首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Circadian rhythms in clock gene expressions in the suprachiasmatic nucleus (SCN) of CS mice and C57BL/6J mice were measured under a daily restricted feeding (RF) schedule in continuous darkness (DD), and entrainment of the SCN circadian pacemaker to RF was examined. After 2-3 wk under a light-dark cycle with free access to food, animals were released into DD and fed for 3 h at a fixed time of day for 3-4 wk. Subsequently, they returned to having free access to food for 2-3 wk. In CS mice, wheel-running rhythms entrained to RF with a stable phase relationship between the activity onset and feeding time, and the rhythms started to free run from the feeding time after the termination of RF. mPer1, mPer2, and mBMAL1 mRNA rhythms in the SCN showed a fixed phase relationship with feeding time, indicating that the circadian pacemaker in the SCN entrained to RF. On the other hand, in C57BL/6J mice, wheel-running rhythms free ran under RF, and clock gene expression rhythms in the SCN showed a stable phase relation not to feeding time but to the behavioral rhythms, indicating that the circadian pacemaker in the SCN did not entrain. These results indicate that the SCN circadian pacemaker of CS mice is entrainable to RF under DD and suggest that CS mice have a circadian clock system that can be reset by a signal associated with feeding time.  相似文献   

2.
The mammalian circadian clock lying in suprachiasmatic nucleus (SCN) is synchronized to about 24 h by the environmental light-dark cycle (LD). The circadian clock exhibits limits of entrainment above and below 24 h, beyond which it will not entrain. Little is known about the mechanisms regulating the limits of entrainment. In this study, we show that wild-type mice entrain to only an LD 24 h cycle, whereas Clock mutant mice can entrain to an LD 24, 28, and 32 h except for LD 20 h and LD 36 h cycle. Under an LD 28 h cycle, Clock mutant mice showed a clear rhythm in Per2 mRNA expression in the SCN and behavior. Light response was also increased. This is the first report to show that the Clock mutation makes it possible to adapt the circadian oscillator to a long period cycle and indicates that the clock gene may have an important role for the limits of entrainment of the SCN to LD cycle.  相似文献   

3.
The neuropeptide vasoactive intestinal polypeptide (VIP) has emerged as a key candidate molecule mediating the synchronization of rhythms in clock gene expression within the suprachiasmatic nucleus (SCN). In addition, neurons expressing VIP are anatomically well positioned to mediate communication between the SCN and peripheral oscillators. In this study, we examined the temporal expression profile of 3 key circadian genes: Per1, Per2 , and Bmal1 in the SCN, the adrenal glands and the liver of mice deficient for the Vip gene (VIP KO), and their wild-type counterparts. We performed these measurements in mice held in a light/dark cycle as well as in constant darkness and found that rhythms in gene expression were greatly attenuated in the VIP-deficient SCN. In the periphery, the impact of the loss of VIP varied with the tissue and gene measured. In the adrenals, rhythms in Per1 were lost in VIP-deficient mice, while in the liver, the most dramatic impact was on the phase of the diurnal expression rhythms. Finally, we examined the effects of the loss of VIP on ex vivo explants of the same central and peripheral oscillators using the PER2::LUC reporter system. The VIP-deficient mice exhibited low amplitude rhythms in the SCN as well as altered phase relationships between the SCN and the peripheral oscillators. Together, these data suggest that VIP is critical for robust rhythms in clock gene expression in the SCN and some peripheral organs and that the absence of this peptide alters both the amplitude of circadian rhythms as well as the phase relationships between the rhythms in the SCN and periphery.  相似文献   

