首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的评价脐带间充质干细胞(hUC-MSCs)对内毒素血症诱发的大鼠急性肝功能损伤的影响及其与凋亡机制的关系。 方法6周龄雄性SD大鼠18只,随机分为3组,分别是对照组(C组)、内毒素血症组(M组)和内毒素血症+hUC-MSCs治疗组(M+cells组),每组6只。大鼠腹腔注射5 mg/kg脂多糖(LPS)诱导内毒素血症模型,并经尾静脉注射含20×106个hUC- MSCs。4 h时检测血清谷草转氨酶(AST)和谷丙转氨酶(ALT),ELISA方法检测肿瘤坏死因子(TNF-α)、白细胞介素6(IL-6),HE常规染色鉴定肝脏组织病理,Western Blot法检测肝脏组织抗凋亡蛋白Bcl-2、促凋亡蛋白Bax、凋亡信号调节激酶1(ASK1)、应激活化蛋白激酶即JUN氨基末端激酶(JNK)蛋白的表达。多组间比较采用单因素方差分析,相关分析选用pearson。 结果(1)C组AST、ALT、TNF-α和IL-6浓度分别为(74.66±6.39)U/ L、(40.07±6.07)U/ L、(37.74±3.08)ng/L和(0.42±0.07)ng/L;与M组比较(310.75±9.13)U/L、(107.04±10.04)U/ L、(160.32±4.88)ng/L和(0.90±0.09)ng/L,差异具有统计学意义(P均 < 0.05),M组AST、ALT、TNF-α、IL-6浓度分别为(310.75±9.13)U/L、(107.04±10.04)U/ L、(160.32±4.88)ng/ L和(0.90±0.09)ng/L,与M+cells组比较(204.49±15.36)U/L、(71.24± 7.34)U/ L、(117.61±9.37)ng/ L和(0.60±0.10)ng/L,差异具有统计学意义(P均 < 0.05)。(2)C组大鼠肝细胞形态正常,可见肝小叶结构清晰,肝汇管区无炎性细胞浸润,M组大鼠肝小叶散在点状坏死肝细胞伴炎性浸润,肝细胞间隙散布增生的Kuffer细胞,M+cells组大鼠肝小叶炎性细胞浸润及肝细胞间隙Kuffer细胞浸润改善。(3)与C组比较,M组大鼠肝脏组织JUN、ASK1和Bax蛋白表达均增高(P均 < 0.05),Bcl-2蛋白表达降低(P < 0.05);与M组比较,M+cells组大鼠肝脏组织JUN、ASK1和Bax蛋白表达降低(P均 < 0.05),Bcl-2蛋白增加(P < 0.05)。(4)单因素相关分析显示大鼠血清ALT、AST与TNF-a指数呈正相关(r值分别为0.9580、0.9865,P均< 0.05),大鼠血清ALT、AST与IL-6指数呈正相关(r值分别为0.9892、0.9630,P均 < 0.05),大鼠血清ALT、AST分别与BAX、ASK1、JNK指数均呈正相关(r值分别为0.9993、0.9851、0.7901、0.9864、0.9557、0.7128,P均 < 0.05),大鼠血清ALT、AST分别与BCL-2指数均呈负相关(r值分别为-0.8824、-0.9338,P均 < 0.05),大鼠血清TNF-α分别与BAX、ASK1、JNK指数均呈正相关(r值分别为0.9466、0.8958、0.6025,P均< 0.05),大鼠血清TNF-α与BCL-2指数呈负相关(r = -0.6025,P均 < 0.05),大鼠血清IL-6分别与BAX、ASK1、JNK指数均呈正相关(r值分别为0.9941、0.9997、0.8679,P均< 0.05),大鼠血清IL-6与BCL-2指数呈负相关(r = -0.8078,P均 < 0.05)。 结论hUC-MSCs具有减轻内毒素血症大鼠急性肝功能损伤的作用,其机制与抑制肝脏细胞凋亡相关。  相似文献   

