首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell-free, dialyzed extracts from Azotobacter vinelandii rapidly dephosphorylate [U-14C]ATP to labeled ADP and AMP, which is then degraded to hypoxanthine, the end product of AMP catabolism under the experimental conditions which were used. The intermediates of the pathway from ATP to hypoxanthine have been identified by thin layer chromatography and quantitated by the 14-C content. The concentrations of intermediates present during the production of hypoxanthine are consistent with AMP nucleosidase being responsible for AMP degradation in these extracts. This result was confirmed in experiments which utilized rabbit antibody prepared against purified AMP nucleosidase. The antibody inhibited AMP nucleosidase activity in cell-free extracts but did not inhibit adenine demanase or adenosine deaminase from the same extracts. In the presence of antibody prepared against purified AMP nucleosidase, the dialyzed extracts showed a marked reduction in the production of hypoxanthine from ATP. Other enzymes which could be responsible theoretically for the conversion of AMP to hypoxanthine were not detected by standard assay procedures. These results are consistent with AMP degradation proceeding by way of AMP nucleosidase to yield adenine and ribose 5-phosphate. The adenine is then converted to hypoxanthine by adenine deaminase. Both of these enzymes were present in sufficient quantities to account for the observed rates of hypoxanthine formation. The rate of hypoxanthine formation decreases during the time course of the [U-14-C]ATP degradation experiments, even though the concentration of AMP remains high. This decrease in the rate of hypoxanthine formation as a function of time is attributed to the decreasing ATP and increasing P0-4 concentrations, since ATP is an activator of AMP nucleosidase and P0-4 is an inhibitor. These observations suggest that the in vivo activity of AMP nucleosidase could also be regulated by changes in the relative ratios of ATP:AMP:P0-4.  相似文献   

2.
Adenosine production in intact rat polymorphonuclear leucocytes was studied during 2-deoxyglucose-induced ATP catabolism. A cell-free system containing the cytosolic 5'-nucleotidase (EC 3.1.3.5) as the only phosphohydrolase was also studied. The rate of adenosine formation in both intact cells and the cell-free system showed a similar dependence on energy charge (([ATP] + 1/2 [ADP]/([ATP] + [ADP] + [AMP])), being maximal only at values close to 0.8. Sufficient cytosolic 5'-nucleotidase was present in intact cells to explain the observed rate of adenosine formation. We conclude that the cytosolic 5'-nucleotidase is responsible for adenosine production in rat polymorphonuclear leucocytes. This mechanism provides a direct biochemical link between the energy status of a cell and the rate of adenosine formation.  相似文献   

3.
The influence of adenosine on the ribonucleotide metabolism in quiescent BALB/c 3T3 cells was studied. The cellular adenine ribonucleotides were labelled by pretreating the cells with [2-3H]-adenine. After addition of adenosine to the cell cultures, the amount and radioactivity of the cellular purine ribonucleotides and the radioactivity of the purine compounds in the medium were determined. It appeared that adenosine gave rise both to rapid catabolism of adenine ribonucleotides with inosine 5'-monophosphate (IMP) as an intermediate and to expansion of the cellular adenosine 5'-triphosphate (ATP) pool. The maximal rates and the apparent activation constants for the two processes have been determined. Experiments with varying concentrations of coformycin (an inhibitor of adenosine 5'-monophosphate [AMP] deaminase and adenosine deaminase) and of 5'-amino-5'-deoxyadenosine (an inhibitor of adenosine kinase), respectively, showed that each compound may almost completely inhibit the adenosine-induced catabolism. This effect can be obtained under conditions where there was little or no effect by the two inhibitors on the rate of expansion of the cellular ATP pool. These results may best be explained by assuming that the process of expansion of the ATP pool is independent of the induced catabolism of adenine ribonucleotides, even though both processes seem to depend on the phosphorylation of adenosine to AMP. The total increase in the pool size of ATP and of guanosine 5'-triphosphate (GTP), both caused by adenosine, seems not to have regulatory effect on adenine ribonucleotide catabolism.  相似文献   