4.
Wang GQ  Fu CL  Li JX  Du YZ  Tong J 《生理学报》2006,58(4):359-364
本研究旨在观察和比较视交叉上核(suprachiasmatic nucleus,SCN)与松果体(pineal gland,pG)中Clock基因内源性昼夜转录变化规律以及光照对其的影响。Sprague-Dawley大鼠在持续黑暗(constant darkness,DD)和12h光照:12h黑暗交替(12hourlight:12hour-darkcycle,LD)光制下分别被饲养8周(n=36)和4周n=36)后,在一昼夜内每隔4h采集一组SCN和PG组织(n=6),提取总RNA,用竞争性定量RT-PCR测定不同昼夜时点(circadian times.CT or zeitgeber times.ZT)各样品中Clock基因的mRNA相对表达量,通过余弦法和ClockLab软件获取节律参数,并经振幅检验是否存在昼夜节律性转录变化。结果如下:(1)SCN中Clock基因mRNA的转录在DD光制下呈现昼低夜高节律性振荡变化(P〈0.05),PG中Clock基因的转录也显示相似的内源性节律外观,即峰值出现于主观夜晚(SCN为CTl5,PG为CT18),谷值位于主观白天(SCN为CT3,PG为CT6)(P〉0.05)。(2)LD光制下SCN中Clock基因的转录也具有昼夜节律性振荡(P〈0.05),但与其DD光制下节律外观相比,呈现反时相节律变化(P〈0.05),且其表达的振幅及峰值的mRNA水平均增加(P〈0.05),而PG中Clock基因在LD光制下转录的相应节律参数变化却恰恰相反(P〈0.05)。(3)在LD光制下,光照使PG中Clock基因转录的节律外观反时相于SCN(P〈0.05),即在SCN和PG的峰值分别出现于光照期ZT10和黑暗期ZT17,谷值分别位于黑暗期ZT22和光照期ZT5。结果表明,Clock基因的昼夜转录在SCN和PG中存在同步的内源性节律本质,而光导引在这两个中枢核团调节Clock基因昼夜节律性转录方面有着不同的作用。  相似文献   

5.
Neuroglobin (Ngb), a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN). The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP) and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night.  相似文献   

6.
Period aftereffects are a form of behavioral plasticity in which the free-running period of circadian behavior undergoes experience-dependent changes. It is unclear whether this plasticity is age dependent and whether the changes in behavioral period relate to changes in the SCN or the retina, 2 known circadian pacemakers in mammals. To determine whether these changes vary with age, Per1-luc transgenic mice (in which the luciferase gene is driven by the Period1 promoter) of different ages were exposed to short (10 h light: 10 h dark, T20) or long (14 h light: 14 h dark, T28) light cycles (T cycles). Recordings of running-wheel activity in constant darkness (DD) revealed that the intrinsic periods of T20 mice were significantly shorter than of T28 mice at all ages. Aftereffects following the shorter light cycle were significantly smaller in mice older than 3 months, corresponding with a decreased ability to entrain to T20. Age did not diminish entrainment or aftereffects in the 28-h light schedule. The behavioral period of pups born in DD depended on the T cycle experienced in utero, showing maternal transference of aftereffects. Recordings of Per1-luc activity from the isolated SCN in vitro revealed that the SCN of young mice expressed aftereffects, but the periods of behavior and SCN were negatively correlated. Enucleation in DD had no effect on behavioral aftereffects, indicating the eyes are not required for aftereffects expression. These data show that circadian aftereffects are an age-dependent form of plasticity mediated by stable changes in the SCN and, importantly, extra-SCN tissues.  相似文献   

7.
Serotonin (5-HT) can act presynaptically at 5-HT1B receptors on retinal terminals in the suprachiasmatic nucleus (SCN) to inhibit glutamate release, thereby modulating the effects of light on circadian behavior. 5-HT1B receptor agonists (1) inhibit light-induced phase shifts of circadian activity rhythms, (2) attenuate light-induced Fos expression in the SCN, and (3) reduce the amplitude of optic nerve-evoked excitatory postsynaptic currents in SCN neurons in vitro. To determine whether functional disruption of the 5-HT1B presynaptic receptors would result in an amplified response of the SCN to light, the period (tau) of the circadian rhythm of wheel-running activity was estimated under several different conditions in 5-HT1B receptor knockout (KO) mice and genetically matched wild-type animals. Under constant light (LL) conditions, the tau of 5-HT1B receptor KO mice was significantly greater than the tau of wild-type mice. A quantitative analysis of the wheel-running activity revealed no differences between wild-type and KO mice in either total activity or the temporal distribution of activity under LL conditions, suggesting that the observed increase in tau was not a function of reduced activity. Under constant dark conditions, the period of the circadian rhythm of wheel-running activity of wild-type and 5-HT1B receptor KO mice was similar. In addition, no differences were noted between wild-type and 5-HT1B receptor KO mice in the rate of reentrainment to a 6 h phase advance in the 12:12 light:dark cycle or in phase shifts in response to a 10 min light pulse presented at circadian time 16. The enhanced response of the SCN circadian clock of the 5-HT1B receptor KO mice to LL conditions is consistent with the hypothesis that the endogenous activation of 5-HT1B presynaptic receptors modulates circadian behavior by attenuating photic input to the SCN.  相似文献   

