首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Semi-synthetic triterpenoids are antioxidant inflammation modulator (AIM) compounds that inhibit tumor cell growth and metastasis. Compounds in the AIM class bind to Keap1 and attenuate Nrf2 degradation. In the nucleus, Nrf2 increases antioxidant gene expression and reduces pro-inflammatory gene expression. By increasing Nrf2 activity, AIMs reduce reactive oxygen species and inflammation in the tumor microenvironment, which reverses tumor-mediated immune evasion and inhibits tumor growth and metastasis. AIMs also directly inhibit tumor cell growth by modulating oncogenic signaling pathways, such as IKKβ/NF-κB. Here, we characterized the in vitro antioxidant, anti-inflammatory, and anticancer activities of RTA 408, a novel AIM that is currently being evaluated in patients with advanced malignancies. At low concentrations (≤ 25 nM), RTA 408 activated Nrf2 and suppressed nitric oxide and pro-inflammatory cytokine levels in interferon-γ-stimulated RAW 264.7 macrophage cells. At higher concentrations, RTA 408 inhibited tumor cell growth (GI50 = 260 ± 74 nM) and increased caspase activity in tumor cell lines, but not in normal primary human cells. Consistent with the direct effect of AIMs on IKKβ, RTA 408 inhibited NF-κB signaling and decreased cyclin D1 levels at the same concentrations that inhibited cell growth and induced apoptosis. RTA 408 also increased CDKN1A (p21) levels and JNK phosphorylation. The in vitro activity profile of RTA 408 is similar to that of bardoxolone methyl, which was well-tolerated by patients at doses that demonstrated target engagement. Taken together, these data support clinical evaluation of RTA 408 for cancer treatment.  相似文献   

2.
β-Glucan from Saccharomyces cerevisiae has been described to be effective antioxidants, but the specific antioxidation mechanism of β-glucan is unclear. The objectives of this research were to determine whether the β-glucan from Saccharomyces cerevisiae could regulate oxidative stress through the Dectin-1/Nrf2/HO-1 signaling pathway in lipopolysaccharides (LPS)-stimulated RAW264.7 cells. In this study, we examined the effects of β-glucan on the enzyme activity or production of oxidative stress indicators in LPS-stimulated RAW264.7 cells by biochemical analysis and the protein expression of key factors of Dectin-1/Nrf2/HO-1 signaling pathway by immunofluorescence and western blot. The biochemical analysis results showed that β-glucan increased the LPS-induced downregulation of enzyme activity of intracellular heme oxygenase (HO), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) while decreasing the production of reactive oxygen species (ROS) and malondialdehyde (MDA). Furthermore, immunofluorescence results showed that β-glucan can activate the nuclear factor erythroid 2-related factor 2 (Nrf2). The antioxidant mechanism study indicated that β-glucan activated dendritic-cell-associated C-type lectin 1 (Dectin-1) receptors mediated Nrf2/HO-1 signaling pathway, thereby downregulating the production of ROS and thus produced the antioxidant effects in LPS-stimulated RAW 264.7 cells. In conclusion, these results indicate that β-glucan potently alleviated oxidative stress via Dectin-1/Nrf2/HO-1 in LPS-stimulated RAW 264.7 cells.  相似文献   

3.
Objectives: Geraniol, a natural monoterpene, is an essential oil component of many plants. Methotrexate is an anti-metabolite drug, used for cancer and autoimmune conditions; however, clinical uses of methotrexate are limited by its concomitant renal injury. This study investigated the efficacy of geraniol to prevent methotrexate-induced acute kidney injury and via scrutinizing the Keap1/Nrf2/HO-1, P38MAPK/NF-κB and Bax/Bcl2/caspase-3 and -9 pathways. Methods: Male Wister rats were allocated into five groups: control, geraniol (orally), methotrexate (IP), methotrexate and geraniol (100 and 200 mg/kg). Results: Geraniol effectively reduced the serum levels of creatinine, urea and Kim-1 with an increase in the serum level of albumin when compared to the methotrexate-treated group. Geraniol reduced Keap1, escalated Nrf2 and HO-1, enhanced the antioxidant parameters GSH, SOD, CAT and GSHPx and reduced MDA and NO. Geraniol decreased renal P38 MAPK and NF-κB and ameliorated the inflammatory mediators TNF-α, IL-1β, IL-6 and IL-10. Geraniol negatively regulated the apoptotic mediators Bax and caspase-3 and -9 and increased Bcl2. All the biochemical findings were supported by the alleviation of histopathological changes in kidney tissues. Conclusion: The current findings support that co-administration of geraniol with methotrexate may attenuate methotrexate-induced acute kidney injury.  相似文献   