4.
ATP concentration is dramatically affected in ischemic injury. From previous studies on ATP mediated purine and pyrimidine salvage in CNS, we observed that when "post-mitochondrial" extracts of rat brain were incubated with ATP at 3.6 mM, a normoxic concentration, formation of IMP always preceded that of adenosine, a well known neuroactive nucleoside and a homeostatic cellular modulator. This observation prompted us to undertake a study aimed at assessing the precise pathways and kinetics of ATP breakdown, a process considered to be the major source of adenosine in rat brain. The results obtained using post-mitochondrial extracts strongly suggest that the breakdown of intracellular ATP at normoxic concentration follows almost exclusively the pathway ATP<=>ADP<=>AMP --> IMP --> inosine<=>hypoxanthine, with little, if any, intracellular adenosine production. At low ischemic concentration, intracellular ATP breakdown follows the pathway ATP<=>ADP<=>AMP --> adenosine --> inosine<=>hypoxanthine with little IMP formation. At the same time, extracellular ATP, whose concentration is known to be enhanced during ischemia, is actively broken down to adenosine through the pathway ATP --> ADP --> AMP --> adenosine, catalysed by the well characterized ecto-enzyme cascade system. Moreover, we show that during intracellular GTP catabolism, xanthosine, in addition to guanosine, is generated through the so called "ribose 1-phosphate recycling for nucleoside interconversion". These results considerably extend our knowledge on the long debated question of the extra or intracellular origin of adenosine in CNS, suggesting that at least in normoxic conditions, intracellular adenosine is of extracellular origin.  相似文献   

5.
Effects of adenine, adenosine, AMP, ADP and ATP on the inducedformation of bacteriochlorophyll and carotenoids in cell suspensionsof dark-aerobically grown Rhodopseudomonas spheroides were examinedunder dark-semiaerobic conditions where no significant cellgrowth occurred. Pigment formation was strongly inhibited by3 mM adenine, adenosine, AMP or ATP, but less strongly by ADP.Inhibition by either adenosine or ATP was completely reversible.Addition of 3 mM adenosine resulted in complete inhibition ofpigment formation, while inhibition by more than 10 min ATPdid not exceed 80%. No accumulation of any precursor-like pigmentsof either bacteriochlorophyll or carotenoids was observed incells incubated in the presence of adenine compounds. Amountsof exogenously-added adenine, adenosine, or AMP decreased significantlyduring incubation, whereas the amount of exogeneously-addedATP or ADP did not appreciably decrease. Addition of 3 mM ATPor adenosine also significantly suppressed 3H-leucine incorporationinto bacterial proteins. Nucleosides other than adenosine wereineffective in inhibiting the induced formation of photosyntheticpigments, indicating that the inhibitory action is specificto adenine compounds. It was assumed that both adenosine andATP inhibit chromatophore formation rather than a particularstep(s) in the biosynthetic pathways of the photosynthetic pigment,and that ATP exerts its effect from outside the cells, whereasadenosine does so after being taken up by the cells. (Received July 24, 1972; )  相似文献   

6.
A cell-free extract of Escherichia coli, even after exhaustive dialysis, was found capable of phosphorylating adenosine 5'-monophosphate (AMP) to adenosine 5'-diphosphate (ADP) and adenosine 5'-triphosphate (ATP). Centrifugation at 100 000 g for 3h sedimented most of the capacity to phosphorylate AMP to ATP, while the supernatant retained a significant capacity to phosphorylate AMP to ADP. The pellet contained a greater amount of phosphate polymers (which were neither DNA, RNA, nor proteins) than did the supernatant. The addition of authentic inorganic polyphosphates to the supernatant restored the phosphorylating capacity of the original extracts. It is concluded that the observed phosphorylation is partly due to inorganic polyphosphate.  相似文献   

7.
Gastric ulcer was elicited in rats by reserpine (5 mg x kg-1 sc.) administration. Ulcer formation (number and severity) was measured 6, 12, 18 and 24 hr after reserpine administration. At the time of killing of the animals, tissue levels of adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), cyclic adenosine monophosphate (cAMP) were measured enzymatically and by radioimmunoassay in the gastric fundal mucosa. The sum of ATP + ADP + AMP (adenylate pool) and the ratio of ATP x ADP-1 were calculated. It was found that (1) the tissue levels of ATP, AMP, cAMP, sum of ATP / ADP + AMP (adenylate pool) and ratio of ATP x ADP-1 increased significantly in the gastric fundal mucosa 6 hr after reserpine administration, thereafter these values decreased gradually and significantly; (2) the tissue level of ADP increased significantly in the gastric fundal mucosa 6 hr after reserpine administration, meanwhile its level increased significantly at 18 and 24 hr; (3) the value of energy charge (ATP + 0.5 ADP x ATP + ADP + AMP-1) remained unchanged; (4) the peaks of biochemical alterations in the gastric fundus mucosa preceded he appearance of ulcers. It was concluded that (1) reserpine ulcer appears after an active metabolic response in the rat gastric fundal mucosa; (2) hypoxaemic damage in the gastric fundal mucosa can be excluded as a possible underlying mechanism of ulcer formation produced by reserpine administration; (3) before the appearance of reserpine ulcer, significant changes in the feedback mechanism, system, i.e. between the ATP--membrane ATPase--ADP and the ATP--adenylate cyclase--cAMP energy systems, can be observed in the rat gastric fundal mucosa.  相似文献   