2.
Colon cancer is the major health hazard related with high mortality and it is a pathological consequence of persistent oxidative stress and inflammation. Farnesol, an isoprenoid alcohol, has been shown to possess antioxidant, anti-inflammatory and chemopreventive properties. The present study was performed to evaluate the protective efficacy of farnesol against 1,2-dimethylhydrazine (DMH) induced oxidative stress, inflammatory response and apoptotic tissue damage. Farnesol was administered once daily for seven consecutive days at the doses of 50 and 100 mg/kg body weight in corn oil. On day 7, a single injection of DMH was given subcutaneously in the groin at the dose of 40 mg/kg body weight. Protective effects of farnesol were assessed by using caspase-3 activity, tissue lipid peroxidation (LPO) and antioxidant status as end point markers. Further strengthening was evident on histopathological observations used to assess the protective efficacy of farnesol. Prophylactic treatment with farnesol significantly ameliorates DMH induced oxidative damage by diminishing the tissue LPO accompanied by increase in enzymatic viz., superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST) and quinone reductase (QR) and non-enzymatic viz., reduced glutathione (GSH) antioxidant status. Farnesol supplementation significantly decreased caspase-3 activity in colonic tissue. Histological findings also revealed that pretreatment with farnesol significantly reduced the severity of submucosal edema, regional destruction of the mucosal layer and intense infiltration of the inflammatory cells in mucosal and submucosal layers of the colon. The data of the present study suggest that farnesol effectively suppress DMH induced colonic mucosal damage by ameliorating oxidative stress, inflammatory and apoptotic responses.  相似文献   

3.
The trace mineral vanadium inhibits cancer development in a variety of experimental animal models. The present study was to gain insight into a putative anticancer effect of vanadium in a rat model of colon carcinogenesis. The in vivo study was intended to clarify the effect of vanadium on DNA-protein cross-links (DPC), surface level changes of aberrant crypt foci (ACF) and biotransformation status during 1,2-dimethylhydrazine (1,2-DMH) induced preneoplastic rat colon carcinogenesis. The comet assay showed statistically higher mean base values of DNA-protein mass (p<0.01) and mean frequencies of tailed cells (p<0.001) in the carcinogen-induced group after treatment with proteinase K. Treatment with vanadium in the form of ammonium monovanadate supplemented ad libitum in drinking water for the entire experimental period caused a significant (p<0.02) reduction (40%) in DNA-protein cross-links in colon cells. Further, the biotransformation status of vanadium was ascertained measuring the drug metabolising enzymes, glutathione S-transferase (GST) and cytochrome P-450 (Cyt P-450). Significantly, there was an increase in glutathione S-transferase and cytochrome P-450 levels (p<0.01 and p<0.02, respectively) in rats supplemented with vanadium as compared to their carcinogen controls. As an endpoint marker, we also evaluated the effect of vanadium on surface level changes of aberrant crypt foci induced by 1,2-DMH by scanning electron microscopy. Animals induced with 1,2-DMH and supplemented with vanadium showed a marked improvement in colonic architecture with less number of aberrant crypt foci in contrast to the animals induced with 1,2-DMH alone, thereby exhibiting its anticarcinogenicity by modulating the markers studied herein.  相似文献   

4.
Mesenchymal stem cells (MSCs) are an ideal adult stem cell with capacity for self‐renewal and differentiation with an extensive tissue distribution. The present study evaluates the therapeutic effects of bone marrow mesenchymal stem cells (BM‐MSCs) or adipose‐derived mesenchymal stem cells (AD‐MSCs) against the development of methotrexate (MTX)‐induced cardiac fibrosis versus dexamethasone (DEX). Rats were allocated into five groups; group 1, received normal saline orally; group 2, received MTX (14 mg/kg/week for 2 weeks); groups 3 and 4, treated once with 2 × 10 6 cells of MTX + BM‐MSCs and MTX + AD‐MSCs, respectively; and group 5, MTX + DEX (0.5 mg/kg, for 7 days, P.O.). MTX induced cardiac fibrosis as marked changes in oxidative biomarkers and elevation of triglyceride, cholesterol, aspartate aminotransferase, gamma‐glutamyl transferase, creatine kinase, and caspase‐3, as well as deposited collagen. These injurious effects were antagonized after treatment with MSCs. So, MSCs possessed antioxidant, antiapoptotic, as well antifibrotic effects, which will perhaps initiate them as notable prospective for the treatment of cardiac fibrosis.  相似文献   

5.
Mesenchymal stem cells (MSCs) curative effects on methotrexate (MTX)‐induced kidney and liver injuries remain elusive. Therefore, rats were divided into five groups, rats received MTX orally (14 mg/kg) as a single dose/week for 2 weeks, groups 3 and 4 were injected once with 2 × 106 cells bone marrow MSCs and adipose‐derived MSCs, respectively. The last group administered dexamethasone (DEX) (0.5 mg/kg, p.o) for 7 days. MTX caused marked increase in malondialdehyde and nitrite/nitrate concentrations. However, MTX administration decreased reduced glutathione content plus catalase activity. In addition, MTX caused a significant increment in kidney and liver biomarkers levels. Moreover, MTX showed renal tubules vacuolation and necrosis of hepatocytes, as well expression of caspase‐3 and nuclear factor kappa beta in kidney and liver tissues were observed. MSCs treatment alleviated previous side effects induced by MTX. MSCs improved nephrotoxicity and hepatotoxicity induced by MTX to a better extent as compared with DEX.  相似文献   

