method, we have been able to measure deuterium isotope effects on Vmax/Km with high precision, D(V/K) = 2.756 +/- 0.054 at pH 6.0. The magnitude of the tritium isotope effect under comparable experimental conditions is T(V/K) = 6.079 +/- 0.220, yielding kH/kD = 9.4 +/- 1.3. This result was obtained in the presence of saturating concentrations of the anion activator fumarate. Elimination of fumarate from the reaction mixture leads to high observed values for isotope effects on Vmax/Km, together with an essentially invariant value for kH/kD = 10.9 +/- 1.9. Thus, the large disparity between isotope effects, plus or minus fumarate, cannot be accounted for by a change in kH/kD, and we conclude a role for fumarate in the modulation of the partitioning of enzyme-substrate complex between catalysis and substrate dissociation. On the basis of literature correlations of primary hydrogen isotope effects and the thermodynamic properties of hydrogen transfer reactions, the very large magnitude of kH/kD = 9.4-10.9 for dopamine beta-monooxygenase suggests an equilibrium constant not very far from unity for the carbon-hydrogen bond cleavage step. This feature, together with the failure to observe re-formation of dopamine from enzyme-bound intermediate or product and overall rate limitation of enzyme turnover by product release, leads us to propose a stepwise mechanism for norepinephrine formation from dopamine in which carbon-hydrogen bond cleavage is uncoupled from the oxygen insertion step.  相似文献   

12.
Dopamine beta-monooxygenase was extensively purified from rat adrenal. The specific activity of the final preparation was approx. 1500 nmol/min per mg protein, which was much higher than the highest yet reported. As judged by gel filtration on Ultrogel AcA22, SDS-polyacrylamide gel electrophoresis, and cross-linking studies, the enzyme appeared to be composed of four identical subunits, each possessing a molecular weight of 88 000. The isoelectric point of the enzyme was estimated to be pH 6.6 in the presence of 8 M urea. Spleen cells from BALB/c mice immunized with rat dopamine beta-monooxygenase were fused to P3-X63-Ag8-653 mouse myeloma cells. From 55 hybrid cells, 10 stable clones secreting anti-dopamine beta-monooxygenase antibody were obtained. Antibody from one clone was coupled to CNBr-activated Sepharose 4B and the monoclonal antibody-Sepharose was shown to be very useful to isolate rat dopamine beta-monooxygenase from crude preparations.  相似文献   

13.
14.
Toll-like receptor 4 and MD-2 form a receptor for lipopolysaccharide (LPS), a major constituent of Gram-negative bacteria. MD-2 is a 20-25-kDa extracellular glycoprotein that binds to Tolllike receptor 4 (TLR4) and LPS and is a critical part of the LPS receptor. Here we have shown that the level of MD-2 expression regulates TLR4 activation by LPS. Using site-directed mutagenesis, we have found that glycosylation has no effect on MD-2 function as a membrane receptor for LPS. We used alanine-scanning mutagenesis to identify regions of human MD-2 that are important for TLR4 and LPS binding. We found that mutation in the N-terminal 46 amino acids of MD-2 did not substantially diminish LPS activation of Chinese hamster ovary (CHO) cells co-transfected with TLR4 and mutant MD-2. The residues 46-50 were important for LPS activation but not LPS binding. The residues 79-83, 121-124, and 125-129 are identified as important in LPS activation but not surface expression of membrane MD-2. The function of soluble MD-2 is somewhat more sensitive to mutation than membrane MD-2. Our results suggest that the 46-50 and 127-131 regions of soluble MD-2 bind to TLR4. The region 79-120 is not involved in LPS binding but affects monomerization of soluble MD-2 as well as TLR4 binding. We define the LPS binding region of monomeric soluble MD-2 as a cluster of basic residues 125-131. Studies on both membrane and soluble MD-2 suggest that domains of MD-2 for TLR4 and LPS binding are separate as well as overlapping. By mapping these regions on a three-dimensional model, we show the likely binding regions of MD-2 to TLR4 and LPS.  相似文献   

