首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA-plasmids of HIV-1 induce systemic and mucosal immune responses   总被引:4,自引:0,他引:4  
DNA-based immunization has been shown to induce protective immunity against several microbial pathogens including HIV-1. Several routes of DNA vaccination have been exploited. However, the properties of the immune responses seem to differ with the different routes used for DNA delivery, ultimately affecting the outcome of experimental challenge. We measured the primary immune response following one vaccination. This report presents differences associated with three different DNA delivery routes: intramuscular injection, intranasal application, and gene-gun based immunization. Induction of systemic humoral immune responses was achieved most efficiently by either intranasal or gene-gun mediated immunization, followed by intramuscular injection. Mucosal IgA was reproducibly induced by intranasal instillation of the DNA, and found in lung washings, faeces, and vaginal washings. Cytotoxic T cells were not induced by a single immunization, but were observed after three immunizations using intramuscular injections.  相似文献   

2.
Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8(+) T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8(+) T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4(+) T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.  相似文献   

3.
Kweon MN 《Cytokine》2011,54(1):1-5
Needle-free vaccine delivery has become a global priority, both to eliminate the risk of improper and unsafe needle use and to simplify vaccination procedures. In pursuit of greater ease of vaccination, a number of needle-free delivery routes have been explored, with mucosal routes being perhaps the most prominent. Since the vaccine administration route significantly affects immune responses, numerous researchers are attempting to develop alternative vaccine delivery methods including a mucosal route. My group's recent studies demonstrate the potential of the sublingual (s.l.) route for delivering vaccines capable of inducing mucosal as well as systemic immune responses. Sublingual administration conferred effective protection against a lethal challenge with influenza virus (H1N1) or genital papillomavirus. Moreover, CCR7-CCL19/CCL21-regulated dendritic cells are responsible for activation of T and B cells following s.l. administration. This review highlights current knowledge about the safety and effectiveness of s.l. vaccination and describes how s.l. vaccination can induce both systemic and mucosal immunity.  相似文献   

4.
The evolutionary success of primate lentiviruses reflects their high capacity to mutate and adapt to new host species, immune responses within individual hosts, and, in recent years, antiviral drugs. APOBEC3G (A3G) and APOBEC3F (A3F) are host cell DNA-editing enzymes that induce extensive HIV-1 mutation that severely attenuates viral replication. The HIV-1 virion infectivity factor (Vif), expressed in vivo, counteracts the antiviral activity of A3G and A3F by inducing their degradation. Other APOBECs may contribute more to viral diversity by inducing less extensive mutations allowing viral replication to persist. Here we show that in APOBEC3C (A3C)-expressing cells infected with the patient-derived HIV-1 molecular clones 210WW, 210WM, 210MW, and 210MM, and the lab-adapted molecular clone LAI, viral G-to-A mutations were detected in the presence of Vif expression. Mutations occurred primarily in the GA context and were relatively infrequent, thereby allowing for spreading infection. The mutations were absent in cells lacking A3C but were induced after transient expression of A3C in the infected target cell. Inhibiting endogenous A3C by RNA interference in Magi cells prevented the viral mutations. Thus, A3C is necessary and sufficient for G-to-A mutations in some HIV-1 strains. A3C-induced mutations occur at levels that allow replication to persist and may therefore contribute to viral diversity. Developing drugs that inhibit A3C may be a novel strategy for delaying viral escape from immune or antiretroviral inhibition.  相似文献   