6.
Despite many advances and optimization in colon cancer treatment, tumor recurrence and metastases make the development of new therapies necessary. Colon cancer stem cells (CCSCs) are considered as the main triggering factor of cancer progression, recurrence, and metastasis. CCSCs as a result of accumulated genetic and epigenetic alterations and also complex interconnection with the tumor microenvironment (TME) can evolve and convert to full malignant cells. Mounting evidence suggests that in cancer therapy both CCSCs and non-CCSCs in TME have to be regarded to break through the limitation of current therapies. In this regard, stem cell capabilities of some non-CCSCs may arise inside the TME condition. Therefore, a deep knowledge of regulatory mechanisms, heterogeneity, specific markers, and signaling pathways of CCSCs and their interconnection with TME components is needed to improve the treatment of colorectal cancer and the patient's life quality. In this review, we address current different targeted therapeutic options that target cell surface markers and signaling pathways of CCSCs and other components of TME. Current challenges and future perspectives of colon cancer personalized therapy are also provided here. Taken together, based on the deep understanding of biology of CCSCs and using three-dimensional culture technologies, it can be possible to reach successful colon cancer eradication and improvise combination targeted therapies against CCSCs and TME.  相似文献   

7.
Our previous studies have shown that the Adipose-derived mesenchymal stem cells (ADSCs) can regulate metastasis and development of ovarian cancer. However, its specific mechanism has yet to be fully revealed. In this study, an RNA-seq approach was adopted to compare the differences in mRNA levels in ovarian cancer cells being given or not given ADSCs. The mRNA level of paired box 8 (PAX8) changed significantly and was confirmed as an important factor in tumour-inducing effect of ADSCs. In comparison with the ovarian cancer cells cultured in the common growth medium, those cultured in the medium supplemented with ADSCs showed a significant increase of the PAX8 level. Moreover, the cancer cell growth could be restricted, even in the ADSC-treated group (P < .05), by inhibiting PAX8. In addition, an overexpression of PAX8 could elevate the proliferation of ovarian cancer cells. Moreover, Co-IP assays in ovarian cancer cells revealed that an interaction existed between endogenous PAX8 and TAZ. And the PAX8 levels regulated the degradation of TAZ. The bioluminescence images captured in vivo manifested that the proliferation and the PAX8 expression level in ovarian cancers increased in the ADMSC-treated group, and the effect of ADSCs in promoting tumours was weakened through inhibiting PAX8. Our findings indicate that the PAX8 expression increment could contribute a role in promoting the ADSC-induced ovarian cancer cell proliferation through TAZ stability regulation.  相似文献   

8.
An in vivo micronucleus assay has been developed that utilizes colonic epithelial cells. The genotoxic effects of 1,2-dimethylhydrazine (54-07-3), a colon carcinogen, and of the nitrogen mustard, cyclophosphamide (50-18-0), on the bone-marrow polychromatic erythrocytes and on colonic epithelium from mice were compared using micronucleus induction in each organ as the end point. In the bone marrow, cyclophosphamide was a potent inducer of micronuclei, while 1,2-dimethylhydrazine administration had little effect on the micronucleus incidence. In the colon, 1,2-diemthylhydrazine was an effective inducer of micronuclei. Thus, the colonic micronucleus assay appears to be a potentially useful test for the detection of colon carcinogens.  相似文献   

9.
Mesenchymal stem cells(MSCs)have the potential for use in cell-based regenerative therapies.Currently,hundreds of clinical trials are using MSCs for the treatment of various diseases.However,MSCs are low in number in adult tissues;they show heterogeneity depending upon the cell source and exhibit limited proliferative potential and early senescence in in vitro cultures.These factors negatively impact the regenerative potential of MSCs and therefore restrict their use for clinical applications.As a result,novel methods to generate induced MSCs(iMSCs)from induced pluripotent stem cells have been explored.The development and optimization of protocols for generation of iMSCs from induced pluripotent stem cells is necessary to evaluate their regenerative potential in vivo and in vitro.In addition,it is important to compare iMSCs with primary MSCs(isolated from adult tissues)in terms of their safety and efficacy.Careful investigation of the properties of iMSCs in vitro and their long term behavior in animals is important for their translation from bench to bedside.  相似文献   

