首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Molecular cell》2023,83(1):26-42.e13
  1. Download : Download high-res image (146KB)
  2. Download : Download full-size image
  相似文献   

2.
How the cellular amount of mitochondrial DNA (mtDNA) is regulated under normal conditions and in the presence of genotoxic stress is less understood. We demonstrate that the inefficient mtDNA replication process of mutant yeast cells lacking the PIF1 DNA helicase is partly rescued in the absence of the DNA helicase RRM3. The rescue effect is likely due to the increase in the deoxynucleoside triphosphates (dNTPs) pool caused by the lack of RRM3. In contrast, the Pif1p-dependent mtDNA breakage in the presence and absence of genotoxic stress is not suppressed if RRM3 is lacking suggesting that this phenotype is likely independent of the dNTP pool. Pif1 protein (Pif1p) was found to stimulate the incorporation of dNTPs into newly synthesised mtDNA of gradient-purified mitochondria. We propose that Pif1p that acts likely as a DNA helicase in mitochondria affects mtDNA replication directly. Possible roles of Pif1p include the resolution of secondary DNA and/or DNA/RNA structures, the temporarily displacement of tightly bound mtDNA-binding proteins, or the stabilization of the mitochondrial replication complex during mtDNA replication. X. Cheng, Y. Qin contributed equally to this work.  相似文献   

3.
Myogenic differentiation is characterized by permanent and irreversible cell cycle withdrawal and increased resistance to apoptosis. These functions correlate with changes in expression and activity of several cyclin-dependent kinase inhibitors, including p18, p21, and p27. In this study, we examined the requirements for p18, p21, and p27 in initiating growth arrest in multinucleated myotubes under differentiation conditions and in maintaining terminal arrest upon restimulation of differentiated myotubes with mitogenic signals. Under differentiation conditions, only p27(-/-) or p18(-/-)p27(-/-) myotubes are capable of reentering the cell cycle and synthesizing DNA at a very low frequency. Escape from cell cycle arrest was significantly greater in p18(-/-)p27(-/-) myotubes than in p27(-/-) myotubes. Stimulation of differentiated cultures with a mitogen-rich growth medium enhances p18(-/-)p27(-/-) myotube proliferation to encompass approximately half of the nuclei. p18(-/-)p21(-/-) and p21(-/-)p27(-/-) myotubes remain terminally arrested. Nuclei within individual restimulated p18(-/-)p27(-/-) myotubes can be found in all phases of the cell cycle, and a myotube can be multiphasic without any obvious deleterious effects. Increasing the time of differentiation or serum stimulation of p18(-/-)p27(-/-) myotubes neither increases the proliferation index of the myotube nuclei, nor does it alter the percentage of nuclei in each of the cell cycle phases. During the first 24 h of serum stimulation, the p18(-/-)p27(-/-) myotube nuclei that escape G0 arrest will rearrest in either S or G2 phase, without either mitosis or endoreplication. Apoptosis is increased in restimulated p18(-/-)p27(-/-) myotube nuclei, but is not specific for any cell cycle phase. These results suggest a collaborative role for p18 and p27 in initiating and maintaining G0 arrest during myogenic differentiation. While p18 and p27 appear to be essential in initiating G0 arrest in a proportion of postmitotic myotube nuclei, there must be another cell cycle inhibitor protein that functions with p18 and p27 in maintaining terminal arrest. We propose that the combined rate-limiting expressions of p18, p27, and this other inhibitor determine whether the myotube nuclei will remain postmitotic, or reenter the cell cycle, and if the nuclei escape G0 arrest, in which phase of the cell cycle the nuclei will ultimately rearrest.  相似文献   

