首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The yeast superkiller (SKI) genes were originally identified from mutations allowing increased production of killer toxin encoded by M "killer" virus, a satellite of the dsRNA virus L-A. XRN1 (SKI1) encodes a cytoplasmic 5'-exoribonuclease responsible for the majority of cytoplasmic RNA turnover, whereas SKI2, SKI3, and SKI8 are required for normal 3'-degradation of mRNA and for repression of translation of poly(A) minus RNA. Ski2p is a putative RNA helicase, Ski3p is a tetratricopeptide repeat (TPR) protein, and Ski8p contains five WD-40 (beta-transducin) repeats. An xrn1 mutation in combination with a ski2, ski3, or ski8 mutation is lethal, suggesting redundancy of function. Using functional epitope-tagged Ski2, Ski3, and Ski8 proteins, we show that Ski2p, Ski3p, and Ski8p can be coimmunoprecipitated as an apparent heterotrimeric complex. With epitope-tagged Ski2p, there was a 1:1:1 stoichiometry of the proteins in the complex. Ski2p did not associate with Ski3p in the absence of Ski8p, nor did Ski2p associate with Ski8p in the absence of Ski3p. However, the Ski3p/Ski8p interaction did not require Ski2p. In addition, ski6-2 or ski4-1 mutations or deletion of SKI7 did not affect complex formation. The identification of a complex composed of Ski2p, Ski3p, and Ski8p explains previous results showing phenotypic similarity between mutations in SKI2, SKI3, and SKI8. Indirect immunofluorescence of Ski3p and subcellular fractionation of Ski2p and Ski3p suggest that Ski2p and Ski3p are cytoplasmic. These data support the idea that Ski2p, Ski3p, and Ski8p function in the cytoplasm in a 3'-mRNA degradation pathway.  相似文献   

3.
We mapped and cloned SKI7, a gene that negatively controls the copy number of L-A and M double-stranded RNA viruses in Saccharomyces cerevisiae. We found that it encodes a nonessential 747-residue protein with similarities to two translation factors, Hbs1p and EF1-alpha. The ski7 mutant was hypersensitive to hygromycin B, a result also suggesting a role in translation. The SKI7 product repressed the expression of nonpolyadenylated [non-poly(A)] mRNAs, whether capped or uncapped, thus explaining why Ski7p inhibits the propagation of the yeast viruses, whose mRNAs lack poly(A). The dependence of the Ski7p effect on 3' RNA structures motivated a study of the expression of capped non-poly(A) luciferase mRNAs containing 3' untranslated regions (3'UTRs) differing in length. In a wild-type strain, increasing the length of the 3'UTR increased luciferase expression due to both increased rates and duration of translation. Overexpression of Ski7p efficiently cured the satellite virus M2 due to a twofold-increased repression of non-poly(A) mRNA expression. Our experiments showed that Ski7p is part of the Ski2p-Ski3p-Ski8p antiviral system because a single ski7 mutation derepresses the expression of non-poly(A) mRNA as much as a quadruple ski2 ski3 ski7 ski8 mutation, and the effect of the overexpression of Ski7p is not obtained unless other SKI genes are functional. ski1/xrn1Delta ski2Delta and ski1/xrn1Delta ski7Delta mutants were viable but temperature sensitive for growth.  相似文献   

4.
We previously succeeded in constructing a cDNA library, CPF7, enriched with cDNA derived from maternal RNAs with the extended poly(A) tail in mouse fertilized eggs. In this study, we performed RNA blot analysis to examine the elongation in maternal RNAs using 20 representative clones isolated from CPF7 as probes. Various patterns of elongation, shortening, and/or degradation of maternal RNAs were observed from fully grown oocytes to early 2-cell embryos and could be roughly classified into three types and seven subtypes. These findings indicate that poly(A) elongation and shortening of maternal RNAs are not restricted to certain types of maternal RNAs but occur in many of them, and suggest a complex mechanism governing modification of the 3' end of maternal RNAs during the oocyte-to-embryo transition.  相似文献   

