首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Swiss mice (S/RV/Cri-ba) were exposed to a spectral range of UV light emitting predominantly lambda 253.7 nm. Following a cumulative dose of 22.5 X 10(3) KJ/m2 tumours were induced. The tumour development occurred after 52 weeks, relatively a longer time interval following exposure, compared with shorter time intervals required for production of tumours in mice by spectral range UVA and UVB as observed by other workers. A study of biochemical events viz. levels of protein, DNA, zinc, iron, sodium and potassium has been made in the skin samples of control and irradiated animals following ultraviolet irradiation with a dose of 22.5 X 10(3) KJ/m2. Study of macromolecular events in the skin of control and irradiated mice, showed fluctuations in the levels of DNA. A particularly notable event is the occurrence of increased levels of DNA and zinc and their persistence during the 9-39 weeks post UV interval prior to tumour production. No such variation was observed in the control group in any of the intervals. Increased levels were also seen in case of iron, sodium and potassium at different intervals in the post UV periods. These fluctuations in various biochemical events are deemed to be indicative of UV initiated biochemical changes.  相似文献   

2.
3.
Short-term exposure to ultraviolet A (UVA) radiation can directly injure our skin through inflammatory response and indirectly through oxidative stress, triggering polyunsaturated fatty acid (PUFA) peroxidation in skin cell membrane and formation of DNA adduct, 8-hydroxy-2′-deoxyguanosine (8-OHdG). It is known that UVA exposure leads to photoaging, immunosuppression and skin cancer. However, the changes in PUFA and its oxidized metabolites, and cell cycle after short UVA exposure, are debatable. In this study, human keratinocytes (HaCaT) were exposed to low dose (5?J/cm2) and high dose (20 J/cm2) of UVA and assessed immediately, 8?h, 12?h, and 24?h post-treatment. Both doses showed a transient suppression in S-phase after 8?h of UVA exposure, and G2/M phase arrest after 12-h UVA exposure in the cell cycle but subsequently returned to normal cycle. Also, no observable DNA damage took place, where 8-OHdG levels were below par after 24-h UVA exposure. A dose of 20 J/cm2 UVA stimulated significant amount of arachidonic acid, n-3 docosapentaenoic acid, and docosahexaenoic acid (DHA) but lowered adrenic acid and eicospentaenoic acid after 24-h exposure. Among the 43 oxidized PUFA products determined, enzyme-dependent oxidized PUFAs, namely, 14-hydroxy-DHA (HDoHE) level reduced, and 8- and 13-HDoHE levels elevated significantly in a linear trend with post-treatment time. Out of the nonenzymatic oxidized PUFAs, a significant linear trend with post-treatment time was shown on the reduction of 5-F2t-Isoprostane (IsoP), 15-F2t-IsoP, Isofurans, 5-F3t-IsoP, Neurofurans, and 20-HDoHE. Our observations indicate oxidative stress through short UVA exposure on human keratinocytes did not have detrimental consequences.  相似文献   

4.
Sensitivity of duckweed (Lemna major) to ultraviolet-B radiation   总被引:2,自引:0,他引:2  
The sensitivity of an important aquatic macrophyte, duckweed (Lemna major), to UV-B radiation was studied under experimental conditions at three different doses designated as no, mild, and severe injury dose by observing visible injury symptoms and estimating levels of chlorophyll, pheophytin, carotenoids, protein, starch, free sugar, and peroxidase activity. Laboratory-grown duckweed plants were exposed to UV-B radiation at 0.4 mW/cm(2) intensity for different time periods. Mild and severe injury were developed at 6.48 and 8.64 J, respectively. Peroxidase activity increased at all the exposure levels. Dose-dependent decrease in chlorophyll and starch with drastic depletion in protein and free sugar content were observed. Pheophytin and carotenoids content increased at no injury level, but decreased at higher exposure level. The results indicate that ambient UV-B radiation at the indicated level acts as a physiological stress in Lemna major.  相似文献   