8.
One of the characteristics of malignant cells is a poor response to hormones and a low level of cyclic AMP. Whilst this is true of intact P388 mouse lymphoma cells, high levels of adenylate cyclase (ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1) activity can be measured in particulate preparations of these cells. When ATP is added to the incubation medium of intact lymphoma cells, the cyclic AMP level is enhanced. This effect of ATP is not mediated by adenosine, nor is it enhanced by NaF. The ATP content of the lymphoma cells is much lower than that of CH23 Chinese hamster fibroblast and PCM3 hybrid cells, whose cyclic AMP levels are not affected by the presence of ATP. This suggests that adenylate cyclase, in the lymphoma cells, is bathed in a pool which is deficient in substrate. The substrate concentration of this pool is thought to be elevated by addition of ATP to the incubation medium with ATP, itself, crossing the plasma membrane.  相似文献   

9.
Anaerobic incubation of rabbit reticulocytes at 37 degrees C in Krebs-Ringer solution supplemented with hemin but devoid of glucose resulted at the end of 1-2h in a drastic decline of their ATP content and an attendant arrest of protein synthesis. Subsequent provision of glucose and reoxygenation of the cells was followed by a rapid replenishment of the ATP pool, while resumption of protein synthesis was markedly delayed. This lag period could be considerably reduced by addition of 5-10 mM adenine or 2,6-diaminopurine to the incubation medium. Lysates prepared from ATP-depleted cells exhibited disaggregation of the polysomes and an inhibition of the nedogenously coded protein synthesis, when tested in a cell-free system supplied with an adequate ATP generator. Both alterations increased in severity with the progressive decay of the intracellular ATP pool. The early phase of partial inhibition following a 40-70% decrease of the cellular ATP level was fully reversible by fortifying the cell-free preparation with dithiothreitol or a suitable NADPH-generating system. Aternative, the inhibition could be also overcome by millimolar amounts of adenine, 2,6-diaminopurine and a variety of other purine derivatives or cyclic AMP. The effect of these compounds was unrelated to the endogenous cyclic AMP pool. Joint addition of both dithiothreitol and cyclic AMP or adenine was necessary for relieving the initiation block in lysates derived from cells depleted of 80-90% of their ATP content. On further aggravating the conditions of energy starvation, an additional requirement for phosphorylated sugars, e.g. glucose 6-phosphate or fructose 1,6-diphosphate, became apparent. ATP depletion brought about by exposing the cells to Antimycin A or 2,4-dinitrophenol resulted in a lesion which was indistinguishable from that induced by anaerobic incubation. On the other hand, energy deprivation in cell-free lysates from untreated reticulocytes, preincubated in the absence of an ATP-generating system failed to duplicate the deleterious effect of intracellular ATP depletion. Some aspects bearing on the biochemical mechanism of the lesion and its reversal are discussed in the light of the available data.  相似文献   