5.
Several chemotherapeutic drugs have immune-modulating effects. For example, cyclophosphamide (CP) and gemcitabine (GEM) diminish immunosuppression by regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), respectively. Here, we show that intermittent (metronomic) chemotherapy with low-dose CP plus GEM can induce anti-tumor T cell immunity in CT26 colon carcinoma-bearing mice. Although no significant growth suppression was observed by injections of CP (100 mg/kg) at 8-day intervals or those of CP (50 mg/kg) at 4-day intervals, CP injection (100 mg/kg) increased the frequency of tumor peptide-specific T lymphocytes in draining lymph nodes, which was abolished by two injections of CP (50 mg/kg) at a 4-day interval. Alternatively, injection of GEM (50 mg/kg) was superior to that of GEM (100 mg/kg) in suppressing tumor growth in vivo, despite the smaller dose. When CT26-bearing mice were treated with low-dose (50 mg/kg) CP plus (50 mg/kg) GEM at 8-day intervals, tumor growth was suppressed without impairing T cell function; the effect was mainly T cell dependent. The metronomic combination chemotherapy cured one-third of CT26-bearing mice that acquired tumor-specific T cell immunity. The combination therapy decreased Foxp3 and arginase-1 mRNA levels but increased IFN-γ mRNA expression in tumor tissues. The percentages of tumor-infiltrating CD45+ cells, especially Gr-1high CD11b+ MDSCs, were decreased. These results indicate that metronomic chemotherapy with low-dose CP plus GEM is a promising protocol to mitigate totally Treg- and MDSC-mediated immunosuppression and elicit anti-tumor T cell immunity in vivo.  相似文献   

6.
Disseminated or relapsed Ewing sarcoma (EwS) has remained fatal in the majority of patients. A promising approach to preventing relapse after conventional therapy is to establish tumor antigen-specific immune control. Efficient and specific T cell memory against the tumor depends on the expansion of rare T cells with native specificity against target antigens overexpressed by the tumor. Candidate antigens in EwS include six-transmembrane epithelial antigen of the prostate-1 (STEAP1), and the human cancer/testis antigens X-antigen family member 1 (XAGE1) and preferentially expressed antigen in melanoma (PRAME). Here, we screened normal donors and EwS patients for the presence of circulating T cells reactive with overlapping peptide libraries of these antigens by IFN-γ Elispot analysis. The majority of 22 healthy donors lacked detectable memory T cell responses against STEAP1, XAGE1 and PRAME. Moreover, ex vivo detection of T cells specific for these antigens in both blood and bone marrow were limited to a minority of EwS patients and required nonspecific T cell prestimulation. Cytotoxic T cells specific for the tumor-associated antigens were efficiently and reliably generated by in vitro priming using professional antigen-presenting cells and optimized cytokine stimulation; however, these T cells failed to interact with native antigen processed by target cells and with EwS cells expressing the antigen. We conclude that EwS-associated antigens fail to induce efficient T cell receptor (TCR)-mediated antitumor immune responses even under optimized conditions. Strategies based on TCR engineering could provide a more effective means to manipulating T cell immunity toward targeted elimination of tumor cells.  相似文献   

7.
An intranasal DNA vaccine prime followed by a gp41 peptide booster immunization was compared with gp41 peptide and control immunizations. Serum HIV-1-specific IgG and IgA as well as IgA in feces and vaginal and lung secretions were detected after immunizations. Long-term humoral immunity was studied for up to 12 mo after the booster immunization by testing the presence of HIV-1 gp41- and CCR5-specific Abs and IgG/IgA-secreting B lymphocytes in spleen and regional lymph nodes in immunized mice. A long-term IgA-specific response in the intestines, vagina, and lungs was obtained in addition to a systemic immune response. Mice immunized only with gp41 peptides and L3 adjuvant developed a long-term gp41-specific serum IgG response systemically, although over a shorter period (1-9 mo), and long-term mucosal gp41-specific IgA immunity. HIV-1-neutralizing serum Abs were induced that were still present 12 mo after booster immunization. HIV-1 SF2-neutralizing fecal and lung IgA was detectable only in the DNA-primed mouse groups. Intranasal DNA prime followed by one peptide/L3 adjuvant booster immunization, but not a peptide prime followed by a DNA booster, was able to induce B cell memory and HIV-1-neutralizing Abs for at least half of a mouse's life span.  相似文献   