15.
We have shown that purified bovine soluble dopamine beta-hydroxylase can reconstitute onto preformed phosphatidylserine containing vesicles. The binding is dependent on pH and vesicle phosphatidylserine composition but does not require calcium. Reconstitution appears to be irreversible, with the lipid-bound enzyme possessing hydroxylase activity. Additionally, [14C] phosphatidylserine binds to soluble dopamine beta-hydroxylase and remains bound after several detergent washes. Thus the reconstituted soluble form of the enzyme appears to be functionally analogous to the membranous form. Both the reconstitution data and the lipid binding data suggest that multiple phosphatidylserine molecules bind to the soluble hydroxylase. We propose that noncovalently bound phosphatidylserine moieties, which copurify with the membrane bound form of the enzyme, alone are responsible for anchoring membranous dopamine beta-hydroxylase to chromaffin granule and model membranes.  相似文献   

16.
In an initial communication [May, S. W., Mueller, P. W., Padgette, S. R., Herman, H. H., & Phillips, R. S. (1983) Biochem. Biophys. Res. Commun. 110, 161-168], we reported that 1-phenyl-1-(aminomethyl)ethene hydrochloride (PAME) is an olefinic substrate for dopamine beta-monooxygenase (DBM; EC 1.14.17.1) which inactivates the enzyme in an apparent mechanism-based manner. The present study further characterizes this reaction. The inactivation reaction yields kinact = 0.23 min-1 at pH 5.0 and 37 degrees C and is strictly dependent on reductant (ascorbate) and oxygen. The DBM/PAME substrate reaction (apparent kcat = 14 s-1), shown to be stimulated by fumarate, gives the corresponding epoxide as product, identified by derivatization with 4-(p-nitrobenzyl)pyridine. However, the lack of DBM inhibition by alpha-methylstyrene oxide, and the observation of identical PAME/DBM inactivation rates in the absence and presence of preformed enzymatic PAME epoxide, indicates that free epoxide is not the inactivating species. A structure-activity study revealed that 4-hydroxylation of PAME (to give 4-HOPAME) increases both kinact (0.81 min-1) and apparent kcat (56 s-1) values, while 3-hydroxylation (to give 3-HOPAME) greatly diminishes inactivation activity while retaining substrate activity (apparent kcat = 47 s-1). 4-Hydroxy-alpha-methylstyrene was found to be a DBM inhibitor (kinact = 0.53 min-1) with weak substrate activity (apparent kcat = 0.71 s-1), while 3-hydroxy-alpha-methylstyrene and alpha-(cyanomethyl) styrene were found not to exhibit detectable DBM substrate activity and only weak inhibitory activity. 3-Phenylpropargylamine hydrochloride showed no detectable DBM substrate activity but rapidly inactivated the enzyme. A new substrate activity for DBM was discovered, N-dealkylation of N-phenylethylenediamine and N-methyl-N-phenylethylenediamine, and the lack of O-dealkylation activity with phenyl 2-aminoethyl ether and 4-hydroxyphenyl 2-aminoethyl ether indicates that DBM N-dealkylation proceeds via initial one-electron abstraction from the benzylic nitrogen heteroatom. With this new substrate and inhibitor reactivity information in hand, along with the other known substrate reactions, a DBM oxygenation mechanism analogous to that for cytochrome P-450 is proposed.  相似文献   