4.
5.
6.
7.
8.
During certain types of cellular stress, the p53 tumor suppressor protein binds to DNA and transactivates a variety of genes that regulate critical responses including apoptosis, cell cycle checkpoints, differentiation, and angiogenesis. In addition, functional p53 is known to be required for efficient nucleotide excision repair (NER) of bulky DNA adducts generated through exposure to environmental mutagens such as UV light. Nonetheless, we previously showed that the model p53-mutated human adenocarcinoma strain SW480 is proficient in the removal of UV-induced cyclobutane pyrimidine dimers (CPD) via NER. We undertook the present study to begin probing the molecular basis for this unexpected repair phenotype. Cytogenetic analysis indicated that SW480 is stable at the chromosomal level, i.e. manifests a karyotypic profile very similar to that revealed for this line as far back as 14 years ago. After fluorescence in situ hybridization (FISH), using a probe complementary to the p53 gene, we found that 98% of the SW480 interphase nuclei contains three copies of the gene, later revealed to be localized on intact short arms of three chromosomes 17. DNA sequence analysis further showed that all three p53 copies in SW480 carry two point mutations (R273H and P309S), and levels of the corresponding mutated p53 protein are about 20-fold higher than in the closely related p53 wild-type strain LoVo. Using an electrophoretic mobility shift assay (EMSA), we demonstrated that R273H/P309S p53 is able to bind with wild-type affinity to its consensus DNA sequence in vitro. Analysis of p21(Cip1/WAF1) expression and in vivo footprinting by ligation-mediated PCR (LMPCR) showed that, in wild-type LoVo cells, an exposure to cellular stress (e.g. UV or ionizing radiation) is necessary for p53 activation of the p21(Cip1/WAF1) promoter. In contrast, the R273H/P309S-mutated p53 protein in SW480 constitutively activates p21(Cip1/WAF1) in the absence of stress through an unknown mechanism. A similar phenomenon whereby mutated p53 in SW480 is able to induce NER-related proteins might explain the normal DNA repair phenotype previously observed in this strain. For now we conclude that, in general, results obtained using SW480 as a p53-deficient cell line should be interpreted very cautiously.  相似文献   

9.
Proteasome-dependent degradation of regulatory proteins is a known mechanism of cell cycle control. p21(WAF1/CIP1) (p21), a negative regulator of the cell division cycle, exhibits proteasome-sensitive turnover and ubiquitination. In the present study, we analyzed the regulatory effects of JNK1 on p21 protein accumulation in p53 null K562 cells. We found that JNK1 (wild type, WT) mediated H(2)O(2)-induced p21 protein up-regulation. Over-expression of JNK1 (WT) could elevate endogenous p21 protein level but did not affect p21 mRNA level and also prolong the p21 half-life as well as inhibited the p21 ubiquitination. These findings indicated that JNK1 could regulate cellular p21 level via inhibiting ubiquitination of p21, which provided a new insight for analyzing the regulatory effect of JNK after stress.  相似文献   

10.
Nicotinamide at mM concentration is a potent inhibitor of certain key molecules involved in cell survival, such as SIRT1 and PARP-1, and affects cell survival in various conditions in vivo and in vitro. However, the effect of an acute treatment of nicotinamide on gene expression has rarely been closely examined. In our study, the treatment of 10 mM nicotinamide downregulated p21WAF1 expression in various human cells including p53-negative or SIRT1-knockdown cells indicating gene regulation not mediated by p53 or SIRT1. Meanwhile, in the nicotinamide-treated cells, Sp1 activity and protein level was substantially reduced due to increased proteasome-mediated degradation. Our results indicate that nicotinamide treatment attenuates p21WAF1 expression through Sp1 downregulation, and suggest a possible involvement of nicotinamide metabolism in cellular gene expression.  相似文献   

11.
12.
A fundamental question in neurobiology is how the balance between proliferation and differentiation of neuronal precursors is maintained to ensure that the proper number of brain neurons is generated. Substantial evidence implicates DYRK1A (dual specificity tyrosine-phosphorylation-regulated kinase 1A) as a candidate gene responsible for altered neuronal development and brain abnormalities in Down syndrome. Recent findings support the hypothesis that DYRK1A is involved in cell cycle control. Nonetheless, how DYRK1A contributes to neuronal cell cycle regulation and thereby affects neurogenesis remains poorly understood. In the present study we have investigated the mechanisms by which DYRK1A affects cell cycle regulation and neuronal differentiation in a human cell model, mouse neurons, and mouse brain. Dependent on its kinase activity and correlated with the dosage of overexpression, DYRK1A blocked proliferation of SH-SY5Y neuroblastoma cells within 24 h and arrested the cells in G1 phase. Sustained overexpression of DYRK1A induced G0 cell cycle exit and neuronal differentiation. Furthermore, we provide evidence that DYRK1A modulated protein stability of cell cycle-regulatory proteins. DYRK1A reduced cellular Cyclin D1 levels by phosphorylation on Thr286, which is known to induce proteasomal degradation. In addition, DYRK1A phosphorylated p27Kip1 on Ser10, resulting in protein stabilization. Inhibition of DYRK1A kinase activity reduced p27Kip1 Ser10 phosphorylation in cultured hippocampal neurons and in embryonic mouse brain. In aggregate, these results suggest a novel mechanism by which overexpression of DYRK1A may promote premature neuronal differentiation and contribute to altered brain development in Down syndrome.  相似文献   

