首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ceriporiopsis subvermispora is a white-rot fungus used in biopulping processes and seems to use the fatty acid peroxidation reactions initiated by manganese-peroxidase (MnP) to start lignin degradation. The present work shows that C. subvermispora was able to peroxidize unsaturated fatty acids during wood biotreatment under biopulping conditions. In vitro assays showed that the extent of linoleic acid peroxidation was positively correlated with the level of MnP recovered from the biotreated wood chips. Milled wood was treated in vitro by partially purified MnP and linoleic acid. UV spectroscopy and size exclusion chromatography (SEC) showed that soluble compounds similar to lignin were released from the milled wood. SEC data showed a broad elution profile compatible with low molar mass lignin fractions. MnP-treated milled wood was analyzed by thioacidolysis. The yield of thioacidolysis monomers recovered from guaiacyl and syringyl units decreased by 33% and 20% in MnP-treated milled wood, respectively. This has suggested that lignin depolymerization reactions have occurred during the MnP/linoleic acid treatment.  相似文献   

2.
European black pine (Pinus nigra Arn.) chips were treated with the white-rot fungus Ceriporiopsis subvermispora for periods ranging from 20 to 100 days. The effects of pretreatment on the chemical composition of wood and kraft pulping were investigated. The results showed that fungal pretreatment reduced the lignin and extractive content of wood chips. Also, weight losses occurred. Kappa number, viscosity, and reject ratio of biokraft pulps decreased. Biokraft pulps gave better response to beating, which led to significant energy saving during refining. The tear index, burst index, and tensile index of biokraft pulps were found to be lower than those of kraft pulps. However, the tensile index and burst index of 20-day biotreated and unbeaten pulp was higher than those of kraft pulp. Also, the tear index of 20-day biotreated and beaten pulp was higher than that of kraft pulp. The brightness of biokraft pulps decreased irregularly with increasing incubation time.  相似文献   

3.
The brown rot fungus Wolfiporia cocos and the selective white rot fungus Perenniporia medulla-panis produce peptides and phenolate-derivative compounds as low molecular weight Fe3+-reductants. Phenolates were the major compounds with Fe3+-reducing activity in both fungi and displayed Fe3+-reducing activity at pH 2.0 and 4.5 in the absence and presence of oxalic acid. The chemical structures of these compounds were identified. Together with Fe3+ and H2O2 (mediated Fenton reaction) they produced oxygen radicals that oxidized lignocellulosic polysaccharides and lignin extensively in vitro under conditions similar to those found in vivo. These results indicate that, in addition to the extensively studied Gloeophyllum trabeum—a model brown rot fungus—other brown rot fungi as well as selective white rot fungi, possess the means to promote Fenton chemistry to degrade cellulose and hemicellulose, and to modify lignin. Moreover, new information is provided, particularly regarding how lignin is attacked, and either repolymerized or solubilized depending on the type of fungal attack, and suggests a new pathway for selective white rot degradation of wood. The importance of Fenton reactions mediated by phenolates operating separately or synergistically with carbohydrate-degrading enzymes in brown rot fungi, and lignin-modifying enzymes in white rot fungi is discussed. This research improves our understanding of natural processes in carbon cycling in the environment, which may enable the exploration of novel methods for bioconversion of lignocellulose in the production of biofuels or polymers, in addition to the development of new and better ways to protect wood from degradation by microorganisms.  相似文献   

4.
5.
Lipids were analyzed by gas chromatography-mass spectrometry for a 7-week in vitro decay of eucalypt wood by four ligninolytic basidiomycetes. The sound wood contained up to 75 mg of lipophilic compounds per 100 g of wood. Hydrolysis of sterol esters, which represented 38% of total wood lipids, occurred during the fungal decay. The initial increase of linoleic and other free unsaturated fatty acids paralleled the decrease of sterol esters. Moreover, new lipid compounds were found at advanced stages of wood decay that were identified from their mass spectra as unsaturated dicarboxylic acids consisting of a long aliphatic chain attached to the C-3 position of itaconic acid. These dicarboxylic acids were especially abundant in the wood treated with Ceriporiopsis subvermispora (up to 24 mg per 100 g of wood) but also were produced by Phlebia radiata, Pleurotus pulmonarius, and Bjerkandera adusta. We hypothesize that three main alkylitaconic acids (tetradecylitaconic, cis-7-hexadecenylitaconic, and hexadecylitaconic acids) are synthesized by fungi in condensation reactions involving palmitic, oleic, and stearic acids. We suggest that both wood unsaturated fatty acids (present in free form or released from esters during natural decay) and unsaturated metabolites synthesized by fungi could serve as a source for peroxidizable lipids in lignin degradation by white rot basidiomycetes.  相似文献   