8.
Severe Acute Respiratory Syndrome (SARS) is a deadly infectious disease caused by SARS Coronavirus (SARS-CoV). Inactivated SARS-CoV has been explored as a vaccine against SARS-CoV. However, safe and potent adjuvants, especially with more efficient and economical needle-free vaccination are always needed more urgently in a pandemic. The development of a safe and effective mucosal adjuvant and vaccine for prevention of emergent infectious diseases such as SARS will be an important advancement. PIKA, a stabilized derivative of Poly (I:C), was previously reported to be safe and potent as adjuvant in mouse models. In the present study, we demonstrated that the intraperitoneal and intranasal co-administration of inactivated SARS-CoV vaccine together with this improved Poly (I:C) derivative induced strong anti-SARS-CoV mucosal and systemic humoral immune responses with neutralizing activity against pseudotyped virus. Although intraperitoneal immunization of inactivated SARS-CoV vaccine alone could induce a certain level of neutralizing activity in serum as well as in mucosal sites, co-administration of inactivated SARS-CoV vaccine with PIKA as adjuvant could induce a much higher neutralizing activity. When intranasal immunization was used, PIKA was obligatorily for inducing neutralizing activity in serum as well as in mucosal sites and was correlated with both mucosal IgA and mucosal IgG response. Overall, PIKA could be a good mucosal adjuvant candidate for inactivated SARS-CoV vaccine for use in possible future pandemic.  相似文献   

9.
Nucleoprotein (N) is an immunodominant antigen in many enveloped virus infections. While the diagnostic value of anti‐N antibodies is clear, their role in immunity is not. This is because while they are non‐neutralising, they somehow clear infection by coronavirus, influenza and LCMV in vivo. Here, we show that anti‐N immune protection is mediated by the cytosolic Fc receptor and E3 ubiquitin ligase TRIM21. Exploiting LCMV as a model system, we demonstrate that TRIM21 uses anti‐N antibodies to target N for cytosolic degradation and generate cytotoxic T cells (CTLs) against N peptide. These CTLs rapidly eliminate N‐peptide‐displaying cells and drive efficient viral clearance. These results reveal a new mechanism of immune synergy between antibodies and T cells and highlights N as an important vaccine target.  相似文献   

10.
The effects of a preparation containing partially purified, EL4-derived B cell growth factor(s) (BCGF) on B cell growth and proliferation have been examined by using B lymphocyte subpopulations separated on the basis of size. BCGF was found to maintain and enhance proliferation of a significant proportion of large activated B cells. In contrast, small resting B cells required the presence of BCGF and a second stimulus such as anti-IgM antibody (anti-mu) to be induced to proliferate. This disparity was not due to a lack of an effect of BCGF on small resting B cells. A factor contained within the partially purified EL4 supernatant produced time-dependent increases in cell size and RNA content in all subpopulations. These effects were independent of possible effects due to contaminating lymphokines such as interleukin 2 (IL 2), concanavalin A (Con A), and phorbol myristate acetate (PMA). Nonmitogenic doses of lipopolysaccharide (LPS) failed to show similar effects. Our data suggest that B cells at all levels of in vivo activation are responsive to stimulation by a growth factor present in EL4 supernatant, as manifested by cell growth and RNA synthesis. This activity has not previously been described for BCGF preparations. However, because the partially purified, EL4-derived supernatant used as BCGF in these studies has not been purified to homogeneity, we cannot conclude whether the factors that induce resting B cells to increase in size are the same as the growth factors that synergize with anti-mu to induce B cell proliferation or that maintain the proliferation of activated B cells.  相似文献   

11.
Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis   总被引:47,自引:0,他引:47  
TNF is a protein toxin which is secreted by activated macrophages and monocytes. Although the cytotoxic activity of TNF has been well documented, the mechanism of TNF-induced lysis is not well understood. The goal of this investigation was to determine whether TNF caused one of the classic forms of cell death, i.e., apoptosis, which is characterized by nuclear disintegration and cytoplasmic "boiling," or necrosis, which is characterized by the formation of a "balloon-like" plasma membrane and a lack of nuclear disintegration. Therefore, to distinguish apoptosis from necrosis, we have used time-lapse video microscopy to observe the death of several TNF-sensitive target cell lines while measuring the release of Na2(51)CrO4 and [3H]TdR from cytoplasmic and nuclear compartments, respectively. As targets we selected two spontaneously sensitive cell lines, F17 and L-M, and one resistant cell line, C3HA, which was sensitized by treatment with cycloheximide or by infection with the adeno-SV40 hybrid virus Ad2+ND2. We find that the type of cell death observed depends on the cell being tested. For example, in F17 cells we found that TNF treatment induced a classical form of apoptosis. In contrast, TNF induced a necrotic form of cell death in L-M cells, similar to the lysis induced by antibody and C. Finally, we found that sensitized C3HA cells displayed a novel cytolytic phenotype which resembled apoptosis but did not include DNA fragmentation. These results emphasize the complex nature of the TNF-induced cytotoxic response.  相似文献   