4.
Renal reactive oxygen species (ROS) and mononuclear leukocyte infiltration are involved in the progressive stage (exacerbation) of IgA nephropathy (IgAN), which is characterized by glomerular proliferation and renal inflammation. The identification of the mechanism responsible for this critical stage of IgAN and the development of a therapeutic strategy remain a challenge. Osthole is a pure compound isolated from Cnidiummonnieri (L.) Cusson seeds, which are used as a traditional Chinese medicine, and is anti-inflammatory, anti-apoptotic, and anti-fibrotic both in vitro and in vivo. Recently, we showed that osthole acts as an anti-inflammatory agent by reducing nuclear factor-kappa B (NF-κB) activation in and ROS release by activated macrophages. In this study, we examined whether osthole could prevent the progression of IgAN using a progressive IgAN (Prg-IgAN) model in mice. Our results showed that osthole administration resulted in prevention of albuminuria, improved renal function, and blocking of renal progressive lesions, including glomerular proliferation, glomerular sclerosis, and periglomerular mononuclear leukocyte infiltration. These findings were associated with (1) reduced renal superoxide anion levels and increased Nrf2 nuclear translocation, (2) inhibited renal activation of NF-κB and the NLRP3 inflammasome, (3) decreased renal MCP-1 expression and mononuclear leukocyte infiltration, (4) inhibited ROS production and NLRP3 inflammasome activation in cultured, activated macrophages, and (5) inhibited ROS production and MCP-1 protein levels in cultured, activated mesangial cells. The results suggest that osthole exerts its reno-protective effects on the progression of IgAN by inhibiting ROS production and activation of NF-κB and the NLRP3 inflammasome in the kidney. Our data also confirm that ROS generation and activation of NF-κB and the NLRP3 inflammasome are crucial mechanistic events involved in the progression of the renal disorder.  相似文献   

5.
Oxidative damage and inflammation are closely associated with the pathogenesis of acute lung injury (ALI). Thus, we explored the protective effect of isovitexin (IV), a glycosylflavonoid, in the context of ALI. To accomplish this, we created in vitro and in vivo models by respectively exposing macrophages to lipopolysaccharide (LPS) and using LPS to induce ALI in mice. In vitro, our results showed that IV treatment reduced LPS-induced pro-inflammatory cytokine secretion, iNOS and COX-2 expression and decreased the generation of ROS. Consistent findings were obtained in vivo. Additionally, IV inhibited H2O2-induced cytotoxicity and apoptosis. However, these effects were partially reversed following the use of an HO-1 inhibitor in vitro. Further studies revealed that IV significantly inhibited MAPK phosphorylation, reduced NF-κB nuclear translocation, and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) expression in RAW 264.7 cells. In vivo, pretreatment with IV attenuated histopathological changes, infiltration of polymorphonuclear granulocytes and endothelial activation, decreased the expression of ICAM-1 and VCAM-1, reduced the levels of MPO and MDA, and increased the content of GSH and SOD in ALI. Furthermore, IV treatment effectively increased Nrf2 and HO-1 expression in lung tissues. Therefore, IV may offer a protective role against LPS-induced ALI by inhibiting MAPK and NF-κB and activating HO-1/Nrf2 pathways.  相似文献   

