首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultured human diploid fibroblasts and cultured rat granulosa cells were exposed to intermittent and continuous radiofrequency electromagnetic fields (RF-EMF) used in mobile phones, with different specific absorption rates (SAR) and different mobile-phone modulations. DNA strand breaks were determined by means of the alkaline and neutral comet assay. RF-EMF exposure (1800 MHz; SAR 1.2 or 2 W/kg; different modulations; during 4, 16 and 24h; intermittent 5 min on/10 min off or continuous wave) induced DNA single- and double-strand breaks. Effects occurred after 16 h exposure in both cell types and after different mobile-phone modulations. The intermittent exposure showed a stronger effect in the comet assay than continuous exposure. Therefore we conclude that the induced DNA damage cannot be based on thermal effects.  相似文献   

2.
Radiofrequency radiation (RFR) causes heating, which can lead to detrimental biological effects. To characterize the effects of RFR exposure on body temperature in relation to animal size and pregnancy, a series of short‐term toxicity studies was conducted in a unique RFR exposure system. Young and old B6C3F1 mice and young, old, and pregnant Harlan Sprague‐Dawley rats were exposed to Global System for Mobile Communication (GSM) or Code Division Multiple Access (CDMA) RFR (rats = 900 MHz, mice = 1,900 MHz) at specific absorption rates (SARs) up to 12 W/kg for approximately 9 h a day for 5 days. In general, fewer and less severe increases in body temperature were observed in young than in older rats. SAR‐dependent increases in subcutaneous body temperatures were observed at exposures ≥6 W/kg in both modulations. Exposures of ≥10 W/kg GSM or CDMA RFR induced excessive increases in body temperature, leading to mortality. There was also a significant increase in the number of resorptions in pregnant rats at 12 W/kg GSM RFR. In mice, only sporadic increases in body temperature were observed regardless of sex or age when exposed to GSM or CDMA RFR up to 12 W/kg. These results identified SARs at which measurable RFR‐mediated thermal effects occur, and were used in the selection of exposures for subsequent toxicology and carcinogenicity studies. Bioelectromagnetics. 39:190–199, 2018. © 2018 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.  相似文献   

3.
The continuously increasing usage of cell phones has raised concerns about the adverse effects of microwave radiation (MWR) emitted by cell phones on health. Several in vitro and in vivo studies have claimed that MWR may cause various kinds of damage in tissues. The aim of this study is to examine the possible effects of exposure to low‐intensity MWR on DNA and oxidative damage in the livers of rats. Eighteen Sprague–Dawley male rats were divided into three equal groups randomly (n = 6). Group 1 (Sham‐control): rats were kept under conditions the same as those of other groups, except for MWR exposure. Group 2: rats exposed to 1800 MHz (SAR: 0.62 W/kg) at 0.127 ± 0.04 mW/cm2 power density, and Group 3: rats exposed to 2,100 MHz (SAR: 0.2 W/kg) at 0.038 ± 0.03 mW/cm2 power density. Microwave application groups were exposed to MWR 2 h/day for 7 months. At the end of the exposure period, the rats were sacrificed and DNA damage, malondialdehyde (MDA), 8‐hydroxydeoxyguanosine (8‐OHdG), and total oxidant‐antioxidant parameter analyses were conducted in their liver tissue samples. It was found that 1800 and 2100 MHz low‐intensity MWR caused a significant increase in MDA, 8‐OHdG, total oxidant status, oxidative stress index, and comet assay tail intensity (P < 0.05), while total antioxidant status levels (P < 0.05) decreased. The results of our study showed that whole‐body exposure to 1800 and 2100 MHz low‐intensity MWR emitted by cell phones can induce oxidative stress by altering oxidant‐antioxidant parameters and lead to DNA strand breaks and oxidative DNA damage in the liver of rats. Bioelectromagnetics. 2021;42:76–85. © 2020 Bioelectromagnetics Society  相似文献   