6.
Silymarin, a known standardized extract obtained from seeds of Silybum marianum is widely used in treatment of several diseases of varying origin. In the present paper, we clarified the antioxidant activity of silymarin by employing various in vitro antioxidant assay such as 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH·) scavenging, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, total antioxidant activity determination by ferric thiocyanate, total reducing ability determination by Fe3+ ? Fe2+ transformation method and Cuprac assay, superoxide anion radical scavenging by riboflavin/methionine/illuminate system, hydrogen peroxide scavenging and ferrous ions (Fe2+) chelating activities. Silymarin inhibited 82.7% lipid peroxidation of linoleic acid emulsion at 30 μg/mL concentration; butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and trolox indicated inhibition of 83.3, 82.1, 68.1 and 81.3% on peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, silymarin had an effective DPPH· scavenging, ABTS√+ scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power by Fe3+ ? Fe2+ transformation, cupric ions (Cu2+) reducing ability by Cuprac method, and ferrous ions (Fe2+) chelating activities. Also, BHA, BHT, α-tocopherol and trolox, were used as the reference antioxidant and radical scavenger compounds. Moreover, this study, which clarifies antioxidant mechanism of silymarin, brings new information on the antioxidant properties of silymarin. According to the present study, silymarin had effective in vitro antioxidant and radical scavenging activity. It could be used in the pharmacological and food industry because of its antioxidant properties.  相似文献   

7.
An extracellular lipase from Nomuraea rileyi MJ was purified 23.9-fold with 1.69% yield by ammonium sulfate precipitation followed by Sephacryl S-100 HR column chromatography. By mass spectrometry and SDS-polyacrylamide gel electrophoresis, the molecular weight of the homogenous lipase was 81 kDa. The N-terminal sequence was determined as LeuSerValGluGlnThrLysLeuSerLysLeuAlaTyrAsnAsp and it showed no homology to sequences of known lipases. The optimum pH and temperature for activity were 8.0 and 35 °C, respectively. The enzyme was stable in the pH range 7.0-9.0 and at 15-35 °C for 1 h. Higher activity was observed in the presence of surfactants, Na+, NH4+ ions, NaN3 and ethylenediaminetetraacetic acid (EDTA), while Co2+ and Cu2+ ions, cysteine and dithiothreitol (DTT) strongly inhibited activity. The purified lipase hydrolyzed both synthetic and natural triglycerides with maximum activity for trilaurin and coconut oil, respectively. It also hydrolyzed esters of p-nitrophenol (pNP) with highest activity for p-nitrophenyl caprate (pNPCA). The purified lipase was found to promote N. rileyi spore germination in vitro in that germination reached 98% in conidial suspensions containing purified lipase at 2.75 U. Moreover, it enhanced toxicity of N. rileyi toward Spodoptera litura larvae with mortality via topical application reaching 63.3% at 4-10 days post-treatment which calculated to be 2.7 times higher than the mortality obtained using conidial suspensions alone.  相似文献   

8.
Pinus taeda wood chips were biotreated with Ceriporiopsis subvermispora under solid-state fermentation for periods varying from 15 to 90 days. Milled wood lignins extracted from sound and biotreated wood samples were characterized by wet-chemical and spectroscopic techniques. Treatment of the lignins by derivatization followed by reductive cleavage (DFRC) made it possible to detect DFRC monomers and dimers that are diagnostic of the occurrence of arylglycerol-β-O-aryl and β-β, β-5, β-1, and 4-O-5 units in the lignin structure. Quantification of these DFRC products indicated that β-O-aryl cleavage was a significant route for lignin biodegradation but that β-β, β-5, β-1, and 4-O-5 linkages were more resistant to the biological attack. The amount of aromatic hydroxyls did not increase with the split of β-O-4 linkages, suggesting that the β-O-4 cleavage products remain as quinone-type structures as detected by UV and visible spectroscopy. Nuclear magnetic resonance techniques also indicated the formation of new substructures containing nonoxygenated, saturated aliphatic carbons (CH2 and CH3) in the side chains of lignins extracted from biotreated wood samples.  相似文献   

