首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The structure of the O-specific polysaccharide from Shigella dysenteriae type 10, which has been reported previously in Bioorganic chemistry (1977, vol.3, pp. 1219–1225), is refined: →2)-β-D-Manp-(1→3)-α-D-ManpNAc-(1→3)-β-L-Rhap-(1→4)-α-D-GlcpNAc-(1→.  相似文献   

2.
Teichoic acid and disaccharide-1-phosphate polymer were identified in the cell walls of Bacillus subtilis subsp. subtilis VKM B-501T. The teichoic acid represents 1,3-poly(glycerol phosphate) 80% substituted by α-D-glucopyranose residues at O-2 of glycerol. The linear repeating unit of disaccharide-1-phosphate polymer contains the residues of β-D-glucopyranose, N-acetyl-α-D-galactosamine, and phosphate and has the following structure: -6)-β-D-Glcp-(1→3)-α-D-GalpNAc-(1-P-. The structures of two anionic polymers were determined by chemical and NMR-spectroscopic methods. The 1H- and 13C-NMR spectral data on disaccharide-1-phosphate polymer are presented for the first time.  相似文献   

3.
The structures of cell wall glycopolymers from the type strains of three Actinoplanes species were investigated using chemical methods, NMR spectroscopy, and mass spectrometry. Actinoplanes digitatis VKM Ac-649T contains two phosphate-containing glycopolymers: poly(diglycosyl-1-phosphate) →6)-α-D-GlcpNAc-(1-P-6)-α-D-GlcpN-(1→ and teichoic acid →1)-sn-Gro-(3-P-3)-β-[β-D-GlcpNAc-(1→2]-D-Galp-(1→. Two glycopolymers were identified in A. auranticolor VKM Ac-648T and A. cyaneus VKM Ac-1095T: minor polymer–unsubstituted 2,3-poly(glycerol phosphate), widely abundant in actinobacteria (Ac-648T), and mannan with trisaccharide repeating unit →2)-α-D-Manp-(1→2)-α-D-Manp(1→6)-α-D-Manp-(1→(Ac-1095T). In addition, both microorganisms contain a teichuronic acid of unique structure containing a pentasaccharide repeating unit with two residues of glucopyranose and three residues of diaminouronic acids in D-manno- and/or D-gluco-configuration. Each of the strains demonstrates peculiarities in the structure of teichuronic acid with respect to the ratio of diaminouronic acids and availability and location of O-methyl groups in glucopyranose residues. All investigated strains contain a unique set of glycopolymers in their cell walls with structures not described earlier for prokaryotes.  相似文献   

4.
3-Aminopropyl glycosides of α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranose, α-D-mannopyranosyl-(1→3)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranose, and α-D-mannopyranosyl-(1→2)-[α-D-mannopyranosyl-(1→3)]-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranose were efficiently synthesized starting from ethyl 2-O-acetyl(benzoyl)-3,4,6-tri-O-benzyl-1-thio-α-D-mannopyranoside, ethyl 4,6-di-O-benzyl-2-O-benzoyl-1-thio-α-D-mannopyranoside, ethyl 4,6-di-O-benzyl-2,3-di-O-benzoyl-1-thio-α-D-mannopyranoside, and 2,3,4,6-tetra-O-benzoyl-α-D-mannopyranosyl bromide. The oligosaccharide chains synthesized correspond to the three structural types of side chains of mannan from Candida albicans cell wall. A conjugate of the third pentasaccharide with bovine serum albumin was prepared using the squarate method.  相似文献   

5.
From the surface of the dikaryotic mycelium of the xylotrophic basidiomycete Grifola frondosa 0917 a lectin has been isolated with a molecular mass of 68 ± 1 kDa, consisting of two subunits of 33–34 kDa each. The lectin is a hydrophilic glycoprotein with the protein: glycan ratio of 3: 1. It exhibits high affinity to native rabbit erythrocytes and to human erythrocytes of the 0 blood group, but not to trypsin-treated ones. The hemagglutination (HA) caused by lectin was not blocked by any of the 25 tested mono-, di-, and amino sugars; it was also not blocked by some of glyco derivatives. Only 13.9 μg/ml of the homogeneous preparation of a polysaccharide, a linear D-rhamnan with the structure of the repeated component →2)-β-D-Rhap-(1→3)-α-D-Rhap-(1→3)-α-D-Rhap-(1→2)-α-D-Rhap-(1→2)-α-sD-Rhap-1(→ blocked hemagglutination completely. The analysis of the amino acid composition of the lectin showed the greatest percentage of amino acids with positively charged R groups, arginine, lysine, and histidine, as well as the complete absence of sulfurcontaining amino acids, cysteine, and methionine. D-glucose and D-glucosamine were detected in the carbohydrate part. Original Russian Text ? L.V. Stepanova, V.E. Nikitina, A.S. Boiko, 2007, published in Mikrobiologiya, 2007, Vol. 76, No. 4, pp. 488–493.  相似文献   