10.
We compared the response of rat PC12 cells and a derivative PC18 cell line to the effects of adenosine receptor agonists, antagonists, and adenine nucleotide metabolizing enzymes. We found that theophylline (an adenosine receptor antagonist), adenosine deaminase, and AMP deaminase all decreased basal cyclic AMP content and tyrosine hydroxylase activity in the PC12 cells, but not in PC18 cells. Both cell lines responded to the addition of 2-chloroadenosine and 5'-N-ethylcarboxamidoadenosine, adenosine receptor agonists, by exhibiting an increase in tyrosine hydroxylase activity and cyclic AMP content. The latter finding indicates that both cell lines contained an adenosine receptor linked to adenylate cyclase. We found that the addition of dipyridamole, an inhibitor of adenosine uptake, produced an elevation of cyclic AMP and tyrosine hydroxylase activity in both cell lines. Deoxycoformycin, an inhibitor of adenosine deaminase, failed to alter the levels of cyclic AMP or tyrosine hydroxylase activity. This suggests that uptake was the primary inactivating mechanism of adenosine action in these cells. We conclude that both cell types generated adenine nucleotides which activate the adenosine receptor in an autocrine or paracrine fashion. We found that PC12 cells released ATP in a calcium-dependent process in response to activation of the nicotinic receptor. We also measured the rates of degradation of exogenous ATP, ADP, and AMP by PC12 cells. We found that the rates of metabolism of the former two were at least an order of magnitude greater than that of AMP. Any released ATP would be rapidly metabolized to AMP and then more slowly degraded to adenosine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Studies on quantitation of RNA synthesis in eucaryotic cells have frequently used adenosine as the radioactively labeled precursor, largely because of the convenience of the firefly luciferin-luciferase assay in measuring ATP pool specific activity (1,2). This could result in some difficulties if the addition of poly(A) to the 3′ OH end of RNA represents a significant portion of total incorporation, as is the case in sea-urchin embryos (3). In addition, in some cases, the ATP pool may be large enough to prevent the use of adenosine as an effective labeling agent. Hence, a simple and sensitive method for the determination of the specific activity of the other nucleic acid precursor pools would be of value.Although the crystalline luciferase is specific for ATP, extracts of firefly lanterns most commonly used for quantitating ATP (4–9) also exhibit activity with other ribonucleoside triphosphates, adenosine tetraphosphate, ADP, and the deoxyribonucleoside triphosphates. This activity is due to the presence of contaminating enzymes such as nucleoside 5′-diphosphate kinase and adenylate kinase which catalyze the formation of ATP from these nucleotides and trace amounts of ADP, also present in the extracts (10–13). Recently, Manandhar and Van Dyke (14) have reported a procedure for quantitating picomole levels of GTP with a crude extract of firefly lanterns. In the present study, we have adapted their procedure to develop an assay for GTP pool specific activity in Xenopus laevis oocytes microinjected with [8-3H]GTP. Our assay may be extended to the analysis of any nucleoside triphosphate pool, provided that an adequate chromatography system is available for the separation of the extracted nucleotides.  相似文献   

12.
Abstract: The cellular level of ATP and related compounds in ischemic gerbil brain was investigated by high performance liquid chromatography (HPLC). Brain samples were obtained in situ following ligation of the common carotid artery. AMP and ADP peaks in the brain extracts in the ischemic group became much larger whereas the ATP peak decreased dramatically. The most striking finding was an extensive increase of adenosine: 50–100 fold. The levels of inosine and hypoxanthine also increased greatly in typical symptomatic gerbil.  相似文献   

13.
A method using ion-pairing liquid chromatography-mass spectrometry (MS) was developed for analyzing adenosine 5(')-monophosphate (AMP), adenosine 5(')-diphosphate (ADP), and adenosine 5(')-triphosphate (ATP) in cellular extracts. Dimethylhexylamine (DMHA) was used as ion-pairing agent to retain and separate the analytes on a reversed-phase microbore column with a gradient program. Positive-ion electrospray ionization-MS was applied for the detection because of the use of the ion-pairing agent. Adduct ions of DMHA with AMP, ADP, and ATP were found to be the most intensive peaks and thus selected as quantitative ions. An external calibration method with linear ranges from 0.1 to 20 microM for AMP, 2 to 20 microM for ADP, and 2.5 to 20 microM for ATP was used for the quantitation. The method was applied to determine concentrations of AMP, ADP, and ATP in extracts of cultured rat C6 glioma cells that were pretreated with various concentrations of Zn. The detected levels of the adenosine nucleotides have been used to calculate total adenosine nucleotide and energy charge potential. Changes in cellular energy status upon exposure to increasing concentration of Zn in the culture medium were analyzed. The results indicated that the addition of Zn in a range of 40 to 120 microg/ml cause a gradual increased in energy charge potential of the cells.  相似文献   