4.
The aim of this study was a dosimetrical analysis of the setup used in the exposure of the heads of domestic pigs to GSM-modulated radio frequency electromagnetic fields (RF-EMF) at 900 MHz. The heads of pigs were irradiated with a half wave dipole using three different exposure routines; short bursts of 1-3 s at two different exposure levels and a continuous 10-min exposure. The electroencephalogram (EEG) was registered continuously during the exposures to search for RF-EMF originated changes. The dosimetry was based on simulations with the anatomical heterogeneous numerical model of the pig head. The simulation results were validated by experimental measurements with the exposure dipole and a homogeneous liquid phantom resembling the pig head. The specific absorption rate (SAR), defined as a maximum average over 10 g tissue mass (SAR(10g)), was 7.3 W/kg for the first set of short bursts and 31 W/kg for the second set of short bursts. The SAR(10g) in the continuous 10-min exposure was 31 W/kg. The estimated uncertainty for the dosimetry was +/-25% (K = 2).  相似文献   

5.
目的:间充质干细胞(Mesenchymal stem cells,MSCs)具有广阔的临床应用前景,但由于其体外增殖和定向分化等问题,制约了其进一步应用。本研究拟探讨1950MHz射频电磁场(Radio-frequency electromagnetic fields,RF-EMF)对人脐带间充质干细胞(Human umbilical cord mesenchymal stem cells,hUC-MSCs)增殖和成骨方向分化的影响,以期为MSCs的体外增殖和定向分化提供一条新途径。方法:华通氏胶组织块法分离培养人脐带间充质干细胞,流式细胞仪检测间充质干细胞特异性标志物。选择鉴定后的第3至第6代(P3-P6)hUC-MSCs用于实验。将hUC-MSCs细胞暴露或假暴露于频率为1950 MHz,比吸收率(Specific absorption rate,SAR)分别为0.5,1.0和2.0 W/kg的RF-EMF中,每天暴露1 h(5 min开,10 min关),连续暴露7 d。暴露结束后,流式细胞仪检测细胞周期,免疫荧光检测增殖相关蛋白Ki67表达,连续6天用CCK-8方法检测细胞数。在成骨分化研究中,将P3代的hUC-MSCs随机分为假暴露(sham)组,射频辐射暴露(RF)组,成骨诱导培养基组(Induction medium,OM)和成骨诱导培养基联合射频辐射暴露(OM+RF)组,暴露SAR值为2.0 W/kg,其它参数不变。暴露结束后立即检测细胞的碱性磷酸酶(Alkaline phosphatase,ALP)活性。结果:原代培养的细胞具有MSC典型外观,且表达MSCs特异性表面抗原。与sham组相比,不同SAR值RF暴露后,hUC-MSCs的增殖能力无明显变化,S期细胞比例及Ki67蛋白水平也无显著改变。此外,hUC-MSCs经SAR值为2.0W/kg的RF暴露7 d,与sham组相比其ALP活性无显著变化。与OM组相比,OM+RF组的ALP活性亦无显著改变。结论:华通氏胶组织块法能够培养出纯度较高的间充质干细胞,本实验条件下的1950 MHz射频电磁场对hUC-MSCs的增殖和成骨分化均无显著影响。  相似文献   

6.
Despite much research, gaps remain in knowledge about the potential health effects of exposure to radiofrequency (RF) fields. This study investigated the effects of early‐life exposure to pulsed long term evolution (LTE) 1,846 MHz downlink signals on innate mouse behavior. Animals were exposed for 30 min/day, 5 days/week at a whole‐body average specific energy absorption rate (SAR) of 0.5 or 1 W/kg from late pregnancy (gestation day 13.5) to weaning (postnatal day 21). A behavioral tracking system measured locomotor, drinking, and feeding behavior in the home cage from 12 to 28 weeks of age. The exposure caused significant effects on both appetitive behaviors and activity of offspring that depended on the SAR. Compared with sham‐exposed controls, exposure at 0.5 W/kg significantly decreased drinking frequency (P ≤ 0.000) and significantly decreased distance moved (P ≤ 0.001). In contrast, exposure at 1 W/kg significantly increased drinking frequency (P ≤ 0.001) and significantly increased moving duration (P ≤ 0.005). In the absence of other plausible explanations, it is concluded that repeated exposure to low‐level RF fields in early life may have a persistent and long‐term effect on adult behavior. Bioelectromagnetics. 2019;40:498–511. © 2019 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.  相似文献   

7.