17.
L C Stewart  J P Klinman 《Biochemistry》1987,26(17):5302-5309
The steady-state limiting kinetic parameters Vmax, V/KDA, and V/KO2, together with deuterium isotope effects on these parameters, have been determined for the dopamine beta-monooxygenase (D beta M) reaction in the presence of structurally distinct reductants. The results show the one-electron reductant ferrocyanide to be nearly as kinetically competent as the presumed in vivo reductant ascorbate. Further, a reductant system of ferricyanide plus substrate dopamine yields steady-state kinetic parameters and isotope effects very similar to those measured solely in the presence of ferrocyanide, indicating a role for catecholamine in the rapid recycling of oxidized ferrocyanide. Use of substrate dopamine as the sole reductant is found to lead to a highly unusual kinetic independence of oxygen concentration, as well as significantly reduced values of Vmax and V/KDA, and we conclude that dopamine reduces enzymic copper in a rate-limiting step that is 40-fold slower than with ascorbate. The near-identical kinetic parameters measured in the presence of either ascorbate or ferrocyanide, together with markedly reduced rates with dopamine, are interpreted in terms of a binding site for reductant that is physically distinct from the substrate binding site. This view is supported by molecular modeling, which reveals ascorbate and ferrocyanide to possess an unexpected similarity in potential sites for interaction with enzymic residues. With regard to electron flux, identical values of V/KO2 have been measured with [2,2-2H2]dopamine as substrate both in the presence and in the absence of added ascorbate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Ascorbic acid and Mg-ATP were found to regulate norepinephrine biosynthesis in intact secretory vesicles synergistically and specifically, using the model system of isolated bovine chromaffin granules. Dopamine uptake into chromaffin granules was shown to be unrelated to the presence of Mg-ATP and ascorbic acid at external dopamine concentrations of 7.5 and 10 mM. Under these conditions of dopamine uptake, norepinephrine biosynthesis was enhanced 5-6-fold by Mg-ATP and ascorbic acid compared to control experiments with dopamine only. Furthermore, norepinephrine formation was enhanced approximately 3-fold by ascorbic acid and Mg-ATP together compared to norepinephrine formation in granules incubated with either substance alone. The action of Mg-ATP and ascorbic acid together was synergistic and independent of dopamine content of chromaffin granules as well as of dopamine uptake. The apparent Km of norepinephrine formation for external ascorbic acid was 376 microM and for external Mg-ATP was 132 microM, consistent with the larger amounts of cytosolic ascorbic acid and ATP that are available to chromaffin granules. Other physiologic reducing agents were not able to increase norepinephrine biosynthesis in the presence or absence of Mg-ATP. In addition, maximum enhancement of norepinephrine biosynthesis occurred only with the nucleotide ATP and the cation magnesium. The mechanism of the effect of ascorbic acid and Mg-ATP on norepinephrine biosynthesis was investigated and appeared to be independent of a positive membrane potential. The effect was also not mediated by direct action of ADP, ATP, or magnesium on the activity of soluble or particulate dopamine beta-monooxygenase. These data indicate that Mg-ATP and ascorbic acid specifically and synergistically co-regulate dopamine beta-monooxygenase activity in intact chromaffin granules, independent of substrate uptake. Although the mechanism is not known, the data are consistent with the possibility that the chromaffin granule ATPase mediates these effects.  相似文献   

19.
The catalytic activity and quaternary structure of soluble (s) and membrane (m) forms of angiotensin-converting enzyme (ACE) were studied in reversed micelles of ternary system Aerosol OT--water--octane. The profile of the dependence of the catalytic activity of the two enzyme forms on the degree of surfactant hydration (micellar size) had several optima corresponding to the function of various active oligomeric enzyme forms; the curves for the s- and m-forms of ACE were different. Data of sedimentation analysis prove that in reversed micelles, s-ACE can exist as monomers, dimers, or tetramers depending on the hydration degree, and the m-form is present as dimers and tetramers only. The values of the kinetic parameters for the hydrolysis of the substrate furylacryloyl-Phe-Gly-Gly by all the enzyme forms were determined, and the data indicate that the activity of the m-form is enhanced by oligomerization. The ACE activity strongly depends on the medium; it is higher when ACE is in contact with matrix or other enzyme molecules.  相似文献   

20.
A previously uncharacterized 110-125 residue-long domain was identified both in the physiologically important enzyme dopamine beta-monooxygenase and in several other secreted and transmembrane proteins such as SDR2 and CG-6. This domain was predicted to adopt an all-beta fold with seven or eight strands and might function as a module mediating a range of extracellular adhesive interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号