6.
Marine sponges are ancient and simple multicellular filter-feeding invertebrates attached to solid substrates in benthic habitats and host a variety of fungi both inside and on their surface because of its unique ingestion and digest system. Investigation on marine sponge-associated fungi mainly focused on the small molecular metabolites, yet little attention had been paid to the extracellular polysaccharides. In this study, a homogeneous extracellular polysaccharide AS2-1 was obtained from the fermented broth of the marine sponge endogenous fungus Alternaria sp. SP-32 using ethanol precipitation, anion-exchange, and size-exclusion chromatography. Results of chemical and spectroscopic analyses showed that AS2-1 was composed of mannose, glucose, and galactose with a molar ratio of 1.00:0.67:0.35, and its molecular weight was 27.4 kDa. AS2-1 consists of a mannan core and a galactoglucan chain. The mannan core is composed of (1→6)-α-Manp substituted at C-2 by (1→2)-α-Manp with different degrees of polymerization. The galactoglucan chain consists of (1→6)-α-Glcp residues with (1→6)-β-Galf residues attached to the last glucopyranose residue at C-6. (1→6)-β-Galf residues have additional branches at C-2 consisting of disaccharide units of (1→2)-β-Galf and (1→2)-α-Glcp residues. The glucopyranose residue of the galactoglucan chain is linked to the mannan core. AS2-1 possessed a high antioxidant activity as evaluated by scavenging of 1,1-diphenyl-2-picrylhydrazyl and hydroxyl radicals in vitro. AS2-1 was also evaluated for cytotoxic activity on Hela, HL-60, and K562 cell lines by the MTT and SRB methods. The investigation demonstrated that AS2-1 was a novel extracellular polysaccharide with different characterization from extracellular polysaccharides produced by other marine microorganisms.  相似文献   

7.
Cyclomaltodextrin glucanotransferase (EC 2.4.1.19, abbreviated as CGTase) derived from Bacillus stearothermophilus produced a series of transfer products from a mixture of cyclomaltohexaose and cyclic tetrasaccharide (cyclo{→6)-α-D-Glcp-(1→3)-α-D-Glcp-(1→6)-α-D-Glcp-(1→3)-α-D-Glcp-(1→}, CTS). Of the transfer products, only two components, saccharides A and D, remained and accumulated after digestion with glucoamylase. The total combined yield of the saccharides reached 63.4% of total sugars, and enzymatic and instrumental analyses revealed the structures of both saccharides. Saccharide A was identified as4-mono-O-α-glucosyl-CTS, {→6)-[α-D-Glcp-(1→4)]-α-D-Glcp-(1→3)-α-D-Glcp-(1→6)-α-D-Glcp-(1→3)-α-D-Glcp-(1→}, and sachharide D was 4,4′-di-O-α-glucosyl-CTS, {→6)-[α-D-Glcp-(1→4)]-α-D-Glcp-(1→3)-α-D-Glcp-(1→6)-[α-D-Glcp-(1→4)]-α-D-Glcp-(1→3)-α-D-Glcp-(1→}. These structures led us to conclude that the glycosyltransfer catalyzed by CGTase was specific to the C4-OH of the 6-linked glucopyranosyl residues in CTS.  相似文献   

8.
Egg white lysozyme was found to catalyze the transfer of N-acetylglucosamine to cyclo{→6)-α-D-Glcp-(1→3)-α-D-Glcp-(1→6)-α-D-Glcp-(1→3)-α-D-Glcp-(1→} (CTS). Structural analysis showed that the transfer product was3-O-β-N-acetylglucosaminyl CTS, cyclo{→6)-α-D-Glcp-(1→3)-α-D-Glcp-(1→6)-[β-GlcNAc-(1→3)]-α-D-Glcp-(1→3)-α-D-Glcp-(1→}. This branched saccharide is anticipated to be a model compound of the sugar chains of glycoproteins.  相似文献   

9.
The glycoside composition and sequence of an extracellular polysaccharide flocculant of Klebsiella pneumoniae H12 was analyzed. GC and HPLC analysis of the acid-hydrolysate identified its constituent monosaccharides as D-Glc, D-Man, D-Gal, and D-GlcA in an approximate molar ratio of 3.9:1.0:2.3:3.6. To analyze the glycoside sequence, the polysaccharide was partially hydrolyzed by acid and enzyme treatment. GC, HPLC, TLC, MALDI-TOF/MS, and 1H- and 13C- NMR spectroscopy characterized the obtained oligosaccharides.