Background

Although IARC clarifies radiofrequency electromagnetic fields (RF-EMF) as possible human carcinogen, the debate on its health impact continues due to the inconsistent results. Genotoxic effect has been considered as a golden standard to determine if an environmental factor is a carcinogen, but the currently available data for RF-EMF remain controversial. As an environmental stimulus, the effect of RF-EMF on cellular DNA may be subtle. Therefore, more sensitive method and systematic research strategy are warranted to evaluate its genotoxicity.

Objectives

To determine whether RF-EMF does induce DNA damage and if the effect is cell-type dependent by adopting a more sensitive method γH2AX foci formation; and to investigate the biological consequences if RF-EMF does increase γH2AX foci formation.

Methods

Six different types of cells were intermittently exposed to GSM 1800 MHz RF-EMF at a specific absorption rate of 3.0 W/kg for 1 h or 24 h, then subjected to immunostaining with anti-γH2AX antibody. The biological consequences in γH2AX-elevated cell type were further explored with comet and TUNEL assays, flow cytometry, and cell growth assay.

Results

Exposure to RF-EMF for 24 h significantly induced γH2AX foci formation in Chinese hamster lung cells and Human skin fibroblasts (HSFs), but not the other cells. However, RF-EMF-elevated γH2AX foci formation in HSF cells did not result in detectable DNA fragmentation, sustainable cell cycle arrest, cell proliferation or viability change. RF-EMF exposure slightly but not significantly increased the cellular ROS level.

Conclusions

RF-EMF induces DNA damage in a cell type-dependent manner, but the elevated γH2AX foci formation in HSF cells does not result in significant cellular dysfunctions.  相似文献   

8.
Microwave (MW) radiation produced by wireless telecommunications and a number of electrical devices used in household or in healthcare institutions may adversely affects the reproductive pattern. Present study aimed to investigate the protective effects of melatonin (is well known antioxidant that protects DNA, lipids and proteins from free radical damage) against oxidative stress-mediated testicular impairment due to long-term exposure of MWs. For this, 70-day-old male Wistar rats were divided into four groups (n?=?6/group): Sham exposed, Melatonin (Mel) treated (2?mg/kg), 2.45?GHz MWs exposed and MWs?+?Mel treated. Exposure took place in Plexiglas cages for 2?h a day for 45 days where, power density (0.21?mW/cm2) and specific absorption rate (SAR 0.14?W/Kg) were estimated. After the completion of exposure period, rats were sacrificed and various stress related parameters, that is LDH-X (lactate dehydrogenase isoenzyme) activity, xanthine oxidase (XO), ROS (reactive oxygen species), protein carbonyl content, DNA damage and MDA (malondialdehyde) were performed. Result shows that melatonin prevent oxidative damage biochemically by significant increase (p?0.001) in the levels of testicular LDH-X, decreased (p?0.001) levels of MDA and ROS in testis (p?0.01). Meanwhile, it reversed the effects of MWs on XO, protein carbonyl content, sperm count, testosterone level and DNA fragmentation in testicular cells. These results concluded that the melatonin has strong antioxidative potential against MW induced oxidative stress mediated DNA damage in testicular cells.  相似文献   

9.
Conflicting results have been published regarding the induction of genotoxic effects by exposure to radiofrequency electromagnetic fields (RF-EMF). Using the comet assay, the micronucleus test and the chromosome aberration test with human fibroblasts (ES1 cells), the EU-funded "REFLEX" project (Risk Evaluation of Potential Environmental Hazards From Low Energy Electromagnetic Field Exposure Using Sensitive in vitro Methods) reported clearly positive effects for various exposure conditions. Because of the ongoing discussion on the biological significance of the effects observed, it was the aim of the present study to independently repeat the results using the same cells, the same equipment and the same exposure conditions. We therefore exposed ES1 cells to RF-EMF (1800 MHz; SAR 2 W/kg, continuous wave with intermittent exposure) for different time periods and then performed the alkaline (pH>13) comet assay and the micronucleus test (MNT). For both tests, clearly negative results were obtained in independently repeated experiments. We also performed these experiments with V79 cells, a sensitive Chinese hamster cell line that is frequently used in genotoxicity testing, and also did not measure any genotoxic effect in the comet assay and the MNT. Appropriate measures of quality control were considered to exclude variations in the test performance, failure of the RF-EMF exposure or an evaluation bias. The reasons for the difference between the results reported by the REFLEX project and our experiments remain unclear.  相似文献   