9.
Reactive oxygen species and lipid peroxidation reaction, causes of sperm damage, can be diminished by action of antioxidative enzymes. This study aimed to investigate effects of (1) the antioxidative enzymes; catalase, glutathione peroxidase and superoxide dismutase, on epipididymal cat sperm quality and (2) the lipid peroxidation reaction induced by a transition metal (ferrous ion (II); Fe2+) on sperm quality during the cryopreservation process. Epididymal spermatozoa harvested from 39 male cats were pooled and divided into 13 aliquots (n = 13). Each aliquot was resuspended with either a Tris egg yolk extender I (control; EE-I), or the Tris egg yolk extender I supplemented with 200 U/mL catalase (EE-CAT), or 10 U/mL glutathione peroxidase (EE-GPx), or 600 U/mL superoxide dismutase (EE-SOD), and then cryopreserved. After thawing, each sperm sample was subdivided into two groups; with and without lipid peroxidation induction (EE-I plus Fe2+, EE-CAT plus Fe2+, EE-GPx plus Fe2+ and EE-SOD plus Fe2+). Subjective sperm motility, membrane, and acrosome integrity were evaluated at the time of collection, after cooling, and at 0, 2, 4, and 6 h after thawing. Motility patterns assessed by computer-assisted sperm analysis (CASA), mitochondrial activity, and DNA integrity were evaluated during post-thaw incubation, whereas percentage of lipid peroxidation was detected at 0 and 6 h after thawing. The results demonstrate that catalase supplementation reduced linear motility and subjective motility immediately and 2 h after thawing (P < 0.05). Catalase supplementation, however, improved DNA integrity at 4 h (P < 0.05). Supplementation with glutathione peroxidase, compared to the control group, had a statistically significant positive effect on subjective motility at 0 and 6 h, linear motility at 6 h, mitochondrial activity at 6 h, membrane integrity at 2 and 6 h, and DNA integrity at 4 h after thawing. Although superoxide dismutase had a positive effect on sperm membrane integrity at 2 h after thawing (P < 0.05), it significantly reduced membrane integrity after cooling, linear motility at thawing, and acrosome integrity at 2 h after thawing. None of the three selected antioxidative enzymes significantly influenced acrosome integrity and none reduced the level of lipid peroxidation. Furthermore, induction of the lipid peroxidation reaction by Fe2+ negatively affected most of the sperm quality parameters, i.e., motility and DNA integrity, during post-thaw sperm incubation (P < 0.05). After thawing, there were, however, no significant differences between the control plus Fe2+ and the antioxidative enzymes supplementation plus Fe2+ groups. We can conclude that (1) glutathione peroxidase exhibits positive effects on post-thaw epididymal cat spermatozoa; but (2) none among the selected antioxidative enzymes could improve all sperm quality parameters; and (3) the lipid peroxidation reaction may be one cause of post-thaw epididymal sperm damage in cats, but the concentrations of antioxidative enzymes used in this study could not protect cat spermatozoa from lipid peroxidation induction.  相似文献   