8.
Malfunction of the circadian timing system may result in cardiovascular and metabolic diseases, and conversely, these diseases can impair the circadian system. The aim of this study was to reveal whether the functional state of the circadian system of spontaneously hypertensive rats (SHR) differs from that of control Wistar rat. This study is the first to analyze the function of the circadian system of SHR in its complexity, i.e., of the central clock in the suprachiasmatic nuclei (SCN) as well as of the peripheral clocks. The functional properties of the SCN clock were estimated by behavioral output rhythm in locomotor activity and daily profiles of clock gene expression in the SCN determined by in situ hybridization. The function of the peripheral clocks was assessed by daily profiles of clock gene expression in the liver and colon by RT-PCR and in vitro using real time recording of Bmal1-dLuc reporter. The potential impact of the SHR phenotype on circadian control of the metabolic pathways was estimated by daily profiles of metabolism-relevant gene expression in the liver and colon. The results revealed that SHR exhibited an early chronotype, because the central SCN clock was phase advanced relative to light/dark cycle and the SCN driven output rhythm ran faster compared to Wistar rats. Moreover, the output rhythm was dampened. The SHR peripheral clock reacted to the dampened SCN output with tissue-specific consequences. In the colon of SHR the clock function was severely altered, whereas the differences are only marginal in the liver. These changes may likely result in a mutual desynchrony of circadian oscillators within the circadian system of SHR, thereby potentially contributing to metabolic pathology of the strain. The SHR may thus serve as a valuable model of human circadian disorders originating in poor synchrony of the circadian system with external light/dark regime.  相似文献   

9.
Recent progress at the molecular level has revealed that nuclear receptors play an important role in the generation of mammalian circadian rhythms. To examine whether peroxisome proliferator-activated receptor alpha (PPARalpha) is involved in the regulation of circadian behavioral rhythms in mammals, we evaluated the locomotor activity of mice administered with the hypolipidemic PPARalpha ligand, bezafibrate. Circadian locomotor activity was phase-advanced about 3h in mice given bezafibrate under light-dark (LD) conditions. Transfer from LD to constant darkness did not change the onset of activity in these mice, suggesting that bezafibrate advanced the phase of the endogenous clock. Surprisingly, bezafibrate also advanced the phase in mice with lesions of the suprachiasmatic nucleus (SCN; the central clock in mammals). The circadian expression of clock genes such as period2, BMAL1, and Rev-erbalpha was also phase-advanced in various tissues (cortex, liver, and fat) without affecting the SCN. Bezafibrate also phase-advanced the activity phase that is delayed in model mice with delayed sleep phase syndrome (DSPS) due to a Clock gene mutation. Our results indicated that PPARalpha is involved in circadian clock control independently of the SCN and that PPARalpha could be a potent target of drugs to treat circadian rhythm sleep disorders including DSPS.  相似文献   

10.
We have recently demonstrated that the outcome of repeated social defeat (SD) on behavior, physiology and immunology is more negative when applied during the dark/active phase as compared with the light/inactive phase of male C57BL/6 mice. Here, we investigated the effects of the same stress paradigm, which combines a psychosocial and novelty stressor, on the circadian clock in transgenic PERIOD2::LUCIFERASE (PER2::LUC) and wildtype (WT) mice by subjecting them to repeated SD, either in the early light phase (social defeat light?=?SDL) or in the early dark phase (social defeat dark?=?SDD) across 19 days. The PER2::LUC rhythms and clock gene mRNA expression were analyzed in the suprachiasmatic nucleus (SCN) and the adrenal gland, and PER2 protein expression in the SCN was assessed. SDD mice showed increased PER2::LUC rhythm amplitude in the SCN, reduced Per2 and Cryptochrome1 mRNA expression in the adrenal gland, and increased PER2 protein expression in the posterior part of the SCN compared with single-housed control (SHC) and SDL mice. In contrast, PER2::LUC rhythms in the SCN of SDL mice were not affected. However, SDL mice exhibited a 2-hour phase advance of the PER2::LUC rhythm in the adrenal gland compared to SHC mice. Furthermore, plasma levels of brain-derived neurotrophic factor (BDNF) and BDNF mRNA in the SCN were elevated in SDL mice. Taken together, these results show that the SCN molecular rhythmicity is affected by repeated SDD, but not SDL, while the adrenal peripheral clock is influenced mainly by SDL. The observed increase in BDNF in the SDL group may act to protect against the negative consequences of repeated psychosocial stress.  相似文献   