12.
13.
Cholera toxin (CT) has been found to be an extremely potent immunogen for mucosal IgA responses when administered via the intestine. This study has examined both mucosal and systemic immune responses after feeding CT and compared these responses with those obtained after feeding keyhole limpet hemocyanin (KLH), another protein that is strongly immunogenic in mice. Feeding CT to mice resulted not only in IgA antibody in intestinal secretions but also resulted in substantial plasma IgG and IgA antibody levels. Feeding KLH in much larger quantity resulted in little or no antibody response in intestinal secretions or plasma. Lymphoid cells from various tissues of mice fed CT were cultured in vitro for 10 days and the supernatant was tested for antibody to CT. Spontaneous antibody synthesis (no antigen added to cultures) was present in cultures of each cell type, but IgG anti-CT was found mainly in cultures of spleen and mesenteric lymph node cells and IgA anti-CT mainly in cultures of Peyer's patch and lamina propria cells. Peyer's patch cells cultured with CT as antigen synthesized both IgG and IgA anti-CT, suggesting that the antibody response to both isotypes originated in this site. Helper T cell activity for both IgA and IgG anti-CT was detected in spleens, mesenteric lymph nodes, and Peyer's patches. Lastly, when KLH and CT were fed to mice at the same time, an intestinal IgA anti-KLH and plasma IgG anti-KLH response was stimulated, a response pattern similar to that occurring to CT after CT was fed alone. We conclude that mucosal stimulation by CT generates both a systemic IgG and mucosal IgA response to this antigen, and that CT can cause a similar pattern of response to an unrelated protein antigen when both are administered into the intestine at the same time. The data favor the idea that both the IgG and IgA responses originate in GALT and then disseminate to other tissues. We propose that CT accomplishes these effects by altering the regulatory environment within GALT.  相似文献   

14.
Recombinant Norwalk virus-like particles (rNV VLPs) were administered to BALB/c mice by the intranasal (i.n.) route to evaluate the induction of mucosal antibody responses. The results were compared to systemic and mucosal responses observed in new and previous studies (J. M. Ball, M. E. Hardy, R. L. Atmar, M. E. Connor, and M. K. Estes, J. Virol. 72:1345-1353, 1998) after oral administration of rNV VLPs. Immunizations were given in the presence or absence of a mucosal adjuvant, mutant Escherichia coli heat-labile toxin LT(R192G). rNV-specific immunoglobulin G (IgG) and fecal IgA were evaluated by enzyme-linked immunosorbent assay. The i.n. delivery of rNV VLPs was more effective than the oral route at inducing serum IgG and fecal IgA responses to low doses of rNV particles. Vaginal responses of female mice given VLPs by the i.n. and oral routes were also examined. All mice that received two immunizations with low doses i.n. (10 or 25 microg) of rNV VLPs and the majority of mice that received two high doses orally (200 microg) in the absence of adjuvant had rNV-specific serum IgG, fecal, and vaginal responses. Additional experiments evaluated whether rNV VLPs can function as a mucosal adjuvant by evaluating the immune responses to two soluble proteins, keyhole limpet hemocyanin and chicken egg albumin. Under the conditions tested, rNV VLPs did not enhance the serum IgG or fecal IgA response to these soluble proteins when coadministered by the i.n. or oral route. Low doses of nonreplicating rNV VLPs are immunogenic when administered i.n. in the absence of adjuvant, and addition of adjuvant enhanced the magnitude and duration of these responses. Recombinant NV VLPs represent a candidate mucosal vaccine for NV infections in humans.  相似文献   