10.
《Fungal biology》2014,118(11):935-942
Trametes versicolor is a promising white-rot fungus for the biological pretreatment of lignocellulosic biomass. In the present work, T. versicolor ATCC 20869 was grown on Pinus taeda wood chips under solid-state fermentation conditions to examine the wood-degrading mechanisms employed by this fungus. Samples that were subjected to fungal pretreatment for one-, two- and four-week periods were investigated. The average mass loss ranged from 5 % to 8 % (m m1). The polysaccharides were preferentially degraded: hemicellulose and glucan losses reached 13.4 % and 6.9 % (m m1) after four weeks of cultivation, respectively. Crude enzyme extracts were obtained and assayed using specific substrates and their enzymatic activities were measured. Xylanases were the predominant enzymes, while cellobiohydrolase activities were marginally detected. Endoglucanase activity, β-glucosidase activity, and wood glucan losses increased up to the second week of biodegradation and remained constant after that time. Although no lignin-degrading enzyme activity was detected, the lignin loss reached 7.5 % (m m1). Soluble oxalic acid was detected in trace quantities. After the first week of biodegradation, the Fe3+-reducing activity steadily increased with time, but the activity levels were always lower than those observed in the undecayed wood. The progressive wood polymer degradation appeared related to the secretion of hydrolytic enzymes, as well as to Fe3+-reducing activity, which was restored in the cultures after the first week of biodegradation.  相似文献   

11.
Ceriporic acids are a class of alk(en)ylitaconic acids produced by a selective lignin-degrading fungus, Ceriporiopsis subvermispora. The unique function of alkylitaconic acid is the redox silencing of the Fenton reaction system by inhibiting reduction of Fe3+. Ceriporic acids have an asymmetric centre at carbon-3, but absolute configuration has not been determined. We have isolated a series of ceriporic acids from the cultures of C. subvermispora, and measured their NMR spectra using a chiral shift reagent. In comparison with NMR spectra of (R)-(−)- and (S)-(+)-methylsuccinic acid and those of natural and chemically synthesized racemic mixtures of ceriporic acids, we have determined the absolute configuration of ceriporic acids as (R)-3-tetradecylitaconic acid (ceriporic acid A), (R)-3-hexadecylitaconic acid (ceriporic acid B) and (R,Z)-2-(hexadec-7-enyl)-3-itaconic acid (ceriporic acid C). We herein discuss their stereoselective biosynthetic pathway and the structural diversity of fungal secondary metabolites.  相似文献   

12.
Pinus taeda wood chips were treated with the biopulping fungus, Ceriporiopsis subvermispora, under solid-state fermentation for periods varying from 7 to 90 days. Low molecular mass compounds and oxidative enzymes were extracted from biotreated wood samples. Manganese-dependent peroxidase was the main oxidative enzyme on all biodegradation periods. Aqueous extracts from biotreated wood presented decreasing pH values, oxalic acid being the major organic acid secreted by the fungus. Analysis of these extracts by gas chromatography coupled with mass spectrometry (GC/MS) revealed small amounts of fatty acids, several short-chain organic acids (C3–C6) and numerous sugar derivatives. 3-methoxy-4-hydroxy benzaldehyde, 3-methoxy-4-hydroxy benzoic acid, 3,4-dihydroxy benzoic acid and tricarboxy-benzene were also found in the wood extracts. A remarkable characteristic of the wood extracts was a strong Fe3+-reducing ability. High Fe3+-reducing activity and high catechol concentrations were detected in the wood extracts from the undecayed control. This reducing activity and catechol concentrations decreased during the first 7 days of biodegradation. However, from the seventh day of culturing, catechol derivatives coming from lignin degradation start to accumulate in the cultures and Fe3+-reduction activity increased again. The Fe3+-reduction activity observed in the wood extracts indicates that Fe2+ would be available in solution during the wood decay process. Considering that Fe2+ and H2O2 (produced by this fungus based on MnP-degradation of oxalate) were present in the wood extracts, at least some extent for degradation reactions based on Fenton-chemistry, similarly to the observed in brown-rot fungi, is supposed to occur during wood decay by C. subvermispora.  相似文献   

13.
Ceriporiopsis subvermispora is a selective white rot basidiomycete which degrades lignin in wood at a distance far from enzymes. Low molecular mass metabolites play a central role in the oxidative degradation of lignin. To understand the unique wood-decaying mechanism, we surveyed the oxidized derivatives of ceriporic acids (alk(en)ylitaconic acids) produced by C. subvermispora using high-resolution liquid chromatography multiple-stage mass spectrometry (HR-LC/MSn). The analysis of the precursor and product ions from the extract suggested that an epoxidized derivative of ceriporic acid is produced by the fungus. To identify the new metabolite, an authentic compound of ceriporic acid epoxide was synthesized in vitro by reacting (R)-3-[(Z)-hexadec-7-enyl]-itaconic acid (ceriporic acid C) with m-chloroperbenzoic acid. The precursor and product ions from the natural metabolite and authentic epoxide were identical and distinguishable from those of hydroxy and hydroperoxy derivatives after reduction with NaBD4. Feeding experiments with [U-13C]-glucose, 99% and the subsequent analyses of the first and second generation product ions demonstrated that the oxidized ceriporic acid was (R)-3-(7,8-epoxy-hexadecyl)-itaconic acid. To our knowledge, this study is the first to report that natural alkylitaconic acid bears an epoxy group on its side chain.  相似文献   