5.
Besaratinia A  Synold TW  Xi B  Pfeifer GP 《Biochemistry》2004,43(25):8169-8177
Ultraviolet A (UVA) radiation received from the sun and from the widespread use of tanning beds by populations residing in areas of northern latitude represents a potential risk factor for human health. The genotoxic and cancer-causing effects of UVA have remained controversial. A mutagenic role for UVA based on DNA damage formation by reactive oxygen species as well as by generation of photoproducts such as cyclobutane pyrimidine dimers (CPDs) has been suggested. Here, we investigated the mutagenicity of UVA in relation to its DNA damaging effects in transgenic Big Blue mouse embryonic fibroblasts. We determined the formation of a typical oxidative DNA lesion, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), and of CPDs, as well as quantified the induction of mutations in the cII transgene in cells irradiated with a 2000 W UVA lamp. UVA irradiation at a dose of 18 J/cm(2) produced significant levels of 8-oxo-dG in DNA (P < 0.03) but did not yield detectable CPDs. UVA irradiation also increased the cII mutant frequency almost 5-fold over background (P < 0.01) while showing moderate cytotoxicity (70% cell viability). UVA-induced mutations were characterized by statistically significant increases in G-to-T transversions and small tandem base deletions (P = 0.0075, P = 0.008, respectively) relative to spontaneously derived mutations. This mutational spectrum differs from those previously reported for UVA in other test systems; however, it corresponds well with the known spectrum of mutations established for oxidative base lesions such as 8-oxo-dG. We conclude that UVA has the potential to trigger carcinogenesis owing to its mutagenic effects mediated through oxidative DNA damage.  相似文献   

6.
Pigment dispersion in chromatophores as a response to UV radiation was investigated in two species of crustaceans, the crab Chasmagnathus granulata and the shrimp Palaemonetes argentinus. Eyestalkless crabs and shrimps maintained on either a black or a white background were irradiated with different UV bands. In eyestalkless crabs the significant minimal effective dose inducing pigment dispersion was 0.42 J/cm(2) for UVA and 2.15 J/cm(2) for UVB. Maximal response was achieved with 10.0 J/cm(2) UVA and 8.6 J/cm(2) UVB. UVA was more effective than UVB in inducing pigment dispersion. Soon after UV exposure, melanophores once again reached the initial stage of pigment aggregation after 45 min. Aggregated erythrophores of shrimps adapted to a white background showed significant pigment dispersion with 2.5 J/cm(2) UVA and 0.29 J/cm(2) UVC. Dispersed erythrophores of shrimps adapted to a black background did not show any significant response to UVA, UVB or UVC radiation. UVB did not induce any significant pigment dispersion in shrimps adapted to either a white or a black background. As opposed to the tanning response, which only protects against future UV exposure, the pigment dispersion response could be an important agent protecting against the harmful effects of UV radiation exposure.  相似文献   

7.
Excessive exposure to solar radiation, especially ultraviolet A (UVA: 320-400 nm) and ultraviolet B (UVB: 290-320 nm) radiation, may induce UV-carcinogenesis and erythema in the skin. Although the protective effects of carotenoids against skin lesions are still unclear, beta-carotene has been proposed as an oral sun protectant. The purpose of this study was to determine the magnitude of the protective effects of oral alpha- and beta-carotene supplementation for 24 weeks on UVA- and UVB-induced erythema in humans. While being exposed to UVA and UVB radiation, 22 subjects (11 men and 11 women) were supplemented with natural carotenoids for 24 weeks. Each day for the first 8 weeks, subjects were given 30 mg of natural carotenoids containing 29.4 mg of beta-carotene, 0.36 mg of alpha-carotene, and traces of other carotenoids in vegetable oil. The natural carotenoid dose was progressively raised by 30-mg increments, at every 8 weeks, from 30 mg to 90 mg. Small areas (1 cm2) of the skin were exposed to increasing doses of UV light (16-42 mJ/cm2) to determine the minimal erythema dose (MED). MED was defined as a uniform pink color with well-defined borders. MED readings were obtained by visual inspection 24 hr postirradiation. Blood samples taken during supplementation were used to determine alpha- and beta-carotene serum levels and for a lipid peroxidation analysis. During natural carotenoid supplementation, the MED of solar simulator radiation increased significantly (P<0.05). After 24 weeks of supplementation, serum beta-carotene levels were increased from 0.22 microg/ml (95% CI; 0.16-0.27) to 1.72 microg/ml (95% CI;1.61-1.83). Similarly, alpha-carotene serum levels increased from 0.07 microg/ml (95% CI;0.048-0.092) to 0.36 microg/ml (95% CI; 0.32-0.40). Serum lipid peroxidation was significantly (P<0.05) inhibited in a dose-dependent manner during natural carotenoid supplementation. The present data suggest that supplementation with natural carotenoids may partially protect human skin from UVA- and UVB-induced erythema, although the magnitude of the protective effect is modest.  相似文献   