10.
Mesenchymal stem cells (MSCs) play an important role in chemoresistance. Exosomes have been reported to modify cellular phenotype and function by mediating cell-cell communication. In this study, we aimed to investigate whether exosomes derived from MSCs (MSC-exosomes) are involved in mediating the resistance to chemotherapy in gastric cancer and to explore the underlying molecular mechanism. We found that MSC-exosomes significantly induced the resistance of gastric cancer cells to 5-fluorouracil both in vivo and ex vivo. MSC-exosomes antagonized 5-fluorouracil-induced apoptosis and enhanced the expression of multi-drug resistance associated proteins, including MDR, MRP and LRP. Mechanistically, MSC-exosomes triggered the activation of calcium/calmodulin-dependent protein kinases (CaM-Ks) and Raf/MEK/ERK kinase cascade in gastric cancer cells. Blocking the CaM-Ks/Raf/MEK/ERK pathway inhibited the promoting role of MSC-exosomes in chemoresistance. Collectively, MSC-exosomes could induce drug resistance in gastric cancer cells by activating CaM-Ks/Raf/MEK/ERK pathway. Our findings suggest that MSC-exosomes have profound effects on modifying gastric cancer cells in the development of drug resistance. Targeting the interaction between MSC-exosomes and cancer cells may help improve the efficacy of chemotherapy in gastric cancer.  相似文献   

11.
In diabetes, the number of bone mesenchymal stem cells (MSCs) decreases and their differentiation is impaired. However, the exact mechanism is unclear. Patients with diabetes often experience sympathetic nerve injury. Norepinephrine (NE), a major mediator of the sympathetic nervous system, influences rat MSC migration in culture and in vivo. The present study aimed to investigate the effect of NE on MSCs under high glucose conditions; therefore MSCs were treated with high glucose and NE. High glucose-induced MSCs apoptosis, which was reversed by NE. To verify the effect of NE, mice underwent sympathectomy and were used to establish a diabetic model. Diabetic mice with sympathectomy had a higher apoptosis rate and higher levels of reactive oxygen species in their bone marrow-derived cells than diabetic mice without sympathectomy. High glucose inhibited p-AKT production and B-Cell CLL/Lymphoma 2 expression, and promoted BAX and caspase-3 expression. NE reversed these effects of high glucose. An AKT inhibitor enhanced the effects of high glucose. Thus, NE had a protective effect on MSC apoptosis induced by high glucose, possibly via the AKT/BCL-2 pathway.  相似文献   

12.
13.
The aim of the present study was to unravel the chemopreventive effect of luteolin on bacterial enzymes such as beta-glucuronidase and mucinase in a colon carcinogenesis model induced by 1, 2-dimethyl hydrazine (DMH). Twenty mg/kg body weight of DMH were administered subcutaneously once a week for the first 15 weeks and then discontinued. Luteolin (0.1, 0.2, or 0.3 mg/kg body weight/everyday (p.o.) was administered in a dose dependent manner at the initiation and also at the post-initiation stages of carcinogenesis to DMH treated rats. The animals were sacrificed at the end of 30 weeks. Colon cancer incidence and the activities of bacterial enzymes beta-glucuronidase (in the proximal colon, distal colon, intestines, liver and colon contents) and mucinase (colon and fecal contents) were significantly increased in DMH -treated rats compared to the control rats. On luteolin administration, colon cancer incidence, number of tumors per rat and the activities of beta-glucuronidase and mucinase, were significantly decreased both in the initiation and post-initiation stages of colon carcinogenesis dependent on the three different doses given. The increase in beta-glucuronidase activity may augment the hydrolysis of glucuronide conjugates, liberating toxins, while the increase in the mucinase activity may enhance the hydrolysis of the protective mucins in the colon. Thus our results demonstrate for the first time that luteolin, a dietary flavonoid, exerts chemopreventive and anticarcinogenic effects against DMH induced colon cancer.  相似文献   

14.
目的:探讨Notch信号通路在盐酸法舒地尔诱导大鼠骨髓间充质干细胞(MSCs)向神经元分化中的作用。方法:实验分为未转染组、转染组(转染Rn-Notch1-siRNA)、阳性对照组(转染Rn-MAPK-1 Control siRNA)及阴性对照组(转染Negative Control siRNA)等4组。采用盐酸法舒地尔诱导大鼠MSCs分化为神经元。倒置荧光显微镜下观察MSCs转染后荧光表达情况;RT-PCR检测Notch1、Hes1和MAPK1 mRNA的表达变化;免疫细胞化学法检测Notch1、神经元烯醇化酶(NSE)、神经微丝蛋白亚单位(NF-M)和胶质纤维酸性蛋白(GFAP)的表达变化;MTT方法检测细胞存活率。结果:①siRNA转染72h,MSCs荧光表达最强,转染率可达91.3%±4.2%;同时,转染组MSCs的Notch1和Hes1 mRNA转录下降(P0.05);MTT提示转染组细胞存活率也显著减少(P0.05)。②盐酸法舒地尔可以诱导MSCs向神经元分化,其中以转染组诱导效果最佳,NSE、NF-M的表达率显著的高于其它各组(P0.05)。结论:盐酸法舒地尔在诱导大鼠MSCs向神经元分化过程中,可能存在Notch信号通路与RhoA/Rho激酶通路信号的协同作用,共同促进MSCs向神经元分化。  相似文献   