14.
The differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on substrates Fe2 + and S0 was investigated by using synchrotron radiation based scanning transmission X-ray microscopy (STXM) imaging and microbeam X-ray fluorescence (μ-XRF) mapping. The extracellular thiol groups (SH) were first alkylated by iodoacetic acid forming Protein-SCH2COOH and then the P-SCH2COOH was marked by calcium ions forming P-SCH2COOCa. The STXM imaging and μ-XRF mapping of SH were based on analysis of SCH2COO-bonded Ca2 +. The results indicated that the thiol group content of A. ferrooxidans grown on S0 is 3.88 times to that on Fe2 +. Combined with selective labeling of SH by Ca2 +, the STXM imaging and μ-XRF mapping provided an in situ and rapid analysis of differential expression of extracellular thiol groups.  相似文献   

15.
The reactions of mass-selected iron clusters Fen + (n=1-5) with dimethyl carbonate, (CH3O)2CO, are examined by means of Fourier-transform ion-cyclotron-resonance mass spectrometry. For the bare metal cation Fe+, loss of a methyl radical prevails which leads to the iron carbonate species FeOC(O)OCH3 +. For the corresponding Fen + clusters, this type of reaction is not observed anymore. Instead, the clusters show a strong tendency for a formal O-atom abstraction leading to the formation of the corresponding monoxide clusters FenO+ In addition, several bond activations of dimethyl carbonate are observed which markedly differ from the behavior of the mononuclear cation. Nevertheless, a mechanistic analysis implies that the initial steps are the same for bare Fe+ as well as small Fen + clusters.  相似文献   

16.
A system comprising laccase and a suitable phenol such as 4-hydroxybenzoic acid (HBA) or synthetic lignin (DHP) exhaustively peroxidized linoleic acid in acetate buffer. The presence of phenols in lignin was essential since an exhaustively methylated preparation of the same lignin did not support peroxidation. The peroxidation rate was greatly enhanced by Mn2+, which was oxidized to Mn3+ by laccase/HBA, whereas H2O2 inhibited strongly due to rapid reduction of Mn3+ by H2O2 with concomitant formation of O2. When acetate was replaced by Mn3+–chelating oxalate or malonate, there was no change in peroxidation rates in the absence of Mn2+, whereas strong inhibition was observed in the presence of Mn2+. In case of malonate part of the inhibition was due to H2O2 formation as a result of Mn3+ reduction by malonate. These findings suggest that laccase may contribute to fungal lipid peroxidation in vivo thus expanding its role in the biodegradation of lignin and other recalcitrant aromatic compounds.  相似文献   

17.
A novel halophilic alginate-degrading microorganism was isolated from rotten seaweed and identified as Isoptericola halotolerans CGMCC5336. The lyase from the strain was purified to homogeneity by combining of ammonium sulfate fractionation and anion-exchange chromatography with a specific activity of 8409.19 U/ml and a recovery of 25.07%. This enzyme was a monomer with a molecular mass of approximately 28 kDa. The optimal temperature and pH were 50 °C and pH 7.0, respectively. The lyase maintained stability at neutral pH (7.0–8.0) and temperatures below 50 °C. Metal ions including Na+, Mg2+, Mn2+, and Ca2+ notably increased the activity of the enzyme. With sodium alginate as the substrate, the Km and Vmax were 0.26 mg/ml and 1.31 mg/ml min, respectively. The alginate lyase had substrate specificity for polyguluronate and polymannuronate units in alginate molecules, indicating its bifunctionality. These excellent characteristics demonstrated the potential applications in alginate oligosaccharides production with low polymerisation degrees.  相似文献   