6.
7.
Both oxidative stress and inflammation are involved in the pathogenesis of contrast-induced nephropathy (CIN). Epigallocatechin-3-gallate (EGCG), a purified catechin from green tea, has antioxidant and anti-inflammatory effects. However, it is unknown whether or not EGCG is effective in treating CIN. Our present study found that intravenous administration of EGCG, either before or just after the establishment of CIN, had a protective effect, determined by normalization of serum creatinine and blood urea nitrogen levels, improvement in renal histopathological scoring and alleviation of apoptosis, accompanied by decreased oxidative stress and inflammation. Because EGCG is a potent inducer of the antioxidant heme oxygenase-1 (HO-1), we studied HO-1 signaling in CIN. HO-1 levels were increased in CIN; treatment with EGCG further increased HO-1 levels, accompanied by an increase in Nrf2, a regulator of antioxidant proteins. Interestingly, blockade of HO-1 with protoporphyrin IX zinc(II) (ZnPP) prevented the protective effect of EGCG on CIN. ZnPP also blocked the ability of EGCG to increase the activity of an antioxidant (superoxide dismutase), and decrease markers of oxidative stress (myeloperoxidase and malondialdehyde) and inflammation (myeloperoxidase and IL-1β), indicating that HO-1 is the upstream molecule that regulates the EGCG-mediated protection. To determine further the role of HO-1 on the EGCG-mediated inhibition of inflammation, we studied the effect of EGCG on the NLRP3 inflammasome, an upstream signaling of IL-1β. EGCG down-regulated NLRP3 expression, which was blocked by ZnPP, indicating that HO-1 links EGCG with NLRP3. Therefore, EGCG, via up-regulation of HO-1, protects against CIN by amelioration of oxidative stress and inflammation.  相似文献   

8.
Acute kidney injury (AKI) is a pathological condition characterized by a rapid decrease in glomerular filtration rate and nitrogenous waste accumulation during hemodynamic regulation. Alisol B, from Alisma orientale, displays anti-tumor, anti-complement, and anti-inflammatory effects. However, its effect and action mechanism on AKI is still unclear. Herein, alisol B significantly attenuated cisplatin (Cis)-induced renal tubular apoptosis through decreasing expressions levels of cleaved-caspase 3 and cleaved-PARP and the ratio of Bax/Bcl-2 depended on the p53 pathway. Alisol B also alleviated Cis-induced inflammatory response (e.g. the increase of ICAM-1, MCP-1, COX-2, iNOS, IL-6, and TNF-α) and oxidative stress (e.g. the decrease of SOD and GSH, the decrease of HO-1, GCLC, GCLM, and NQO-1) through the NF-κB and Nrf2 pathways. In a target fishing experiment, alisol B bound to soluble epoxide hydrolase (sEH) as a direct cellular target through the hydrogen bond with Gln384, which was further supported by inhibition kinetics and surface plasmon resonance (equilibrium dissociation constant, KD = 1.32 μM). Notably, alisol B enhanced levels of epoxyeicosatrienoic acids and decreased levels of dihydroxyeicosatrienoic acids, indicating that alisol B reduced the sEH activity in vivo. In addition, sEH genetic deletion alleviated Cis-induced AKI and abolished the protective effect of alisol B in Cis-induced AKI as well. These findings indicated that alisol B targeted sEH to alleviate Cis-induced AKI via GSK3β-mediated p53, NF-κB, and Nrf2 signaling pathways and could be used as a potential therapeutic agent in the treatment of AKI.  相似文献   

9.
The anti-oxidant enzyme heme oxygenase-1 (HO-1) is known to exert anti-inflammatory effects. From a library of pyrazolo[3,4-d]pyrimidines, we identified a novel compound KKC080096 that upregulated HO-1 at the mRNA and protein levels in microglial BV-2 cells. KKC080096 exhibited anti-inflammatory effects via suppressing nitric oxide, interleukin-1β (IL-1β), and iNOS production in lipopolysaccharide (LPS)-challenged cells. It inhibited the phosphorylation of IKK and MAP kinases (p38, JNK, ERK), which trigger inflammatory signaling, and whose activities are inhibited by HO-1. Further, KKC080096 upregulated anti-inflammatory marker (Arg1, YM1, CD206, IL-10, transforming growth factor-β [TGF-β]) expression. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, KKC080096 lowered microglial activation, protected the nigral dopaminergic neurons, and nigral damage-associated motor deficits. Next, we elucidated the mechanisms by which KKC080096 upregulated HO-1. KKC080096 induced the phosphorylation of AMPK and its known upstream kinases LKB1 and CaMKKbeta, and pharmacological inhibition of AMPK activity reduced the effects of KKC080096 on HO-1 expression and LPS-induced NO generation, suggesting that KKC080096-induced HO-1 upregulation involves LKB1/AMPK and CaMKKbeta/AMPK pathway activation. Further, KKC080096 caused an increase in cellular Nrf2 level, bound to Keap1 (Nrf2 inhibitor protein) with high affinity, and blocked Keap1-Nrf2 interaction. This Nrf2 activation resulted in concurrent induction of HO-1 and other Nrf2-targeted antioxidant enzymes in BV-2 and in dopaminergic CATH.a cells. These results indicate that KKC080096 is a potential therapeutic for oxidative stress- and inflammation-related neurodegenerative disorders such as Parkinson’s disease.  相似文献   