10.
The increasing use of nonionizing radiofrequency electromagnetic fields (RF-EMFs) in a wide range of technologies necessitates studies to further understanding of biological effects from exposures to such forms of electromagnetic fields. While previous studies have described mechanisms for cellular changes occurring following exposure to low-intensity RF-EMFs, the role of molecular epigenetics has not been thoroughly investigated. Specifically unresolved is the effect of RF-EMFs on deoxyribonucleic acid (DNA) methylation, which is a powerful epigenetic process, used by cells to regulate gene expression. DNA methylation is dynamic and can be rapidly triggered in response to external stimuli such as exposure to RF-EMFs. In the present study, we performed a global analysis of DNA methylation patterns in human keratinocytes exposed to 900 MHz RF-EMFs for 1 h at a low dose rate (estimated mean specific absorption rate (SAR) < 10 mW/kg). We used a custom system to allow stable exposure of cell cultures to RF-EMFs under biologically relevant conditions (37 °C, 5% CO2, 95% humidity). We performed whole genome bisulfite sequencing directly following RF-EMF exposure to examine the immediate changes in DNA methylation patterns and identify early differentially methylated genes in RF-EMF-exposed keratinocytes. By correlating global gene expression to whole genome bisulfite sequencing, we identified six common targets that were both differentially methylated and differentially expressed in response to RF-EMF exposure. The results highlight a potential epigenetic role in the cellular response to RF-EMFs. Particularly, the six identified targets may potentially be developed as epigenetic biomarkers for immediate responses to RF-EMF exposure. Bioelectromagnetics. 1–13, © 2023 Bioelectromagnetics Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.  相似文献   

11.
To investigate the possible mechanisms for biological effects of 1,800 MHz mobile radiofrequency radiation (RFR), the radiation-specific absorption rate was applied at 2 and 4 W/kg, and the exposure mode was 5 min on and 10 min off (conversation mode). Exposure time was 24 h short-term exposure. Following exposure, to detect cell DNA damage, cell apoptosis, and reactive oxygen species (ROS) generation, the Comet assay test, flow cytometry, DAPI (4′,6-diamidino-2-phenylindole dihydrochloride) staining, and a fluorescent probe were used, respectively. Our experiments revealed that mobile phone RFR did not cause DNA damage in marginal cells, and the rate of cell apoptosis did not increase (P > 0.05). However, the production of ROS in the 4 W/kg exposure group was greater than that in the control group (P < 0.05). In conclusion, these results suggest that mobile phone energy was insufficient to cause cell DNA damage and cell apoptosis following short-term exposure, but the cumulative effect of mobile phone radiation still requires further confirmation. Activation of the ROS system plays a significant role in the biological effects of RFR. Bioelectromagnetics. © 2020 The Authors. Bioelectromagnetics published by Wiley Periodicals, Inc.  相似文献   