8.
The relationship between human skin pigmentation and protection from ultraviolet (UV) radiation is an important element underlying differences in skin carcinogenesis rates. The association between UV damage and the risk of skin cancer is clear, yet a strategic balance in exposure to UV needs to be met. Dark skin is protected from UV-induced DNA damage significantly more than light skin owing to the constitutively higher pigmentation, but an as yet unresolved and important question is what photoprotective benefit, if any, is afforded by facultative pigmentation (i.e. a tan induced by UV exposure). To address that and to compare the effects of various wavelengths of UV, we repetitively exposed human skin to suberythemal doses of UVA and/or UVB over 2 weeks after which a challenge dose of UVA and UVB was given. Although visual skin pigmentation (tanning) elicited by different UV exposure protocols was similar, the melanin content and UV-protective effects against DNA damage in UVB-tanned skin (but not in UVA-tanned skin) were significantly higher. UVA-induced tans seem to result from the photooxidation of existing melanin and its precursors with some redistribution of pigment granules, while UVB stimulates melanocytes to up-regulate melanin synthesis and increases pigmentation coverage, effects that are synergistically stimulated in UVA and UVB-exposed skin. Thus, UVA tanning contributes essentially no photoprotection, although all types of UV-induced tanning result in DNA and cellular damage, which can eventually lead to photocarcinogenesis.  相似文献   

9.
The first and main target-structure of ultraviolet (UV) radiation in animals is the body surface, including the skin and eyes. Here, we investigated cell damage in the visual system of the crab Neohelice granulata acclimated to constant light and exposed to UVA or UVB at 12:00 h for 30 min. The reactive oxygen species (ROS) production, antioxidant capacity against peroxyl radicals (ACAP), lipid peroxidation (LPO) damage, catalase (CAT) activity, and the melatonin immunohistochemical reactivity in the eyestalks were evaluated. The animals that received melatonin and were exposed to UVA and UVB radiation showed a decreased ROS concentration (p < 0.05).The ACAP test showed a decrease (p < 0.05) in their values when the animals received 2 pmol/crab of melatonin (physiological dose) before the exposure to UVA radiation. The animals exposed to UVB radiation after receiving the same dose of melatonin showed an increase (p < 0.05) in the ACAP test compared with the animals exposed to UVB radiation after receiving only crab physiological saline. The CAT activity increased (p < 0.05) in the animals that received melatonin and were exposed to UVA and UVB radiation. Animals exposed to UVA and UVB displayed an increase (p < 0.05) in the LPO levels, whereas animals treated with melatonin showed lower (p < 0.05) LPO levels when irradiated. The results indicate that the specific oxidative parameters altered by UV radiation can be modulated by a physiological dose of melatonin. Moreover, the melatonin regularly produced by virtually all eyestalk cells suggests that it may function to modulate the noxious effects of radiation, at least in the crab N. granulata.  相似文献   