The results clarified the partial structure of H12 polysaccharide as a linear polymer of a unit of pentasaccharide with a side chain of one D-GlcA to D-Glc moiety (see below). Although the existence of other sequences or other constituent glycosides could not be fully excluded, H12 polysaccharide must be a novel types as such a complicated unit for a polymer has not so far been reported. The partial structure of a H12 polysaccharide flocculant is also discussed in this report.

→4)- α-D-Glcp-(1→2)-α-D-Manp-(1→3)-4,6-Pyr-β-D- 3 Galp-(1→4)-β-D-Galp-(1→ ↓

1 β-D-GlcpA  相似文献   

10.
Peculiarities of the rat behavior were studied in a series of experimental stress models after a systemic administration of new N-uronoyl derivatives of amino acids. The psychotropic effect was shown to be determined by the nature of the amino acid fragment. N-(1,2:3,4-Di-O-isopropylidene-α-D-galactopyraneuronoyl)-glycylglycine exhibited an anxiolytic effect more pronounced than that of pyracetam, whereas N-(1,2:3,4-di-O-isopropilidene-α-D-galactopyranuronoyl)-glycylglutamic acid has antidepressant action stronger than that of amitriptyline. Mechanisms for the psychotropic effects of the examined derivatives are discussed.  相似文献   

11.
The following glycosides of N-acetylmuramyl-L-alanyl-D-isoglutamine (MDP) were synthesized: β-4-tert-butylcyclohexyl MDP, β-2-(adamant-1-yl)ethyl MDP, β-2,2-diphenylethyl MDP, and β-2-(p-biphenyl) ethyl MDP. The starting peracetylated β-N-acetylglucosaminides were prepared by the oxazoline method. They were converted into 4,6-O-isopropylidene-N-acetyl-D-muramic acids, which were coupled with L-Ala-D-Glu(NH2)OBn. The target glycopeptides were obtained after their deprotection. The stimulation of the anti-infection resistance of mice against Staphylococcus aureus by the MDP glycosides was studied.  相似文献   

12.
Two polysaccharides were isolated from Escherichia coli O12, the major being identified as the O12-antigen and the minor as the K5-antigen. The polysaccharides were studied by sugar analysis, Smith degradation, and one- and twodimensional 1H and 13C NMR spectroscopy. As a result, the following structure of the O12-polysaccharide was elucidated, which, to our knowledge, has not been hitherto found in bacterial carbohydrates: →2)-β-D-Glcp-(1→6)-α-D-GlcpNAc(1→3)-α-L-FucpNAc-(1→3)-β-D-GlcpNAc-(1→. The →4)-β-D-GlcpA-(1→4)-α-D-GlcpNAc-(1→ structure established for the K5-polysaccharide (heparosan) is previously known. Functions of genes in the O-antigen biosynthesis gene cluster of E. coli O12 were assigned by comparison with sequences in the available databases and found to be consistent with the O12-polysaccharide structure.  相似文献   

13.
Two polysaccharides were isolated from submergedly cultured mycelium of the basidiomycete Ganoderma lucidum by extraction with alkali followed by fractionation with Fehling reagent. The polysaccharides were shown to be a linear (1→3)-α-D-glucan and a highly branched xylomannan containing a backbone built up of (1→3)-linked α-D-mannopyranose residues, the majority of which are substituted at O-4 by single β-D-xylopyranose residues or by disaccharide fragments β-D-Manp-(1→3)-β-D-Xylp-(1→. Polysaccharide structures were elucidated by NMR spectroscopy in combination with methylation analysis and periodate oxidation. An interesting feature of the xylomannan is the simultaneous presence of α-D-mannopyranose and β-D-mannopyranose residues, the first forming the backbone, and the second being the non-reducing terminal units of disaccharide side chains.  相似文献   

14.
Two new steroid glycosides were isolated from the Far East starfish Hippasteria kurilensis collected in the Sea of Okhotsk. They were characterized as (22E,24R)-3-O-(2-O-methyl-β-D-xylopyranosyl)-24-O-[2-O-methyl-β-D-xylopyranosyl-(1→5)-α-L-arabinofuranosyl]-5α-cholest-22-ene-3β,4β,6α,7α,8,15β,24-heptaol (kurilensoside I) and (24S)-3-O-(2-O-methyl-β-D-xylopyranosyl)-24-O-(α-L-arabinofuranosyl)-5α-cholestane-3β,4β,6β,15α,24-pentaol (kurilensoside J). In addition, the earlier known glycosides linkosides F and L1, leviusculoside G, forbeside L, desulfated echinasteroside, and granulatoside A were isolated and identified. The structures of the new compounds were established with the help of two-dimentional NMR spectroscopy and mass- spectrometry.  相似文献   