13.
Mutations in the tumor suppressor gene p53 were found in more than 90% of all human squamous cell carcinomas (SCC). To study the function of p53 in a keratinocyte background, a tetracycline-controlled p53 transgene was introduced into a human SCC cell line (SCC15), lacking endogenous p53. Conditional expression of wild-type p53 protein upon withdrawal of tetracycline was accompanied with increased expression of p21(WAF1/Cip1) resulting in reduced cell proliferation. Flow-cytometric analysis revealed that these cells were transiently arrested in the G1/S phase of the cell cycle. However, when SCC15 cells expressing p53 were exposed to ionizing radiation (IR), a clear shift from a G1/S to a G2/M cell cycle arrest was observed. This effect was greatly depending on the presence of wild-type p53, as it was not observed to the same extent in SCC15 cells lacking p53. Unexpectedly, the p53- and IR-dependent G2/M cell cycle arrest in the keratinocyte background was not depending on increased expression or stabilization of 14-3-3sigma, a p53-regulated effector of G2/M progression in colorectal cancer cells. In keratinocytes, 14-3-3sigma (stratifin) is involved in terminal differentiation and its cell cycle function in this cell type might diverge from the one it fulfills in other cellular backgrounds.  相似文献   

14.
Mitochondrial dysfunction is involved in the underlying pathology of Parkinson’s Disease (PD). PINK1 deficiency, which gives rise to familial early-onset PD, is associated with this dysfunction as well as increased oxidative stress. We have established primary fibroblast cell lines from two patients with PD who carry mutations in the PINK1 gene. The phosphorylation of Akt is abrogated in the presence of oxidative stressors in the complete absence of PINK1 suggesting enhanced apoptotic signalling. We have found an imbalance between the production of reactive oxygen species where the capacity of the cell to remove these toxins by anti-oxidative enzymes is greatly reduced. The expression levels of the anti-oxidant enzymes glutathione peroxidase-1, MnSOD, peroxiredoxin-3 and thioredoxin-2 were diminished. The p66Shc adaptor protein has recently been identified to become activated by oxidative stress by phosphorylation at residue Ser36 which then translocates to the mitochondrial inner membrane space. The phosphorylation of p66Shc at Ser36 is significantly increased in PINK1 deficient cell lines under normal tissue culture conditions, further still in the presence of compounds which elicit oxidative stress. The stable transfection of PINK1 in the fibroblasts which display the null phenotype ameliorates the hyper-phosphorylation of p66Shc.  相似文献   

15.
Reactive oxygen species (ROS) steady-state levels are required for entry into the S phase of the cell cycle in normal cells, as well as in tumour cells. However, the contribution of mitochondrial ROS to normal cell proliferation has not been well investigated thus far. A previous report showed that Romo1 was responsible for the high ROS levels in tumour cells. Here, we show that endogenous ROS generated by Romo1 are indispensable for cell cycle transition from G1 to S phase in normal WI-38 human lung fibroblasts. The ROS level in these cells was down-regulated by Romo1 knockdown, resulting in cell cycle arrest in the G1 phase. This arrest was associated with an increase in the level of p27Kip1. These results demonstrate that mitochondrial ROS generated by Romo1 expression is required for normal cell proliferation and it is suggested that Romo1 plays an important role in redox signalling during normal cell proliferation.  相似文献   