10.
Ultraviolet A (UVA) radiation is implicated in the etiology of human skin cancer. However, the underlying mechanism of carcinogenicity for UVA is not fully delineated. A mutagenic role for UVA has been suggested, which involves activation of endogenous photosensitizers generating oxidative DNA damage. We investigated the mutagenicity of UVA alone and in combination with delta-aminolevulinic acid (delta-ALA), a precursor of the intracellular photosensitizers porphyrins, in transgenic Big Blue mouse embryonic fibroblasts. A significant generation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), a typical promutagenic oxidative DNA lesion, was observed in cells treated with a combination of delta-ALA (1 mM) and UVA (0.06 J/cm(2)) as quantified by high-pressure liquid chromatography-tandem mass spectrometry (p < 0.001; relative to the control). The steady-state level of 8-oxo-dG, however, remained unchanged in cells irradiated with UVA or treated with delta-ALA alone. Other photolesions including cyclobutane pyrimidine dimers and pyrimidine (6-4) pyrimidone photoproducts were not detectable in cells treated with delta-ALA and/or irradiated with UVA as determined by terminal transferase-dependent polymerase chain reaction assay. Mutation analyses of the cII transgene in cells treated with a combination of delta-ALA and UVA showed an approximately 3-fold increase in mutant frequency relative to the control (p < 0.008), as well as a unique induced mutation spectrum as established by DNA sequence analysis (p < 0.005; 95% CI, 0.002-0.009). No mutagenic effects were observed in cells irradiated with UVA or treated with delta-ALA alone. The spectrum of mutations produced by delta-ALA plus UVA was characterized by a significantly increased frequency of G --> T transversions (p < 0.0003; relative to the control), which are the hallmark mutations induced by 8-oxo-dG. Notably, the 8-oxo-dG-mediated mutagenicity of UVA plus delta-ALA is similar to that established previously for UVA alone at a mutagenic dose of 18 J/cm(2). We conclude that, in the presence of exogenous photosensitizers, UVA at a nonmutagenic dose induces mutations through the same mechanism as does a mutagenic dose of UVA per se.  相似文献   

11.
Sunlight ultraviolet A (UVA) irradiation has been implicated in the etiology of human skin cancer. A genotoxic mode of action for UVA radiation has been suggested that involves photosensitization reactions giving rise to promutagenic DNA lesions. We investigated the mutagenicity of UVA in the lacI transgene in Big Blue mouse embryonic fibroblasts. UVA irradiation of these cells at a physiologically relevant dose of 18J/cm(2) caused a 2.8-fold increase in the lacI mutant frequency relative to control, i.e., 12.12+/-1.84 versus 4.39+/-1.99 x 10(-5) (mean+/-S.D.). DNA sequencing analysis showed that of 100 UVA-induced mutant plaques and 54 spontaneously arisen control plaques, 97 and 51, respectively, contained a minimum of one mutation along the lacI transgene. The vast majority of both induced- and spontaneous mutations were single base substitutions, although less frequently, there were also single and multiple base deletions and insertions, and tandem base substitutions. Detailed mutation spectrometry analysis revealed that G:C-->T:A transversions, the signature mutations of oxidative DNA damage, were significantly induced by UVA irradiation (P<0.003). The absolute frequency of this type of mutations was 7.4-fold increased consequent to UVA irradiation as compared to control (3.38 versus 0.454 x 10(-5); P<0.00001). These findings are in complete agreement with those previously observed in the cII transgene of the same model system, and reaffirm the notion that intracellular photosensitization reactions causing promutagenic oxidative DNA damage are involved in UVA genotoxicity.  相似文献   