10.
Inflammation is widely distributed in patients with Duchenne muscular dystrophy and ultimately leads to progressive deterioration of muscle function with chronic muscle damage, oxidative stress, and reduced oxidative capacity. NF-E2-related factor 2 (Nrf2) plays a critical role in defending against inflammation in different tissues via activation of phase II enzyme heme oxygenase-1 and inhibition of the NF-κB signaling pathway. However, the role of Nrf2 in the inflammation of dystrophic muscle remains unknown. To determine whether Nrf2 may counteract inflammation in dystrophic muscle, we treated 4-week-old male mdx mice with the Nrf2 activator sulforaphane (SFN) by gavage (2 mg/kg of body weight/day) for 4 weeks. The experimental results demonstrated that SFN treatment increased the expression of muscle phase II enzyme heme oxygenase-1 in an Nrf2-dependent manner. Inflammation in mice was reduced by SFN treatment as indicated by decreased infiltration of immune cells and expression of the inflammatory cytokine CD45 and proinflammatory cytokines tumor necrosis factor-α, interleukin-1β, and interleukin-6 in the skeletal muscles of mdx mice. In addition, SFN treatment also decreased the expression of NF-κB(p65) and phosphorylated IκB kinase-α as well as increased inhibitor of κB-α expression in mdx mice in an Nrf2-dependent manner. Collectively, these results show that SFN-induced Nrf2 can alleviate muscle inflammation in mdx mice by inhibiting the NF-κB signaling pathway.  相似文献   

11.
Notoginsenoside R1 (NG-R1), the extract and the main ingredient of Panax notoginseng, has anti-inflammatory effects and can be used in treating acute lung injury (ALI). In this study, we explored the pulmonary protective effect and the underlying mechanism of the NG-R1 on rats with ALI induced by severe acute pancreatitis (SAP). MiR-128-2-5p, ERK1, Tollip, HMGB1, TLR4, IκB, and NF-κB mRNA expression levels were measured using real-time qPCR, and TLR4, Tollip, HMGB1, IRAK1, MyD88, ERK1, NF-κB65, and P-IκB-α protein expression levels using Western blot. The NF-κB and the TLR4 activities were determined using immunohistochemistry, and TNF-α, IL-6, IL-1β, and ICAM-1 levels in the bronchoalveolar lavage fluid (BALF) using ELISA. Lung histopathological changes were observed in each group. NG-R1 treatment reduced miR-128-2-5p expression in the lung tissue, increased Tollip expression, inhibited HMGB1, TLR4, TRAF6, IRAK1, MyD88, NF-κB65, and p-IκB-α expression levels, suppressed NF-κB65 and the TLR4 expression levels, reduced MPO activity, reduced TNF-α, IL-1β, IL-6, and ICAM-1 levels in BALF, and alleviated SAP-induced ALI. NG-R1 can attenuate SAP-induced ALI. The mechanism of action may be due to a decreased expression of miR-128-2-5p, increased activity of the Tollip signaling pathway, decreased activity of HMGB1/TLR4 and ERK1 signaling pathways, and decreased inflammatory response to SAP-induced ALI. Tollip was the regulatory target of miR-128-2-5p.  相似文献   