11.
Fluctuations in circulating estrogen and progesterone levels associated with the estrous cycle alter circadian rhythms of physiology and behavior in female rodents. Endogenously applied estrogen shortens the period of the locomotor activity rhythm in rodents. We recently found that estrogen implants affect Period (Per) gene expression in the suprachiasmatic nucleus (SCN; central clock) and uterus of rats in vivo. To explore whether estrogen directly influences the circadian clock in the SCN and/or tissues of the reproductive system, we examined the effects of 17beta-estradiol (E(2)) on PER2::LUCIFERASE (PER2::LUC) expression in tissue explant cultures from ovariectomized PER2::LUC knockin mice. E(2) applied to explanted cultures shortened the period of rhythmic PER2::LUC expression in the uterus but did not change the period of PER2::LUC expression in the SCN. Raloxifene, a selective estrogen receptor modulator and known E(2) antagonist in uterine tissues, attenuated the effect of E(2) on the period of the PER2::LUC rhythm in the uterus. These data indicate that estrogen directly affects the timing of the molecular clock in the uterus via an estrogen receptor-mediated response.  相似文献   

12.
Disruptions of circadian rhythms have been linked to a wide range of pathologies from sleep disorders to cancer. The extent to which disruptions of circadian rhythms during development contribute to later conditions is not known. The present study tested the hypothesis that functional properties of the central circadian pacemaker, the suprachiasmatic nucleus (SCN), are affected by abnormal entrainment during development. The SCN is specialized for the generation of robust rhythms, for direct and indirect output to physiological and behavioral systems, and for entrainment to light/dark cycles via direct retinal input. It consists of thousands of neurons and glia with distinct phenotypes and has subdivisions delineated by both anatomical and functional criteria. In rodents, SCN rhythms develop within days after SCN cells are produced and before many other aspects of differentiation, such as synaptogenesis, are complete. We demonstrated that around the time of birth, the hamster SCN in vivo can undergo repeated phase shifts by a dopamine D(1) receptor agonist (SKF-38393). For 2 days before and 2 days after birth, one group of hamsters received regular exposure to the drug at the same time of day, while another group was exposed at varying times to induce repeated phase shifts. Free-running and entrained activity rhythms were compared between the groups at different ages after weaning. Repeated phase shifts during SCN development had a significant effect on free-running period measured immediately after weaning. This effect was eliminated by subsequent entrainment to a light/dark cycle, indicating that the effect was not permanent. These and other results suggest that SCN development required for functional properties such as free-running period is resilient to perturbation.  相似文献   

13.
14.
In vivo monitoring of peripheral circadian clocks in the mouse   总被引:1,自引:0,他引:1  
The mammalian circadian system is comprised of a central clock in the suprachiasmatic nucleus (SCN) and a network of peripheral oscillators located in all of the major organ systems. The SCN is traditionally thought to be positioned at the top of the hierarchy, with SCN lesions resulting in an arrhythmic organism. However, recent work has demonstrated that the SCN and peripheral tissues generate independent circadian oscillations in Per1 clock gene expression in vitro. In the present study, we sought to clarify the role of the SCN in the intact system by recording rhythms in clock gene expression in vivo. A practical imaging protocol was developed that enables us to measure circadian rhythms easily, noninvasively, and longitudinally in individual mice. Circadian oscillations were detected in the kidney, liver, and submandibular gland studied in about half of the SCN-lesioned, behaviorally arrhythmic mice. However, their amplitude was decreased in these organs. Free-running periods of peripheral clocks were identical to those of activity rhythms recorded before the SCN lesion. Thus, we can report for the first time that many of the fundamental properties of circadian oscillations in peripheral clocks in vivo are maintained in the absence of SCN control.  相似文献   

15.
The suprachiasmatic nucleus (SCN) regulates a wide range of daily behaviors and has been described as the master circadian pacemaker. The role of daily rhythmicity in other tissues, however, is unknown. We hypothesized that circadian changes in olfactory discrimination depend on a genetic circadian oscillator outside the SCN. We developed an automated assay to monitor olfactory discrimination in individual mice throughout the day. We found olfactory sensitivity increased approximately 6-fold from a minimum during the day to a peak in the early night. This circadian rhythm was maintained in SCN-lesioned mice and mice deficient for the Npas2 gene but was lost in mice lacking Bmal1 or both Per1 and Per2 genes. We conclude that daily rhythms in olfactory sensitivity depend on the expression of canonical clock genes. Olfaction is, thus, the first circadian behavior that is not based on locomotor activity and does not require the SCN.  相似文献   