12.
The effects of extremely low frequency (ELF) electromagnetic (EM) fields on the maturation of the rat cerebellum were studied. Newborn rats were exposed to 60 Hz electric and magnetic fields under three different combinations in a specially constructed apparatus. The pups were irradiated for 7–8 h daily, with a 30-min interruption for nursing. Pups were kept with their mothers for the remainder of the time. After approximately 1, 2, or 3 weeks of exposure, the pups were killed. Control pups were sham exposed. The somatic growth of the irradiated rats did not show any significant difference from shamexposed controls. At 1 kV/m and 10 gauss exposure, there was a small but statistically significant decrease in cerebellar mass. In rats exposed at 1 kV/m and 10 gauss, DNA and RNA levels were significantly higher than those in shara-exposed controls at 6 and 13 days of age, but at 20 days, these two biochemical constituents were similar in both groups of rats. The ELF-EM treatment had no effect on protein and cerebroside concentrations. In terms of age effects. DNA and RNA exhibited increases from 6 to 13 days of age, and declined from 13 to 20 days. Protein and cerebroside levels exhibited increases during the 6–20 day periods. In rats exposed at 100 kV/m and 1 gauss, the DNA levels were initially less than those of sham-exposed controls at 8 days of age, reached approximately the same levels at 14 days, and then were higher than those of controls at 22 days. There was. therefore, a significant ELF-EM effect as well as a significant interaction between age and ELF-EM exposure. In terms of age effects, DNA levels for both control and exposed animals increased from 8 to 14 days. From 14 to 22 days, DNA levels of exposed rats continued to increase while those of the controls decreased. This age effect was significant. RNA levels in both groups of animals showed increases from 8 to 14 days of age, but the increase was less for the irradiated animals than for the controls. From days 14 to 22. RNA levels for both groups showed a reduction, but the decrease was greater in the irradiated than in control rats. ELF-EM treatment significantly reduced protein levels at 8 days of age. but at 14 to 22 days, protein levels of exposed rats were higher than those of controls. The cerebroside levels were not affected by exposure treatments but increased with the age of the animals. Exposure to 100 kV/m and 10 gauss did not exert any effect on the concentrations of DNA, RNA, protein, and cerebroside at all three time points examined. Both DNA and RNA exhibited increases with age from 6 to 13 days, and leveled off from 13 to 20 days. Protein and cerebroside levels also showed corresponding increases with the age of the animals. Morphological observations revealed no detectable changes in the irradiated animals in any experimental group. Thus, only biochemical studies indicate that exposure at certain ELF-EM field combinations induces alterations in cerebellar maturation. These changes were clearly detectable in the early postnatal period but gradually diminished with time. ©1993 Wiley-Liss, Inc.  相似文献   

13.
The present study was undertaken to investigate the thermal adjustments of squirrel monkeys exposed in a cold environment to relatively high energy levels of microwave fields. The animals (Saimiri sciureus) were equilibrated for 90 min to a cool environment (Ta = 20 degrees C) to elevate metabolic heat production (M). They were then exposed for brief (10-min) or long (30-min) periods to 2,450-MHz continuous-wave microwaves. Power densities (MPD) were 10, 14, 19, and 25 mW/cm2 during brief exposures and 30, 35, 40, and 45 mW/cm2 during long exposures (rate of energy absorption: SAR = 0.15 [W/kg]/[mW/cm2]). Individual exposures were separated by enough time to allow physiological variables to return to baseline levels. The results confirm that each microwave exposure induced a rapid decrease in M. In a 20 degree C environment, the power density of a 10-min exposure required to lower M to approximate the resting level was 35 mW/cm2 (SAR = 5.3 W/kg). During the long exposures, 20 min was needed to decrease M to its lowest level. Cessation of irradiation was associated with persistence of low levels of M for periods that depended on the power density of the preceding microwave exposure. Vasodilation, as indexed by changes in local skin temperature, occurred at a high rate of energy absorption (SAR = 4.5 W/kg) and was sufficient to prevent a dramatic increase in storage of thermal energy by the body; vasoconstriction was reinstated after termination of irradiation. Patterns of thermophysiological responses confirm the influence both of peripheral and of internal inputs to thermoregulation in squirrel monkeys exposed to microwaves in a cool environment.  相似文献   