14.
A method using the principle of charge-transfer chromatography has been developed for the determination of cyclic AMP levels in intact prelabeled cells. The ATP pool was prelabeled by incubating the cells in the presence of radioactive adenine. The cyclic AMP formed from ATP was extracted with HC10(4) and separated from adenine and other adenosine-related nucleotides by chromatography on acriflavin-Sephadex G-25. This method provides a rapid and sensitive isolation of cyclic AMP with high recovery (95-100%) and low blnks. Further, no contamination of the cyclic AMP fractions was found by either adenine or adenosine nucleotides such as ATP, ADP or AMP. This procedure is applicable to a variety of cell or tissue systems.  相似文献   

15.
Rat glioma cells grown in culture secrete cyclic adenosine 3':5'-monophosphate (cyclic AMP) into the culture medium following stimulation by beta-agonistic catecholamines. Agents which reduced cellular ATP levels such as valinomycin, oligomycin, and uncouplers of oxidative phosphorylation, inhibited cyclic AMP efflux. Secretion of cyclic AMP was also prevented by prostaglandin A-1 and pharmacological agents including probenecid and papaverine. Of the latter agents, only papaverine reduced ATP levels. These results suggest that the transport of cyclic AMP across animal cell membranes is energy-dependent and subject to regulation.  相似文献   

16.
Selective adenosine release from human B but not T lymphoid cell line   总被引:5,自引:0,他引:5  
Intracellular adenosine formation and release to extracellular space was studied in WI-L2-B and SupT1-T lymphoblasts under conditions which induce or do not induce ATP catabolism. Under induced conditions, B lymphoblasts but not T lymphoblasts, release significant amounts of adenosine, which are markedly elevated by adenosine deaminase inhibitors. In T lymphoblasts, under induced conditions, only simultaneous inhibition of both adenosine deaminase activity and adenosine kinase activities resulted in small amounts of adenosine release. Under noninduced conditions, neither B nor T lymphoblasts release adenosine, even in the presence of both adenosine deaminase or adenosine kinase inhibitors. Comparison of B and T cell's enzyme activities involved in adenosine metabolism showed similar activity of AMP deaminase, but the activities of AMP-5'-nucleotidase, adenosine kinase and adenosine deaminase differ significantly. B lymphoblasts release adenosine because of their combination of enzyme activities which produce or utilize adenosine (high AMP-5'-nucleotidase and relatively low adenosine kinase and adenosine deaminase activities). Accelerated ATP degradation in B lymphoblasts proceeds not only via AMP deamination, but also via AMP dephosphorylation into adenosine but its less efficient intracellular utilization results in the release of adenosine from these cells. In contrast, T lymphoblasts release far less adenosine, because they contain relatively low AMP-5'-nucleotidase and high adenosine kinase and adenosine deaminase activities. In T lymphoblasts, AMP formed during ATP degradation is not readily dephosphorylated to adenosine but mainly deaminated to IMP by AMP deaminase. Any adenosine formed intracellularly in T lymphoblasts is likely to be efficiently salvaged back to AMP by an active adenosine kinase. In general, these results may suggest that adenosine can be produced only by selective cells (adenosine producers) whereas other cells with enzyme combination similar to SupT1-T lymphoblasts can not produce significant amounts of adenosine even in stress conditions.  相似文献   

17.
The growth of transformed mouse fibroblasts (3T6 cells) in medium containing 5% fetal bovine serum was inhibited after treatment with concentrations greater than 50 microM ATP, ADP, or AMP. Adenosine, the common catabolite of the nucleotides, had no effect on cell growth at concentrations below 1 mM. However, the following results indicate that the toxicity of ATP, ADP, and AMP is mediated by serum- and cell-associated hydrolysis of the nucleotides to adenosine. 1) ADP and AMP, but not ATP, were toxic to 3T6 cells grown in serum-free medium or medium in which phosphohydrolase activity of serum was inactivated. Under these conditions, the cells exhibited cell-associated ADPase and 5'-nucleotidase activity, but little ecto-ATPase activity. 2) Inhibition of adenosine transport in 3T6 cells by dipyridamole or S-(p-nitrobenzyl)-6-thioinosine prevented the toxicity of ATP in serum-containing medium and of ADP and AMP in serum-free medium. 3) A 16-24-h exposure to 125 microM AMP or ATP was needed to inhibit cell growth under conditions where serum- and cell-associated hydrolysis of the nucleotides generated adenosine in the medium continuously over the same time period. In contrast, 125 microM adenosine was completely degraded to inosine and hypoxanthine within 8-10 h. Furthermore, multiple doses of adenosine added to the cells at regular intervals over a 16-h period were significantly more toxic than an equivalent amount of adenosine added in one dose. Treatment of 3T6 cells with AMP elevated intracellular ATP and ADP levels and reduced intracellular UTP levels, effects which were inhibited by extracellular uridine. Uridine also prevented growth inhibition by ATP, ADP, and AMP. These and other results indicate that serum- and cell-associated hydrolysis of adenine nucleotides to adenosine suppresses growth by adenosine-dependent pyrimidine starvation.  相似文献   