15.
The aim of our investigation was to improve the effectiveness of DNA vaccines against herpes simplex virus (HSV) infection. We chose coimmunization with DNA encoding cytokines known to emphasize components of immune defense that best correlate with immune protection. These include interferon-producing T and NK cells and the IgG2a isotype immunoglobulin. Our results show that the coadministration of plasmid DNA encoding IL-12 or IL-18 along with glycoprotein B (gB) DNA improves immune induction. Recipients of the coimmunization procedure had elevated humoral as well as IFN-gamma-producing T cell responses and showed greater resistance to vaginal challenge with a lethal dose of HSV-1. The adjuvant effects were observed when the vaccines were administered either systemically or mucosally. By most assays, the adjuvant effect of IL-18 was superior to IL-12, although gB DNA plus IL-18 failed to induce levels of immunity achieved by UV-inactivated HSV immunization. Mucosal immunization proved as an effective means of inducing systemic immunity, but was less effective than the systemic route for inducing protection from vaginal challenge. Our results also demonstrated that protection from such challenges was mainly a property of IFN-gamma. Thus, immunized IFN-gamma-/- mice remained susceptible to challenges even while generating readily measurable immune responses. The approach of using DNA vaccines combined with DNA encoding cytokines holds promise and represents a potentially useful approach for vaccines.  相似文献   

16.
In contrast to numerous studies of female genital tract secretions, the molecular properties of Abs and the magnitude of humoral responses in human male genital tract secretions to naturally occurring Ags and to mucosal and systemic immunizations have not been extensively investigated. Therefore, seminal plasma (SP) collected from healthy individuals was analyzed with respect to Ig levels, their isotypes, molecular forms of IgA, and for the presence of Abs to naturally occurring Ags, or induced by systemic or mucosal immunizations with viral and bacterial vaccines. The results indicated that in SP, IgG and not IgA, is the dominant Ig isotype, and that IgM is present at low levels. IgA is represented by secretory IgA, polymeric IgA, and monomeric IgA. In contrast to the female genital tract secretions in which IgA2 occurs in slight excess, the distribution of IgA subclasses in SP resembles that in plasma with a pronounced preponderance of IgA1. The IgG subclass profiles in SP are also similar to those in serum. Thus, SP is an external secretion that shares common features with both typical external secretions and plasma. Specifically, SP contains naturally occurring secretory IgA Abs to environmental Ags of microbial origin and to an orally administered bacterial vaccine, and plasma-derived IgG Abs to systemically injected vaccines. Therefore, both mucosal and systemic immunization with various types of Ags can induce humoral responses in SP. These findings should be considered in immunization strategies to induce humoral responses against sexually transmitted infections, including HIV-1.  相似文献   

17.
Induction of HIV-1-specific CD8(+) T cells during acute infection is associated with a decline in viremia. The role CD8(+) effectors play in subsequently establishing viral set point remains unclear. To address this, we focused on two acutely infected patients with the same initial Tat-specific CD8(+) response, analyzing their CD8(+) T cell responses longitudinally in conjunction with viral load and sequence evolution. In one patient initiating treatment during acute infection, the frequencies of Tat-specific CD8(+) T cells gradually diminished but persisted, and the Tat epitope sequence was unaltered. By contrast, in the second patient who declined treatment, the Tat-specific CD8(+) T cells disappeared below detection, in conjunction with Gag-specific CD4(+) T cell loss, as plasma viremia reached a set point. This coincided with the emergence of an escape variant within the Tat epitope and an additional Vpr epitope. New CD8(+) T cell responses emerged but with no further associated decline in viremia. These findings indicate that, in the absence of treatment, the initial CD8(+) T cell responses have the greatest impact on reducing viremia, and that later, continuously evolving responses are less efficient in further reducing viral load. The results also suggest that T cell help may contribute to the antiviral efficiency of the acute CD8(+) T cell response.  相似文献   