12.
Crotepoxide (a substituted cyclohexane diepoxide), isolated from Kaempferia pulchra (peacock ginger), although linked to antitumor and anti-inflammatory activities, the mechanism by which it exhibits these activities, is not yet understood. Because nuclear factor κB (NF-κB) plays a critical role in these signaling pathways, we investigated the effects of crotepoxide on NF-κB-mediated cellular responses in human cancer cells. We found that crotepoxide potentiated tumor necrosis factor (TNF), and chemotherapeutic agents induced apoptosis and inhibited the expression of NF-κB-regulated gene products involved in anti-apoptosis (Bcl-2, Bcl-xL, IAP1,2 MCl-1, survivin, and TRAF1), apoptosis (Bax, Bid), inflammation (COX-2), proliferation (cyclin D1 and c-myc), invasion (ICAM-1 and MMP-9), and angiogenesis (VEGF). We also found that crotepoxide inhibited both inducible and constitutive NF-κB activation. Crotepoxide inhibition of NF-κB was not inducer-specific; it inhibited NF-κB activation induced by TNF, phorbol 12-myristate 13-acetate, lipopolysaccharide, and cigarette smoke. Crotepoxide suppression of NF-κB was not cell type-specific because NF-κB activation was inhibited in myeloid, leukemia, and epithelial cells. Furthermore, we found that crotepoxide inhibited TAK1 activation, which led to suppression of IκBα kinase, abrogation of IκBα phosphorylation and degradation, nuclear translocation of p65, and suppression of NF-κB-dependent reporter gene expression. Overall, our results indicate that crotepoxide sensitizes tumor cells to cytokines and chemotherapeutic agents through inhibition of NF-κB and NF-κB-regulated gene products, and this may provide the molecular basis for crotepoxide ability to suppress inflammation and carcinogenesis.  相似文献   

13.
14.
Cell protection against different noxious stimuli like oxidative stress or chemical toxins plays a central role in the treatment of many diseases. The inducible heme oxygenase isoform, heme oxygenase-1 (HO-1), is known to protect cells against a variety of harmful conditions including apoptosis. Because a number of medium strong electrophiles from a series of α-X-substituted 2’,3,4,4’-tetramethoxychalcones (α-X-TMCs, X = H, F, Cl, Br, I, CN, Me, p-NO2-C6H4, Ph, p-OMe-C6H4, NO2, CF3, COOEt, COOH) had proven to activate Nrf2 resulting in HO-1 induction and inhibit NF-κB downstream target genes, their protective effect against staurosporine induced apoptosis and reactive oxygen species (ROS) production was investigated. RAW264.7 macrophages treated with 19 different chalcones (15 α-X-TMCs, chalcone, 2’-hydroxychalcone, calythropsin and 2’-hydroxy-3,4,4’-trimethoxychalcone) prior to staurosporine treatment were analyzed for apoptosis and ROS production, as well as HO-1 protein expression and enzyme activity. Additionally, Nrf2 and NF-κB activity was assessed. We found that amongst all tested chalcones only E-α-(4-methoxyphenyl)-2’,3,4,4''-tetramethoxychalcone (E-α-p-OMe-C6H4-TMC) demonstrated a distinct, statistically significant antiapoptotic effect in a dose dependent manner, showing no toxic effects, while its double bond isomer Z-α-p-OMe-C6H4-TMC displayed no significant activity. Also, E-α-p-OMe-C6H4-TMC induced HO-1 protein expression and increased HO-1 activity, whilst inhibition of HO-1 by SnPP-IX abolished its antiapoptotic effect. The only weakly electrophilic chalcone E-α-p-OMe-C6H4-TMC reduced the staurosporine triggered formation of ROS, while inducing the translocation of Nrf2 into the nucleus. Furthermore, staurosporine induced NF-κB activity was attenuated following E-α-p-OMe-C6H4-TMC treatment. Overall, E-α-p-OMe-C6H4-TMC demonstrated its effective cytoprotective potential via a non-toxic induction of HO-1 in RAW264.7 macrophages. The observed cytoprotective effect may partly be related to both, the activation of the Nrf2- and inhibition of the NF-κB pathway.  相似文献   