16.
17.
Sleep and circadian rhythm disruption has been widely observed in neuropsychiatric disorders including schizophrenia [1] and often precedes related symptoms [2]. However, mechanistic basis for this association remains unknown. Therefore, we investigated the circadian phenotype of blind-drunk (Bdr), a mouse model of synaptosomal-associated protein (Snap)-25 exocytotic disruption that displays schizophrenic endophenotypes modulated by prenatal factors and reversible by antipsychotic treatment [3, 4]. Notably, SNAP-25 has been implicated in schizophrenia from genetic [5-8], pathological [9-13], and functional studies [14-16]. We show here that the rest and activity rhythms of Bdr mice are phase advanced and fragmented under a light/dark cycle, reminiscent of the disturbed sleep patterns observed in schizophrenia. Retinal inputs appear normal in mutants, and clock gene rhythms within the suprachiasmatic nucleus (SCN) are normally phased both in vitro and in vivo. However, the 24 hr rhythms of arginine vasopressin within the SCN and plasma corticosterone are both markedly phase advanced in Bdr mice. We suggest that the Bdr circadian phenotype arises from a disruption of synaptic connectivity within the SCN that alters critical output signals. Collectively, our data provide a link between disruption of circadian activity cycles and synaptic dysfunction in a model of neuropsychiatric disease.  相似文献   

18.
19.
Sleep disorders are common in neurodegenerative diseases including Huntington''s disease (HD) and develop early in the disease process. Mitochondrial alterations are believed to play a critical role in the pathophysiology of neurodegenerative diseases. In the present study, we evaluated the circadian system of mice after inhibiting mitochondrial complex II of the respiratory chain with the toxin 3-nitropropionic acid (3-NP). We found that a subset of mice treated with low doses of 3-NP exhibited severe circadian deficit in behavior. The temporal patterning of sleep behavior is also disrupted in some mice with evidence of difficulty in the initiation of sleep behavior. Using the open field test during the normal sleep phase, we found that the 3-NP-treated mice were hyperactive. The molecular clockwork responsible for the generation of circadian rhythms as measured by PER2::LUCIFERASE was disrupted in a subset of mice. Within the SCN, the 3-NP treatment resulted in a reduction in daytime firing rate in the subset of mice which had a behavioral deficit. Anatomically, we confirmed that all of the treated mice showed evidence for cell loss within the striatum but we did not see evidence for gross SCN pathology. Together, the data demonstrates that chronic treatment with low doses of the mitochondrial toxin 3-NP produced circadian deficits in a subset of treated mice. This work does raise the possibility that the neural damage produced by mitochondrial dysfunction can contribute to the sleep/circadian dysfunction seen so commonly in neurodegenerative diseases.  相似文献   

20.
The suprachiasmatic nucleus (SCN) is a circadian oscillator entrained to the day/night cycle via input from the retina. Serotonin (5-HT) afferents to the SCN modulate retinal signals via activation of 5-HT1B receptors, decreasing responsiveness to light. Consequently, 5-HT1B receptor knockout (KO) mice entrain to the day/night cycle with delayed activity onsets. Since circulating corticosterone levels exhibit a robust daily rhythm peaking around activity onset, we asked whether delayed entrainment of activity onsets affects rhythmic corticosterone secretion. Wheel-running activity and plasma corticosterone were monitored in mice housed under several different lighting regimens. Both duration of the light∶dark cycle (T cycle) and the duration of light within that cycle was altered. 5-HT1B KO mice that entrained to a 9.5L:13.5D (short day in a T = 23 h) cycle with activity onsets delayed more than 4 h after light offset exhibited a corticosterone rhythm in phase with activity rhythms but reduced 50% in amplitude compared to animals that initiated daily activity <4 h after light offset. Wild type mice in 8L:14D (short day in a T = 22 h) conditions with highly delayed activity onsets also exhibited a 50% reduction in peak plasma corticosterone levels. Exogenous adrenocorticotropin (ACTH) stimulation in animals exhibiting highly delayed entrainment suggested that the endogenous rhythm of adrenal responsiveness to ACTH remained aligned with SCN-driven behavioral activity. Circadian clock gene expression in the adrenal cortex of these same animals suggested that the adrenal circadian clock was also aligned with SCN-driven behavior. Under T cycles <24 h, altered circadian entrainment to short day (winter-like) conditions, manifest as long delays in activity onset after light offset, severely reduces the amplitude of the diurnal rhythm of plasma corticosterone. Such a pronounced reduction in the glucocorticoid rhythm may alter rhythmic gene expression in the central nervous system and in peripheral organs contributing to an array of potential pathophysiologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号