14.
Ultraviolet (UV) radiation affects the extracellular matrix (ECM) of the human skin. The small leucine-rich repeat protein fibromodulin interacts with type I and II collagen fibrils, thereby affecting ECM assembly. The aim of this study was to evaluate whether short wave UV (UVB) or long wave UV (UVA) irradiation influences fibromodulin expression. Exponentially growing human fibroblasts (IMR-90 cells) were exposed to increasing doses of UVB (2.5–60 mJ/cm2) or UVA (0.5–10 J/cm2). After UV irradiation fibromodulin, p21 and GADD45 levels were evaluated as well as cell viability, reactive oxygen species formation (ROS) and DNA damage. We found that fibromodulin expression: (i) increased after UVB and UVA irradiation; (ii) was 10-fold higher after UVA (10 J/cm2) versus 5-fold with UVB (10 mJ/cm2); (iii) correlated with reactive oxygen species formation, particularly after UVA; and (iv) was linked to the DNA damage binding protein (DDB1) translocation in the nucleus, particularly after UVB. These results further suggest that the UV-induced fibromodulin increase could counteract the UV-induced connective tissue damage, promoting the assembly of new collagen fibrils.  相似文献   

15.
In this study, C57BL/6J mice were exposed to hyperoxia and allowed to recover in room air. The sublethal dose of hyperoxia for C57BL/6J was 48 h. Distal lung cellular isolates from treated animals were characterized as 98% epithelial, with minor fibroblast and endothelial cell contaminants. Cells were then verified as 95% pure alveolar epithelial type II cells (AEC2) by surfactant protein C (SP-C) expression. After hyperoxia exposure in vivo, fresh, uncultured AEC2 were analyzed for proliferation by cell yield, cell cycle, PCNA expression, and telomerase activity. DNA damage was assessed by TdT-dUTP nick-end labeling, whereas induction of DNA repair was evaluated by GADD-153 expression. A baseline level for proliferation and damage was observed in cells from control animals that did not alter significantly during acute hyperoxia exposure. However, a rise in these markers was observed 24 h into recovery. Over 72 h of recovery, markers for proliferation remained elevated, whereas those for DNA damage and repair peaked at 48 h and then returned back to baseline. The expression of GADD-153 followed a distinct course, rising significantly during acute exposure and peaking at 48 h recovery. These data demonstrate that in healthy, adult male C57BL/6J mice, AEC2 proliferation, damage, and repair follow separate courses during hyperoxia recovery and that both proliferation and efficient repair may be required to ensure AEC2 survival.  相似文献   

16.
17.
Bistranded oxidative clustered DNA lesions are closely spaced lesions (1-10 bp) that challenge the DNA repair mechanisms and are associated with genomic instability. The endogenous levels of oxidative clustered DNA lesions in cells of human cancer cell lines or in animal tissues remain unknown, and these lesions may persist for a long time after irradiation. We measured the different types of DNA clusters in cells of two human cell lines, MCF-7 and MCF-10A, and in skin obtained from mice exposed to either 12.5 Gy or sham X radiation. For the detection and measurement of oxidative clustered DNA lesions, we used adaptations of number average length analysis, constant-field agarose gel electrophoresis, putrescine, and the repair enzymes APE1, OGG1 (human) and Nth1 (E. coli). Increased levels of all cluster types were detected in skin tissue from animals exposed to radiation at 20 weeks postirradiation. The level of endogenous (no radiation treatment) oxidative clustered DNA lesions was higher in MCF-7 cells compared to nonmalignant MCF-10A cells. To the best of our knowledge, this is the first study to demonstrate persistence of oxidative clustered DNA lesions for up to 20 weeks in animal tissues exposed to radiation and to detect these clusters in human breast cancer cells. This may underscore the biological significance of clustered DNA lesions.  相似文献   