18.
Two extracellular chitinases (designated as Chi-56 and Chi-64) produced by Massilia timonae were purified by ion-exchange chromatography, ammonium sulfate precipitation, and gel-filtration chromatography. The molecular mass of Chi-56 was 56 kDa as determined by both SDS-PAGE and gel-filtration chromatography. On the other hand, Chi-64 showed a molecular mass of 64 kDa by SDS-PAGE and 28 kDa by gel-filtration chromatography suggesting that its properties may be different from those of Chi-56. The optimum temperature, optimum pH, pI, Km, and Vmax of Chi-56 were 55 °C, pH 5.0, pH 8.5, 1.1 mg mL−1, and 0.59 μmol μg−1 h−1, respectively. For Chi-64, these values were 60 °C, pH 5.0, pH 8.5, 1.3 mg mL−1, and 1.36 μmol μg−1 h−1, respectively. Both enzymes were stimulated by Mn2+ and inhibited by Hg2+, and neither showed exochitinase activity. The N-terminal sequences of Chi-56 and Chi-64 were determined to be Q-T-P-T-Y-T-A-T-L and Q-A-D-F-P-A-P-A-E, respectively.  相似文献   

19.
Ramalin (γ-glutamyl-N′-(2-hydroxyphenyl)hydrazide), a novel compound, was isolated from the methanol-water extract of the Antarctic lichen Ramalina terebrata by several chromatographic methods. The molecular structure of ramalin was determined by spectroscopic analysis. The experimental data showed that ramalin was five times more potent than commercial butylated hydroxyanisole (BHA) in scavenging 1-diphenyl-2-picryl-hydazil (DPPH) free radicals, 27 times more potent in scavenging 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid free radicals (ABTS+) than the vitamin E analogue, trolox, and 2.5 times more potent than BHT in reducing Fe3+ to Fe2+ ions. Similarly, ramalin was 1.2 times more potent than ascorbic acid in scavenging superoxide radicals and 1.25 times more potent than commercial kojic acid in inhibiting tyrosinase enzyme activity, which ultimately leads to whitening of skin cells. Ramalin showed no or very little cytotoxicity in human keratinocyte and fibroblast cells at its antioxidant concentration. Furthermore, ramalin was assessed to determine its antioxidant activity in vivo. One microgram per milliliter ramalin significantly reduced the released nitric oxide (NO) and 0.125 μg/ml ramalin reduced the produced hydrogen peroxide (H2O2) in LPS (lipopolysaccharide)-stimulated murine macrophage Raw264.7 cells. Considering all the data together, ramalin can be a strong therapeutic candidate for controlling oxidative stress in cells.  相似文献   

20.
Myriophyllum spicatum L. is a nonindigenous invasive plant in North America that can displace the closely related native Myriophyllum sibiricum Komarov. We analyzed the chemical composition (including: C, N, P, polyphenols, lignin, nonpolar extractables, and sugars) of M. spicatum and M. sibiricum and determined how the chemistry of the two species varied by plant part with growing environment (lake versus tank), irradiance (full sun versus 50% shading), and season (July through September). M. spicatum had higher concentrations of carbon, polyphenols and lignin (C: 47%; polyphenols: 5.5%; lignin: 18%) than M. sibiricum (C: 42%; polyphenols: 3.7%; lignin: 9%) while M. sibiricum had a higher concentration of ash under all conditions (12% versus 8% for M. spicatum). Apical meristems of both species had the highest concentration of carbon, polyphenols, and tellimagrandin II, followed by leaves and stems. Tellimagrandin II was present in apical meristems of both M. spicatum (24.6 mg g−1 dm) and M. sibiricum (11.1 mg g−1 dm). Variation in irradiance from 490 (shade) to 940 (sun) μmol of photons m−2 s−1 had no effect on C, N, and polyphenol concentrations, suggesting that light levels above 490 μmol of photons m−2 s−1 do not alter chemical composition. The higher concentration of polyphenols and lignin in M. spicatum relative to M. sibiricum may provide advantages that facilitate invasion and displacement of native plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号