5.
6.
《Trends in genetics : TIG》2023,39(5):340-341
Understanding a remarkable event at the start of life, the oocyte-to-embryo transition (OET), has remained elusive, especially in humans. Using newly developed techniques, Liu et al. showed that human maternal mRNAs undergo global poly(A) tail-mediated remodeling during OET, identified the enzymes involved, and demonstrated the essentiality of remodeling for embryo cleavage.  相似文献   

7.
The oocyte-to-embryo transition transforms a differentiated germ cell into a totipotent zygote capable of somatic development. In C. elegans, several oocyte proteins, including the meiotic katanin subunit MEI-1 and the oocyte maturation protein OMA-1, must be degraded during this transition . Degradation of MEI-1 and OMA-1 requires the dual-specificity YAK-1-related (DYRK) kinase MBK-2 . Here, we demonstrate that MBK-2 directly phosphorylates MEI-1 and OMA-1 in vitro and that this activity is essential for degradation in vivo. Phosphorylation of MEI-1 by MBK-2 reaches maximal levels after the meiotic divisions, immediately preceding MEI-1 degradation. MEI-1 phosphorylation and degradation still occur in spe-9 eggs, which undergo meiotic maturation and exit in the absence of fertilization . In contrast, MEI-1 phosphorylation and degradation are blocked in cell-cycle mutants that arrest during the meiotic divisions, and are accelerated in wee-1.3(RNAi) oocytes, which prematurely enter meiotic M phase (A. Golden, personal communication). A GFP:MBK-2 fusion relocalizes from the cortex to the cytoplasm during the meiotic divisions, and this relocalization also depends on cell-cycle progression. Our findings suggest that regulators of meiotic M phase activate a remodeling program, independently of fertilization, to prepare eggs for embryogenesis.  相似文献   

8.
Oocytes are stockpiled with proteins and mRNA that are required to drive the initial mitotic divisions of embryogenesis. But are there proteins specific to meiosis whose levels must be decreased to begin embryogenesis properly? The Drosophila protein Cortex (Cort) is a female, meiosis-specific activator of the Anaphase Promoting Complex/Cyclosome (APC/C), an E3 ubiquitin ligase. We performed immunoprecipitation of Cortex followed by mass spectrometry, and identified the Polo kinase inhibitor Matrimony (Mtrm) as a potential interactor with Cort. In vitro binding assays showed Mtrm and Cort can bind directly. We found Mtrm protein levels to be reduced dramatically during the oocyte-to-embryo transition, and this downregulation did not take place in cort mutant eggs, consistent with Mtrm being a substrate of APCCort. We showed that Mtrm is subject to APCCort-mediated proteasomal degradation and have identified a putative APC/C recognition motif in Mtrm that when mutated partially stabilized the protein in the embryo. Furthermore, overexpression of Mtrm in the early embryo caused aberrant nuclear divisions and developmental defects, and these were enhanced by decreasing levels of active Polo. These data indicate APCCort ubiquitylates Mtrm at the oocyte-to-embryo transition, thus preventing excessive inhibition of Polo kinase activity due to Mtrm''s presence.  相似文献   

9.
10.
Translational repression is often accompanied by mRNA degradation. In contrast, many mRNAs in germ cells and neurons are "stored" in the cytoplasm in a repressed but stable form. Unlike repression, the stabilization of these mRNAs is surprisingly little understood. A key player in Caenorhabditis elegans germ cell development is the STAR domain protein GLD-1. By genome-wide analysis of mRNA regulation in the germ line, we observed that GLD-1 has a widespread role in repressing translation but, importantly, also in stabilizing a sub-population of its mRNA targets. Additionally, these mRNAs appear to be stabilized by the DDX6-like RNA helicase CGH-1, which is a conserved component of germ granules and processing bodies. Because many GLD-1 and CGH-1 stabilized mRNAs encode factors important for the oocyte-to-embryo transition (OET), our findings suggest that the regulation by GLD-1 and CGH-1 serves two purposes. Firstly, GLD-1-dependent repression prevents precocious translation of OET-promoting mRNAs. Secondly, GLD-1- and CGH-1-dependent stabilization ensures that these mRNAs are sufficiently abundant for robust translation when activated during OET. In the absence of this protective mechanism, the accumulation of OET-promoting mRNAs, and consequently the oocyte-to-embryo transition, might be compromised.  相似文献   