15.
16.
间充质干细胞(mesenchymal stem cells,MSCs)是骨髓中除造血干细胞以外的另一种成体干细胞,广泛分布于动物体内骨髓、肝脏、脂肪等多种组织中。MSCS具有强大的自我更新能力和多向分化潜能,是移植领域应用前景广阔的再生来源细胞;同时,MSCs是一种重要的免疫调节细胞,MSCs在炎症细胞因子刺激后对免疫系统表现出很强的抑制作用,所以MSCs有望应用于减少免疫排斥,延长移植物存活时间,治疗相关免疫失调症,如自身免疫疾病等方面。本文主要对间充质干细胞与免疫系统相互作用的研究做相关介绍。  相似文献   

17.
An area of research that has been recently gaining attention is the relationship between cancer stem cell (CSC) biology and chemo-resistance in colon cancer patients. It is well recognized that tumor initiation, growth, invasion and metastasis are promoted by CSCs. An important reason for the widespread interest in the CSC model is that it can comprehensibly explain essential and poorly understood clinical events, such as therapy resistance, minimal residual disease, and tumor recurrence. This review discusses the recent advances in colon cancer stem cell research, the genes responsible for CSC chemoresistance, and new therapies against CSCs.  相似文献   

18.
19.
为了探讨川芎嗪体外诱导小鼠骨髓间质干细胞(BMSCs)分化为神经元样细胞的作用,以小鼠骨髓间充质干细胞为研究对象,实验分为空白对照组、β-巯基乙醇(BME)阳性对照组和川芎嗪诱导组。采用荧光免疫化学和Western blot方法,分别检测神经干细胞巢蛋白(nestin)和经元特异性烯醇化酶(NSE)的表达;RT-PCR检测诱导不同时间对神经细胞相关基因Nestin、NSE、β-微管蛋白III(β-Tubulin III)和核受体相关因子-1(Nurr1)mRNA表达的影响。结果显示川芎嗪诱导间充质干细胞24 h后,细胞形态发生显著改变,细胞突起形成且数目不等,形成神经元样细胞。细胞死亡率低于β-巯基乙醇诱导组。免疫荧光化学法和western blot结果显示:川芎嗪诱导后的细胞nes-tin和NSE蛋白表达呈阳性,且表达丰度显著高于β-巯基乙醇诱导组。川芎嗪作用不同时间的BMSCs表达神经细胞相关基因Nestin、β-Tubulin III、NSE和Nurrl。结果表明川芎嗪能定向诱导小鼠骨髓间充质干细胞分化为神经元样细胞,是较理想的诱导剂。  相似文献   

20.
Multipotent mesenchymal stem cells (MSCs) have been isolated from several tumors and are implicated to play critical roles to increase malignant cell growth, invasion and metastasis. Here, we show that the MSC-like cells were isolated from human colon cancer tissues. These isolated hCC-MSCs (human colon cancer-derived mesenchymal stem cells) shared similar characteristic features with bone marrow-derived MSCs, which include cell morphology, surface antigens and specific gene expression. Additionally, the hCC-MSCs could differentiate into osteocytes or adipocytes under appropriate culture conditions. The conditioned medium collected from the cultured hCC-MSCs was shown to enhance the migration and invasive activity of HCT-116 colon cancer cells in vitro. Besides, transplantation of HCT-116 cells along with hCC-MSCs in nude mice increased the tumor growth and metastasis. Further study revealed that IL-6 present in the hCC-MSC-conditioned medium sufficiently induced the levels of Notch-1 and CD44 in HCT-116 and HT-29 cells, which contribute to enhance tumorigenic activity of HCT-116 and HT-29 cells. By using immunohistochemical staining, the intense co-expression of IL-6, Notch-1 and CD44 was predominantly detected in human colon cancer tissues. Taken together, our findings suggest the importance of the IL-6/Notch-1/CD44 signaling axis in the interaction between hCC-MSCs and colon cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号