18.
Prenatal exposure to BPA disturbs mammary gland histoarchitecture and increases the carcinogenic susceptibility to chemical challenges administered long after BPA exposure. Our aim was to assess the effect of prenatal BPA exposure on mammary gland angiogenesis and steroid hormone pathways in virgin cycling rats. Pregnant Wistar rats were exposed to either 25 or 250 g/kg/day (25 and 250 BPA, respectively) or to vehicle. Female offspring were autopsied on postnatal day (PND) 50 or 110. Ovarian steroid serum levels, the expression of steroid receptors and their co-regulators SRC-3 and SMRT in the mammary gland, and angiogenesis were evaluated. At PND 50, all BPA-treated animals had lower serum levels of progesterone, while estradiol levels remained unchanged. The higher dose of BPA increased mammary ERα and decreased SRC-3 expression at PND 50 and PND 110. SMRT protein levels were similar among groups at PND 50, whereas at PND 110, animals exposed to 250 BPA showed a lower SMRT expression. Interestingly, in the control and 25 BPA groups, SMRT increased from PND 50 to PND 110. At PND 50, an increased vascular area associated with higher VEGF expression was observed in the 250 BPA-treated rats. At PND 110, the vascular area was still increased, but VEGF expression was similar to that of control rats. The present results demonstrate that prenatal exposure to BPA alters the endocrine environment of the mammary gland and its angiogenic process. Increased angiogenesis and altered steroid hormone signals could explain the higher frequency of pre-neoplastic lesions found later in life. This article is part of a Special Issue entitled 'Endocrine disruptors'.  相似文献   

19.
DNA endonuclease activities from the chromatin of normal human and xeroderma pigmentosum, complementation group A (XPA), lymphoblastoid cells were examined on DNA treated with 8-methoxypsoralen (8-MOP) or 4,5',8-trimethylpsoralen (TMP) plus long wavelength ultraviolet (UVA) light, which produce monoadducts and DNA interstrand cross-links, and angelicin plus UVA light, which produces mainly monoadducts. 9 chromatin-associated DNA endonuclease activities were isolated from normal and XPA cells and assayed for activity on PM2 bacteriophage DNA that had been treated with 8-MOP or TMP in the dark and then exposed to UVA light. Unbound psoralen was removed by dialysis and a second dose of UVA light was given. Cross-linking of DNA molecules was confirmed by alkaline gel electrophoresis. In both normal and XPA cells, two DNA endonuclease activities were found which were active on 8-MOP and TMP plus UVA light treated DNA. One of these endonuclease activities, pI 4.6, is also active on intercalated DNA and a second one, pI 7.6, is also active on UVC (254 nm) light irradiated DNA. The major activity against angelicin plus UVA light treated DNA in both normal and XPA cells was found in the fraction, pI 7.6. The levels of activity of both of these fractions on all 3 psoralen-damaged DNAs were similar between normal and XPA cells. These results indicate that in both normal and XPA cells there are at least two different DNA endonucleases which act on both 8-MOP and TMP plus UVA light treated DNA.  相似文献   

20.
Life shortening was investigated in both sexes of the B6CF1 (C57BL/6 x BALB/c) mouse exposed to fission neutrons and 60Co gamma rays. Three basic exposure patterns for both neutrons and gamma rays were compared: single exposures, 24 equal once-weekly exposures, and 60 equal once-weekly exposures. Ten different dose-response models were fitted to the data for animals exposed to neutrons. The response variable used for all dose-response modeling was mean after-survival. A simple linear model adequately described the response to neutrons for females and males at doses less than or equal to 80 cGy. At higher neutron dose levels a linear-quadratic equation was required to describe the life-shortening response. An effect of exposure pattern was observed prior to the detection of curvature in the dose response for neutrons and emerged as a potentially significant factor at neutron doses in the range of 40-60 cGy. Augmentation of neutron injury with dose protraction was observed in both sexes and began at doses as low as 60 cGy. The life-shortening response for all animals exposed to gamma rays (22-1918 cGy) was linear and inversely dependent upon the protraction period (1 day, 24 weeks, 60 weeks). Depending on the exposure pattern used for the gamma-ray baseline, relative biological effectiveness (RBE) values ranged from 6 to 43. Augmentation, because it occurred only at higher levels of neutron exposure, had no influence on the estimation of RBEm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号