15.
It was suggested that several trehalose-containing oligosaccharides are present in yeast extract. Among these oligosaccarides a trisaccharides was isolated and identified as β-D-Glcp-(1→6)-α-D-Glcp-(l?1)-α-D-Glcp.  相似文献   

16.
Molecular complexes of triterpene glycosides such as α-hederin (hederagenin 3-O-α-L-rhamnopyranosyl-(1 → 2)-O-α-L-arabinopyranoside) and hederasaponin C (hederagenin 3-O-α-L-rhamnopyranosyl-(1 → 2)-O-α-L-arabinopyranosyl-28-O-α-L-rhamnopyranosyl-(1 → 4)-O-β-D-glucopyranosyl-(1 → 6)-O-β-D-glucopyranoside) with β-cyclodextrin were synthesized. The complex formation was studied by FTIR spectroscopy. Toxic properties of the molecular complexes were examined.  相似文献   

17.
An acidic polysaccharide, termed gordonan, was isolated from the culture medium of Gordonia sp. as an inducer of cell aggregation in an insect cell line, BM-N4. Gordonan had an average molecular weight of 5×106 and its structure was identified as →3)-4-O-(1-carboxyethyl)-β-D-Manp-(1→4)-β-D-GlcAp-(1→4)-β-D-Glcp-(1→ mainly by acid hydrolysis experiments and NMR analysis. It induces cell aggregation at the concentration of 4 μg/ml. A partially hydrolyzed polysaccharide derived from gordonan with a molecular weight of 5×105 showed weak activity, while any fragment molecules with lower molecular weights prepared from gordonan showed no activity.  相似文献   

18.
Plants have co-evolved with a diverse array of pathogens and insect herbivores and so have evolved an extensive repertoire of constitutive and induced defence mechanisms activated through complex signalling pathways. OXI1 kinase is required for activation of mitogen-activated protein kinases (MAPKs) and is an essential part of the signal transduction pathway linking oxidative burst signals to diverse downstream responses. Furthermore, changes in the levels of OXI1 appear to be crucial for appropriate signalling. Callose deposition also plays a key role in defence. Here we demonstrate, for the first time, that OXI1 plays an important role in defence against aphids. The Arabidopsis mutant, oxi1-2, showed significant resistance both in terms of population build-up (p?<?0.001) and the rate of build-up (p?<?0.001). Arabidopsis mutants for β-1,3-glucanase, gns2 and gns3, showed partial aphid resistance, significantly delaying developmental rate, taking two-fold longer to reach adulthood. Whilst β-1,3-glucanase genes GNS1, GNS2, GNS3 and GNS5 were not induced in oxi1-2 in response to aphid feeding, GNS2 was expressed to high levels in the corresponding WT (Col-0) in response to aphid feeding. Callose synthase GSL5 was up-regulated in oxi1-2 in response to aphids. The results suggest that resistance in oxi1-2 mutants is through induction of callose deposition via MAPKs resulting in ROS induction as an early response. Furthermore, the results suggest that the β-1,3-glucanase genes, especially GNS2, play an important role in host plant susceptibility to aphids. Better understanding of signalling cascades underpinning tolerance to biotic stress will help inform future breeding programmes for enhancing crop resilience.  相似文献   

19.
20.
Structures of the cell wall glycopolymers from two representatives of the genus Rathayibacter were investigated using chemical, NMR spectroscopy, and optical methods. The R. toxicus VKM Ac-1600 strain contains two neutral glycopolymers–a linear rhamnomannan →2)-α-D-Rhap-(1→3)-α-D-Manp-(1→ and a branched polysaccharide containing in the repeating unit the residues of D-Manp, D-Glcp, and L-Rhap in the ratios of 2: 4: 1, respectively (the structure is presented in the text). The “Rathayibacter tanaceti” VKM Ac-2596 contains a rhamnomannan that is different from the above-described one by localization of glycosidic bonds on the residues of α-Rhap and α-Manp, i.e. →3)-α-D-Rhap (1→2)-α-D-Manp-(1→. The structures of all identified glycopolymers are described for the first time in actinobacteria. The data obtained make it possible to characterize representatives of the studied actinobacteria more fully and can be used to differentiate Rathayibacter species at the phenotype level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号