15.
16.
A large group of flavonoids found in fruits and vegetables have been suggested to elicit health benefits due mainly to their anti-oxidative and anti-inflammatory properties. Recent studies with immune cells have demonstrated inhibition of these inflammatory responses through down-regulation of the pro-inflammatory pathway involving NF-κB and up-regulation of the anti-oxidative pathway involving Nrf2. In the present study, the murine BV-2 microglial cells were used to compare anti-inflammatory activity of quercetin and cyanidin, two flavonoids differing by their alpha, beta keto carbonyl group. Quercetin was 10 folds more potent than cyanidin in inhibition of lipopolysaccharide (LPS)-induced NO production as well as stimulation of Nrf2-induced heme-oxygenase-1 (HO-1) protein expression. In addition, quercetin demonstrated enhanced ability to stimulate HO-1 protein expression when cells were treated with LPS. In an attempt to unveil mechanism(s) for quercetin to enhance Nrf2/HO-1 activity under endotoxic stress, results pointed to an increase in phospho-p38MAPK expression upon addition of quercetin to LPS. In addition, pharmacological inhibitors for phospho-p38MAPK and MEK1/2 for ERK1/2 further showed that these MAPKs target different sites of the Nrf2 pathway that regulates HO-1 expression. However, inhibition of LPS-induced NO by quercetin was not fully reversed by TinPPIX, a specific inhibitor for HO-1 activity. Taken together, results suggest an important role of quercetin to regulate inflammatory responses in microglial cells and its ability to upregulate HO-1 against endotoxic stress through involvement of MAPKs.  相似文献   

17.
18.
Nucleotide-binding domain and leucine-rich repeat-containing family, pyrin domain containing 3 (NLRP3) has recently emerged as a central regulator of innate immunity and inflammation in response to both sterile inflammatory and microbial invasion signals. Although its ability to drive proteolytic procaspase-1 processing has drawn more attention, NLPR3 can also activate NF-κB. To clarify the physiological relevance of this latter function, we examined the effect of NLRP3 on NF-κB activation and cytokine induction in RNA-interference-based NLRP3-knockdown cell lines generated from the human monocytic cell line THP-1. Knocking down NLRP3 reduced NF-κB activation and cytokine induction in the early stages of Staphylococcus aureus infection. Expression of cytokine genes induced by Staphylococcus aureus was not inhibited by a caspase-1 inhibitor, and did not occur through an autocrine mechanism in response to newly synthesized cytokines. We also demonstrated that NLRP3 could activate NF-κB and induce cytokines in response to sterile signals, monosodium urate crystals and aluminum adjuvant. Thus, NLRP3 mediates NF-κB activation in both sterile and microbially induced inflammation. Our findings show that not only does NLRP3 activate caspase-1 post-translationally, but it also induces multiple cytokine genes in the innate immune system.  相似文献   

19.
20.
Inflammatory response and cell death in hepatocytes are hallmarks of chronic liver disease, and, therefore, can be effective therapeutic targets. Neurotropin® (NTP) is a drug widely used in Japan and China to treat chronic pain. Although NTP has been demonstrated to suppress chronic pain through the descending pain inhibitory system, the action mechanism of NTP remains elusive. We hypothesize that NTP functions to suppress inflammatory pathways, thereby attenuating disease progression. In the present study, we investigated whether NTP suppresses inflammatory signaling and cell death pathways induced by interleukin-1β (IL-1β) and tumor necrosis factor-α (TNFα) in hepatocytes. NTP suppressed nuclear factor-κB (NF-κB) activation induced by IL-1β and TNFα assessed by using hepatocytes isolated from NF-κB-green fluorescent protein (GFP) reporter mice and an NF-κB-luciferase reporter system. The expression of NF-κB target genes, Il6, Nos2, Cxcl1, ccl5 and Cxcl2 induced by IL-1β and TNFα was suppressed after NTP treatment. We also found that NTP suppressed the JNK phosphorylation induced by IL-1β and TNFα. Because JNK activation contributes to hepatocyte death, we determined that NTP treatment suppressed hepatocyte death induced by IL-1β and TNFα in combination with actinomycin D. Taken together, our data demonstrate that NTP attenuates IL-1β and TNFα-mediated inflammatory cytokine expression and cell death in hepatocytes through the suppression of NF-κB and JNK. The results from the present study suggest that NTP may become a preventive or therapeutic strategy for alcoholic and non-alcoholic fatty liver disease in which NF-κB and JNK are thought to take part.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号