18.
The turnover of the adenine nucleotide pool, the pathway of the degradation of AMP and the occurrence of recycling of adenosine were investigated in isolated chicken hepatocytes, in which the adenylates had been labelled by prior incubation with [14C]adenine. Under physiological conditions, 85% of the IMP synthesized by the 'de novo' pathway (approx. 37 nmol/min per g of cells) was catabolized directly via inosine into uric acid, and 14% was converted into adenine nucleotides. The latter were found to turn over at the rate of approx. 5 nmol/min per g of tissue. Inhibition of adenosine deaminase by 1 microM-coformycin had no effect on the formation of labelled uric acid, indicating that the initial degradation of AMP proceeds by way of deamination rather than dephosphorylation. Inhibition of adenosine kinase by 100 microM-5-iodotubercidin resulted in a loss of labelled ATP, demonstrating that adenosine is normally formed from AMP but is recycled. Unexpectedly, 5-iodotubercidin did not decrease the total concentration of ATP, indicating that the loss of adenylates caused by inhibition of adenosine kinase was nearly completely compensated by formation of AMP de novo. Anoxia induced a greatly increased catabolism of the adenine nucleotide pool, which proceeded in part by dephosphorylation of AMP. On reoxygenation, the formation of AMP de novo was increased 8-fold as compared with normoxic conditions. The latter results indicate the existence of adaptive mechanisms in chick liver allowing, when required, channelling of the metabolic flux through the 'de novo' pathway, away from the uricotelic catabolic route, into the synthesis of adenine nucleotides.  相似文献   

19.
The isolated cells were obtained from hog thyroid glands treated with dispase. More than 95% of the cells obtained were intact and viable immediately after preparation, and the cell viability did not change during incubation in the experimental conditions. ATP added to the external medium of whole cell suspensions was hydrolyzed in the presence of various divalent cations, especially Mg, and the rate of hydrolysis of ATP was not significantly different between the Mg-ion system and the completed ion system (Mg+Na+K). When whole cell suspensions were disrupted with homogenizer, the hydrolysis of ATP was markedly increased by adding Na plus K. But there was no difference in the Mg-ion system between cell homogenates and whole cell suspensions. ADP, AMP and adenosine as reaction products were found in the reaction mixture which resulted from the hydrolysis of ATP by whole cell suspensions. Our data suggest that Mg-ATPase in the thyroidal isolated cells is an ectoenzyme whose active site(s) are exposed to the external surface of plasma membrane, and that ATP is finally hydrolyzed to adenosine via ADP and AMP by the enzyme(s).  相似文献   

20.
Isolated adrenal cells from Vitamin E-deficient and control rats were prepared by a trypsin digestion method. Cyclic adenosine 3',5'-monophosphate (cyclic AMP) formation was studied in response to adrenocorticotropin (ACTH) in the presence and absence of ascorbate by measuring the conversion of prelabeled adenosine 5'-triphosphate [14C]ATP to cyclic [14C]AMP. Ascorbate (0.5 mM) inhibited ACTH-induced cyclic [14C]AMP formation in adrenal cells isolated from Vitamin E-deficient rats but had no effect in the control cells. The inhibitory effect of ascorbate on ACTH-induced cyclic AMP formation in Vitamin E-deficient rats decreased as the concentration of ACTH increased. In Vitamin E-deficient rats ascorbate inhibited ACTH-induced cyclic [14C]AMP formation after 30 min of incubation. There was no further significant accumulation of cyclic [14C]AMP at 60 min or 120 min although in the absence of ascorbate cyclic [14C]AMP continued to be formed. The in vitro addition of alpha-tocopherol reduced the inhibition of ACTH-induced cyclic [14C]AMP formation by ascorbate in Vitamin E-deficient rats. These studies suggest that alpha-tocopherol and ascorbate may affect ACTH-induced cyclic AMP formation through interaction with the membrane-bound enzyme adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号