11.
12.
In the three maternal effect lethal mutant strains of D. melanogaster described in this report, the homozygous mutant females produce defective eggs that cannot support normal embryonic development. The embryos from these eggs begin to develop for the first 2 hr after fertilization in an apparently normal way, forming a blastula containing a cluster of pole cells at the posterior end and a layer of syncytial blastoderm nuclei. During the subsequent transition from a syncytial to a cellular blastoderm, cell formation in the blastoderm is either partially or totally blocked. In mutant mat(3)1 no blastoderm cells are formed, indicating that there are separate genetic controls for pole cells and blastoderm cells. The other two mutants form an incomplete cellular blastoderm in which certain regions of the blastoderm remain noncellular. The noncellular region in mutant mat(3)3 is on the posterior-dorsal surface, covering about 30% of the total blastoderm. In mutant mat(3)6 blastoderm cells are formed only at the anterior and posterior ends, separated by a noncellular region that covers about 70% of the total blastoderm. The selective effects on blastoderm cell formation in the three mutants emphasize the importance of components present in the egg before fertilization for the transition from a syncytial to a cellular blastoderm.The genes defective in the three mutants are essential only for oogenesis and not for any other period of development, as indicated by a strict dependence of the lethal phenotypes on the maternal genotypes. Heterozygous embryos from the eggs of homozygous mutant females die, whereas homozygous mutant embryos from the eggs of heterozygous females develop into viable adults.One of the mutants, mat(3)3, has a temperature-sensitive phenotype. Homozygous mat(3)3 females maintained at a restrictive temperature of 29°C show the lethal maternal effect. However, at a permissive temperature of 20°C the females produce viable adult progeny. The temperature-sensitive period in mat(3)3 females occurs during the last 12 hr of oogenesis, consistent with the maternal effect phenotype of the mutant.  相似文献   

13.
14.
We mapped and cloned SKI6 of Saccharomyces cerevisiae, a gene that represses the copy number of the L-A double-stranded RNA virus, and found that it encodes an essential 246-residue protein with homology to a tRNA-processing enzyme, RNase PH. The ski6-2 mutant expressed electroporated non-poly(A) luciferase mRNAs 8- to 10-fold better than did the isogenic wild type. No effect of ski6-2 on expression of uncapped or normal mRNAs was found. Kinetics of luciferase synthesis and direct measurement of radiolabeled electroporated mRNA indicate that the primary effect of Ski6p was on efficiency of translation rather than on mRNA stability. Both ski6 and ski2 mutants show hypersensitivity to hygromycin, suggesting functional alteration of the translation apparatus. The ski6-2 mutant has normal amounts of 40S and 60S ribosomal subunits but accumulates a 38S particle containing 5′-truncated 25S rRNA but no 5.8S rRNA, apparently an incomplete or degraded 60S subunit. This suggests an abnormality in 60S subunit assembly. The ski6-2 mutation suppresses the poor expression of the poly(A) viral mRNA in a strain deficient in the 60S ribosomal protein L4. Thus, a ski6 mutation bypasses the requirement of the poly(A) tail for translation, allowing better translation of non-poly(A) mRNA, including the L-A virus mRNA which lacks poly(A). We speculate that the derepressed translation of non-poly(A) mRNAs is due to abnormal (but full-size) 60S subunits.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号