12.
The aim of this study is to investigate if 1,800 MHz radiofrequency electromagnetic fields (RF-EMF) can induce reactive oxygen species (ROS) release and/or changes in heat shock protein 70 (Hsp70) expression in human blood cells, using different exposure and co-exposure conditions. Human umbilical cord blood-derived monocytes and lymphocytes were used to examine ROS release after exposure to continuous wave or different GSM signals (GSM-DTX and GSM-Talk) at 2 W/kg for 30 or 45 min of continuous or intermittent (5 min ON/5 min OFF) exposure. The cells were exposed to incubator conditions, to sham, to RF-EMF, or to chemicals in parallel. Cell stimulation with the phorbol ester phorbol-12-myristate-13-acetate (PMA; 1 μM) was used as positive control for ROS release. To investigate the effects on Hsp70 expression, the human monocytes were exposed to the GSM-DTX signal at 2 W/kg for 45 min, or to heat treatment (42°C) as positive control. ROS production and Hsp70 expression were determined by flow cytometric analysis. The data were compared to sham and/or to control values and the statistical analysis was performed by the Student’s t-test (P<0.05). The PMA treatment induced a significant increase in ROS production in human monocytes and lymphocytes when the data were compared to sham or to incubator controls. After continuous or intermittent GSM-DTX signal exposure (2 W/kg), a significantly different ROS production was detected in human monocytes if the data were compared to sham. However, this significant difference appeared due to the lowered value of ROS release during sham exposure. In human lymphocytes, no differences could be detected if data were compared either to sham or to incubator control. The Hsp70 expression level after 0, 1, and 2 h post-exposure to GSM-DTX signal at 2 W/kg for 1 h did not show any differences compared to the incubator or to sham control.  相似文献   

13.
Ubiquitous and ever increasing use of mobile phones led to the growing concern about the effects of radiofrequency radiation (RFR) emitted by cell phones on biological systems. The aim of this study is to explore whether long-term RFR exposure at different frequencies affects DNA damage and oxidant-antioxidant parameters in the blood and brain tissue of rats. 28 male Sprague Dawley rats were randomly divided into four equal groups (n = 7). They were identified as Group 1: sham-control, Group 2: 900 MHz, Group 3: 1800 MHz, and Group 4: 2100 MHz. Experimental groups of rats were exposed to RFR 2 h/day for 6 months. The sham-control group of rats was subjected to the same experimental condition but generator was turned off. Specific absorption rates (SARs) at brain with 1 g average were calculated as 0.0845 W/kg, 0.04563 W/kg, and 0.03957, at 900 MHz, 1800 MHz, and 2100 MHz, respectively. Additionally, malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), total antioxidant status (TAS), and total oxidant status (TOS) analyses were conducted in the brain tissue samples. Results of the study showed that DNA damage and oxidative stress indicators were found higher in the RFR exposure groups than in the sham-control group. In conclusion, 900-, 1800-, and 2100-MHz RFR emitted from mobile phones may cause oxidative damage, induce increase in lipid peroxidation, and increase oxidative DNA damage formation in the frontal lobe of the rat brain tissues. Furthermore, 2100-MHz RFR may cause formation of DNA single-strand breaks.  相似文献   

14.
Oxidative DNA damage is one of the key events thought to be involved in mutation and cancer. The present study examined the accumulation of M1dG, 3-(2'-deoxy-beta-D-erythro-pentofuranosyl)-pyrimido[1,2-a]-purin-10(3H)-one, DNA adducts after single dose or 1-year exposure to polyhalogenated aromatic hydrocarbons (PHAH) in order to evaluate the potential role of oxidative DNA damage in PHAH toxicity and carcinogenicity. The effect of PHAH exposure on the number of M1dG adducts was explored initially in female mice exposed to a single dose of either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or a PHAH mixture. This study demonstrated that a single exposure to PHAH had no significant effect on the number of M1dG adducts compared to the corn oil control group. The role of M1dG adducts in polychlorinated biphenyl (PCB)-induced toxicity and carcinogenicity was further investigated in rats exposed for a year to PCB 153, PCB 126, or a mixture of the two. PCB 153, at doses up to 3000 microg/kg/day, had no significant effect on the number of M1dG adducts in liver and brain tissues from the exposed rats compared to controls. However, 1000 ng/kg/day of PCB 126 resulted in M1dG adduct accumulation in the liver. More importantly, coadministration of equal proportions of PCB 153 and PCB 126 resulted in dose-dependent increases in M1dG adduct accumulation in the liver from 300 to 1000 ng/kg/day of PCB 126 with 300-1000 microg/kg/day of PCB 153. Interestingly, the coadministration of different amounts of PCB 153 with fixed amounts of PCB 126 demonstrated more M1dG adduct accumulation with higher doses of PCB 153. These results are consistent with the results from cancer bioassays that demonstrated a synergistic effect between PCB 126 and PCB 153 on toxicity and tumor development. In summary, the results from the present study support the hypothesis that oxidative DNA damage plays a key role in toxicity and carcinogenicity following long-term PCB exposure.  相似文献   