18.
A novel adjuvant for mucosal immunity to HIV-1 gp120 in nonhuman primates   总被引:3,自引:0,他引:3  
The development of a safe and effective mucosal adjuvant is a crucial step toward a mucosal HIV/AIDS vaccine. This study seeks to determine the promise of a nontoxic mutant of cholera toxin (mCT; E112K) as a mucosal adjuvant in nonhuman primates. HIV-1 gp120 was nasally administered together with mCT E112K or native CT (nCT) as adjuvant on five to six occasions over a 6- to 8-wk period to groups of four rhesus macaques and alone to two monkeys that acted as controls. Macaques given nasal gp120 with either mCT E112K or nCT showed elevated gp120-specific IgG and IgA Ab responses with virus-neutralizing activity in both their plasma and mucosal external secretions, as well as higher numbers of gp120-specific IgA Ab-forming cells in their mucosal and peripheral lymphoid tissues and of IL-4-producing Th2-type CD4-positive (CD4(+)) T cells than did controls. Even though significant mucosal adjuvanticity was seen with both mCT E112K and nCT, neuronal damage was observed only in the nCT-treated, but not in the control or mCT E112K-treated groups. These results clearly show that mCT E112K is an effective and safe mucosal adjuvant for the development of a nasal HIV/AIDS vaccine.  相似文献   

19.
Members of the TNF superfamily have been shown to be instrumental in enhancing cell-mediated immune responses, primarily through their interactions with dendritic cells (DCs). We systematically evaluated the ability of three TNF superfamily molecules, CD40 ligand (CD40L), receptor activator of NF-kappaB ligand (RANKL), and TNF-alpha, to expand ex vivo EBV-specific CTL responses in healthy human individuals and ex vivo HIV-1-specific CTL responses in HIV-1-infected individuals. In both groups of individuals, we found that all three TNF family molecules could expand CTL responses, albeit at differing degrees. CD40L treatment alone was better than RANKL or TNF-alpha alone to mature DCs and to expand CTL. In healthy volunteers, TNF-alpha or RANKL could cooperate with CD40L to maximize the ability of DCs to expand virus-specific CTL responses. In HIV-1 infection, cooperative effects between TNF-alpha or RANKL in combination with CD40L were variable. TNF-alpha and RANKL cooperated with CD40L via differing mechanisms, i.e., TNF-alpha enhanced IL-12 production, whereas RANKL enhanced survival of CD40L-stimulated DCs. These findings demonstrate that optimal maturation of DCs requires multiple signals by TNF superfamily members that include CD40L. In HIV-1 infection, DCs may only require CD40L to maximally expand CTL. Finally, CTL responses were higher in CD4(+) T cell-containing conditions even in the presence of TNF family molecules, suggesting that CD4(+) T cells can provide help to CD8(+) T cells independently of CD40L, RANKL, or TNF-alpha.  相似文献   

20.
Human T cell leukemia virus (HTLV) type-2 is a human retrovirus whose infection has not been tightly linked to human diseases. However, the fairly high prevalence of this infection among HIV-1-positive individuals indicates the importance of better understanding the potential interference of HTLV-2 infection on HIV-1 infection and AIDS. We previously demonstrated that one signature of PBMC freshly derived from HIV-1-infected individuals is the constitutive activation of a C-terminal truncated STAT5 (STAT5Delta). Therefore, we analyzed the potential activation of STATs in HTLV-2 monoinfected and HTLV-2/HIV-1 dually infected individuals. We observed that PBMC of HTLV-2-infected individuals do not show STAT activation unless they are cultivated ex vivo, in the absence of any mitogenic stimuli, for at least 8 h. The emergence of STAT activation, namely of STAT1, in culture was mostly related to the secretion of IFN-gamma. Of note, this phenomenon is not only a characteristic feature of HTLV-2-infected individuals but also occurred with PBMC of HIV-1(+) individuals. Surprisingly, HTLV-2/HIV-1 coinfection resulted in low/absent STAT activation in vivo that paralleled a diminished secretion of IFN-gamma after ex vivo cultivation. Our findings indicate that both HTLV-2 and HIV-1 infection prime T lymphocytes for STAT1 activation, but they also highlight an interference exerted by HTLV-2 on HIV-1-induced STAT1 activation. Although the nature of such a phenomenon is unclear at the present, these findings support the hypothesis that HTLV-2 may interfere with HIV-1 infection at multiple levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号