16.
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) constitute an evolutionarily conserved family of protein kinases with key roles in the control of cell proliferation and differentiation. Members of the DYRK family phosphorylate many substrates, including critical regulators of the cell cycle. A recent report revealed that human DYRK2 acts as a negative regulator of G1/S transition by phosphorylating c-Jun and c-Myc, thereby inducing ubiquitination-mediated degradation. Other DYRKs also function as cell cycle regulators by modulating the turnover of their target proteins. DYRK1B can induce reversible cell arrest in a quiescent G0 state by targeting cyclin D1 for proteasomal degradation and stabilizing p27Kip1. The DYRK2 ortholog of C. elegans, MBK-2, triggers the proteasomal destruction of oocyte proteins after meiosis to allow the mitotic divisions in embryo development. This review summarizes the accumulating results that provide evidence for a general role of DYRKs in the regulation of protein stability.  相似文献   

17.
IL-1 inhibits the proliferation of human melanoma cells A375 by arresting the cell cycle at G0/G1 phase, which accompanies the increase of p21Waf1/Cip1 (p21) protein. Here, we demonstrate that IL-1 induces the stabilization of p21 protein via ERK1/2 pathway. The degradation of p21 was inhibited by IL-1, however the ubiquitination level of p21 was not affected. In addition, the degradation of non-ubiquitinated form of lysine less mutant p21-K6R was also inhibited by IL-1, suggesting that IL-1 stabilized p21 protein via ubiquitin-independent pathway. Furthermore, the inhibition of p21 protein degradation was prevented by a selective inhibitor of ERK1/2 pathway, PD98059. These results suggest that IL-1-induced ERK1/2 activation leads to the up-regulation of p21 by inhibiting degradation via ubiquitin-independent pathway in human melanoma cells A375.  相似文献   

18.
19.
Control over cell cycle exit is fundamental to the normal generation of the wide array of distinct cell types that comprise the mature vertebrate CNS. Here, we demonstrate a critical role for Cip/Kip class cyclin-kinase inhibitory (CKI) proteins in regulating this process during neurogenesis in the embryonic spinal cord. Using immunohistochemistry, we show that all three identified Cip/Kip CKI proteins are expressed in both distinct and overlapping populations of nascent and post-mitotic neurons during early neurogenesis, with p27(Kip1) having the broadest expression, and both p57(Kip2) and p21(Cip1) showing transient expression in restricted populations. Loss- and gain-of-function approaches were used to establish the unique and redundant functions of these proteins in spinal cord neurogenesis. Using genetic lineage tracing, we provide evidence that, in the absence of p57, nascent neurons re-enter the cell cycle inappropriately but later exit to begin differentiation. Analysis of p57(Kip2);p27(Kip1) double mutants, where p21 expression is confined to only a small population of interneurons, demonstrates that Cip/Kip CKI-independent factors initiate progenitor cell cycle exit for the majority of interneurons generated in the developing spinal cord. Our studies indicate that p57 plays a critical cell-autonomous role in timing cell cycle exit at G1/S by opposing the activity of Cyclin D1, which promotes cell cycle progression. These studies support a multi-step model for neuronal progenitor cell cycle withdrawal that involves p57(Kip2) in a central role opposing latent Cyclin D1 and other residual cell cycle promoting activities in progenitors targeted for differentiation.  相似文献   

20.
The 97-kDa valosin-containing protein (p97-VCP or VCP), a hexameric AAA ATPase, plays an important role in diverse cell activities, including ubiquitin-proteasome mediated protein degradation. In this report, we studied dissociation-reassembly kinetics to analyze the structure-function relationship in VCP. Urea-dissociated VCP can reassemble by itself, but addition of ATP, ADP, or ATP-gamma S accelerates the reassembly. Mutation in the ATP-binding site of D1, but not D2, domain abolishes the ATP acceleration effect and further delays the reassembly. Using hybrid hexamers of the wild type and ATP-binding site mutant, we show that hexameric structure and proper communication among the subunits are required for the ATPase activity and ubiquitin-proteasome mediated degradation. Thus, ATP-binding site in D1 plays a major role in VCP hexamerization, of which proper inter-subunit interaction is essential for the activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号