15.
The development of the immune system begins during embryogenesis, continues throughout fetal life, and completes its maturation during infancy. Exposure to immune-toxic compounds at levels producing limited/transient effects in adults, results in long-lasting or permanent immune deficits when it occurs during perinatal life. Potentially harmful radiofrequency (RF) exposure has been investigated mainly in adult animals or with cells from adult subjects, with most of the studies showing no effects. Is the developing immune system more susceptible to the effects of RF exposure? To address this question, newborn mice were exposed to WiFi signals at constant specific absorption rates (SAR) of 0.08 or 4 W/kg, 2 h/day, 5 days/week, for 5 consecutive weeks, starting the day after birth. The experiments were performed with a blind procedure using sham-exposed groups as controls. No differences in body weight and development among the groups were found in mice of both sexes. For the immunological analyses, results on female and male newborn mice exposed during early post-natal life did not show any effects on all the investigated parameters with one exception: a reduced IFN-γ production in spleen cells from microwaves (MW)-exposed (SAR 4 W/kg) male (not in female) mice compared with sham-exposed mice. Altogether our findings do not support the hypothesis that early post-natal life exposure to WiFi signals induces detrimental effects on the developing immune system.  相似文献   

16.
  • 1.1.|Colonic temperatures of BALB/c and CBA/J mice, golden hamsters, and Sprague-Dawley rats were taken immediately after exposure for 90 min to radiofrequency (RF) radiation.
  • 2.2.|Exposures were made in 2450 MHz (mouse and hamster) or 600 MHz (rat) waveguide exposure systems while the dose rate, specific absorption rate (SAR), was continuously recorded. Experiments were performed on naive, unrestrained animals at ambient temperatures (Ta) of 20 and 30°C.
  • 3.3.|Body mass and Ta) were found to be significant factors in influencing the threshold SAR for the elevation of colonic temperature. The threshold SARs at Ta's of 20 and 30°C were respectively: 27.5 and 12.1 W/kg for the BALB/c mouse; 40.7 and 8.5 W/kg for the CBA/J mouse; 8.7 and 0.61 W/kg for the golden hamster; and 1.58 and 0.4 W/kg for the Sprague-Dawley rat.
  • 4.4.|The relationship between threshold SAR or SAR for a 1.0°C elevation in colonic temperature vs body mass were linearly and inversely related on a double logarithmic plot. The results of this study suggest that the thermoregulatory sensitivity to RF radiation in these rodent species is heavily dependent on body mass and Ta.
  相似文献   

17.
The present study was designed to evaluate whether gestational exposure to an EMF targeting the head region, similar to that from cellular phones, might affect embryogenesis in rats. A 1.95‐GHz wide‐band code division multiple access (W‐CDMA) signal, which is one applied for the International Mobile Telecommunication 2000 (IMT‐2000) system and used for the freedom of mobile multimedia access (FOMA), was employed for exposure to the heads of four groups of pregnant CD(SD) IGS rats (20 per group) for gestational days 7–17. The exposure was performed for 90 min/day in the morning. The spatial average specific absorption rate (SAR) for individual brains was designed to be 0.67 and 2.0 W/kg with peak brain SARs of 3.1 and 7.0 W/kg for low (group 3) and high (group 4) exposures, respectively, and a whole‐body average SAR less than 0.4 W/kg so as not to cause thermal effects due to temperature elevation. Control and sham exposure groups were also included. At gestational day 20, all dams were killed and fetuses were taken out by cesarean section. There were no differences in maternal body weight gain. No adverse effects of EMF exposure were observed on any reproductive and embryotoxic parameters such as number of live (243–271 fetuses), dead or resorbed embryos, placental weights, sex ratios, weights or external, visceral or skeletal abnormalities of live fetuses. Bioelectromagnetics 30:205–212, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

18.
The purpose of this study is to bridge this gap by investigating effects of long term 900?MHz mobile phone exposure on reproductive organs of male rats. The study was carried out on 14 adult Wistar Albino rats by dividing them randomly into two groups (n: 7) as sham group and exposure group. Rats were exposed to 900?MHz radiofrequency (RF) radiation emitted from a GSM signal generator. Point, 1?g and 10?g specific absorption rate (SAR) levels of testis and prostate were found as 0.0623?W/kg, 0.0445?W/kg and 0.0373?W/kg, respectively. The rats in the exposure group were subject to RF radiation 3?h per day (7?d a week) for one year. For the sham group, the same procedure was applied, except the generator was turned off. At the end of the study, epididymal sperm concentration, progressive sperm motility, abnormal sperm rate, all-genital organs weights and testis histopathology were evaluated. Any differences were not observed in sperm motility and concentration (p?>?0.05). However, the morphologically normal spermatozoa rates were found higher in the exposure group (p?p?p?相似文献   

19.
The aim of this investigation was to study the synergistic DNA damage effects in human lymphocytes induced by 1.8 GHz radiofrequency field radiation (RFR, SAR of 3 W/kg) with four chemical mutagens, i.e. mitomycin C (MMC, DNA crosslinker), bleomycin (BLM, radiomimetic agent), methyl methanesulfonate (MMS, alkylating agent), and 4-nitroquinoline-1-oxide (4NQO, UV-mimetic agent). The DNA damage of lymphocytes exposed to RFR and/or with chemical mutagens was detected at two incubation time (0 or 21 h) after treatment with comet assay in vitro. Three combinative exposure ways were used. Cells were exposed to RFR and chemical mutagens for 2 and 3h, respectively. Tail length (TL) and tail moment (TM) were utilized as DNA damage indexes. The results showed no difference of DNA damage indexes between RFR group and control group at 0 and 21 h incubation after exposure (P>0.05). There were significant difference of DNA damage indexes between MMC group and RFR+MMC co-exposure group at 0 and 21 h incubation after treatment (P<0.01). Also the significant difference of DNA damage indexes between 4NQO group and RFR+4NQO co-exposure group at 0 and 21 h incubation after treatment was observed (P<0.05 or P<0.01). The DNA damage in RFR+BLM co-exposure groups and RFR+MMS co-exposure groups was not significantly increased, as compared with corresponding BLM and MMS groups (P>0.05). The experimental results indicated 1.8 GHz RFR (SAR, 3 W/kg) for 2h did not induce the human lymphocyte DNA damage effects in vitro, but could enhance the human lymphocyte DNA damage effects induced by MMC and 4NQO. The synergistic DNA damage effects of 1.8 GHz RFR with BLM or MMS were not obvious.  相似文献   

20.
Endocrine disruptors (EDs) represent a major toxicological and public health issue, and the xenoestrogen bisphenol A (BPA) has received much attention due to its high production volume and widespread human exposure. Also, due to its similarity to diethylstilbestrol, a known human carcinogen, BPA has been investigated for its genotoxic and carcinogenic properties, but the results have been either inconclusive or controversial. Metabolically activated BPA has previously been shown to form DNA adducts both in vitro and in rat liver. The present study was designed (a) to assess the sensitivity threshold of DNA-adduct detection by 32P-postlabelling in an acellular system and (b) to evaluate the formation of DNA adducts in both liver and mammary cells of female CD-1 mice receiving BPA in their drinking water (200 mg/kg body weight) for eight consecutive days. The reaction of BPA with calf thymus DNA, in the presence of S9 mix, resulted in a dose-dependent formation of multiple DNA adducts, with a detection limit of 10 ng of this ED under our experimental conditions. Administration of BPA to mice confirmed that DNA adducts are formed in liver (3.4-fold higher levels than in controls). In addition, new evidence is provided that DNA adducts are formed in target mammary cells (4.7-fold higher than in controls). Although DNA adducts do not necessarily evolve into tumours or other chronic degenerative diseases, the formation of these molecular lesions in target mammary cells may bear relevance for the potential involvement of BPA in breast carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号