首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Organophosphate hydrolase has potential as a bioremediation and chemical detoxification enzyme, but the problems of reusability and stability need to be addressed to use this enzyme on an industrial scale. Immobilizing the enzyme to a nanoscaffold may help to solve these problems. Amyloid fibrils generated from insulin and crystallin provided a novel nanoscaffold for the immobilization of organophosphate hydrolase, using glutaraldehyde as the crosslinking reagent. Electrophoretic, centrifugation, and temperature stability experiments, together with transmission electron microscopy were undertaken to verify that crosslinking had successfully occurred. The resulting fibrils remained active towards the substrate paraoxon and when immobilized to the insulin amyloid fibrils, the enzyme exhibited a significant (~ 300%) increase in the relative temperature stability at 40, 45, and 50°C (as measured by comparing the initial enzyme activity to the activity remaining after heating), compared to free enzyme. This confirms that amyloid fibrils could provide a new type of nanoscaffold for enzyme immobilization.  相似文献   

2.
【背景】玉米赤霉烯酮(Zearalenone,ZEN)是污染最广泛的霉菌毒素之一,对饲料行业和畜牧业造成了巨大的经济损失。目前研究最为广泛的玉米赤霉烯酮降解酶ZHD101因其热稳定性较差,无法满足工业应用上的要求。【目的】为实现玉米赤霉烯酮降解酶在工业上的应用,寻找酶学性质更突出的ZEN降解酶。【方法】基于对Gen Bank数据库的挖掘,发现一个来源于麦氏喙枝孢霉(Rhinocladiella mackenziei CBS 650.93)的Rmzhd基因,构建p ET-46-Rmzhd质粒。利用大肠杆菌表达体系和亲和层析、离子交换纯化体系对蛋白进行表达和纯化,通过高效液相凝胶色谱分析酶学性质。【结果】发现一个新的ZEN水解酶Rm ZHD,RmZHD在pH 8.6和45°C条件下的活性最高,而且具有较高的耐热性。结构分析表明,较高的盐桥数目和溶剂暴露脯氨酸含量可能是造成其高耐热性的原因。【结论】本研究为促进玉米赤霉烯酮降解酶在工业上的应用打下基础。  相似文献   

3.
This study is aimed to reveal the molecular incidence of organophosphorus insecticides degradation during the fermentation of Korean food yeulmu-mulkimchi. To this end, two opdA and opdE which consist of 930 and 894 bp that encode 309 and 297 amino acids, respectively, were cloned from the Leuconostoc mesenteroides WCP307 strain that was isolated from chlorpyrifos (CP) impregnated kimchi. The Escherichia coli that harbored the opdA and opdE genes depleted a CP concentration of 72% and 83%, respectively, in an M9 medium after 6 days. The OpdA and OpdE enzymes molecular weights were estimated to be approximately 35 and 33 kDa and showed optimal activities at 30 °C with a pH of 7.0 and 6.0, respectively. However, the mutated OpdA (Ser128 Ala128) and OpdE (Ser129 Ala129) enzymes had no activities on OP insecticides and ρ-nitrophenyl butyrate substrates. In addition, the OpdA and OpdE enzymes showed profound catalytic activities against cadusafos, comnaphos, diazinon, dyfonate, ethoprophos, fenamiphos, methylparathion, and parathion insecticides. Therefore, it is assumed that OpdA and OpdE enzymes detoxified the pesticides contaminated kimchi composition like Chinese cabbages during fermentation. Furthermore, the OpdA and OpdE enzymes augmented the diversity of new LAB-opd enzymes group in nature.  相似文献   

4.
5.
Organophosphorus (OP) compounds are widely used as pesticides in agriculture but cause broad-area environmental pollution. In this work, we have expressed a bacterial organophosphorus hydrolase (OPH) gene in tobacco plants. An assay of enzyme activity showed that transgenic plants could secrete OPH into the growth medium. The transgenic plants were resistant to methyl parathion (Mep), an OP pesticide, as evidenced by a toxicity test showing that the transgenic plants produced greater shoot and root biomass than did the wild-type plants. Furthermore, at 0.02% (v/v) Mep, the transgenic plants degraded more than 99% of Mep after 14 days of growth. Our work indicates that transgenic plants expressing an OPH gene may provide a new strategy for decontaminating OP pollutants.  相似文献   

6.
Recombinant epoxide hydrolase (EH) from Aspergillus niger can be a very promising tool for the resolution of various racemic epoxides by enantioselective hydrolysis. The enzyme was successfully immobilized by ionic adsorption onto DEAE-cellulose (99% yield, 70% of retention activity). The temperature for maximal activity (40 °C) and the activation energy (38.8 kJ/mol) were similar for both the immobilized and free EHs, whereas the optimal pH was about one unit less for the immobilized enzyme. Thermal stability was also affected by immobilization; the immobilized enzyme appeared to be slightly less stable than the free one. However, a gram-scale resolution of racemic para-chlorostyrene oxide (pCSO) was successfully carried out in a repeated batch reactor, operated for seven cycles. Furthermore, using a very high substrate concentration of 2 M (306 g/L), i.e. biphasic conditions, the resolution of 3 g of pCSO was also achieved in a repeated batch reactor using approximately 300 mg of immobilized EH, corresponding to less than 3 mg of the enzymatic powder.  相似文献   

7.
We have previously reported that organophosphorus hydrolase (OPH) can be spontaneously entrapped in functionalized mesoporous silica (FMS) with HOOC- as the functional groups and the entrapped OPH in HOOC-FMS showed enhanced enzyme specific activity. This work is to study the mechanisms that why OPH entrapped in FMS displayed the enhanced activity in views of OPH-FMS interactions using spectroscopic methods. The circular dichroism (CD) spectra show that, comparing to the secondary structure of OPH free in solution, OPH in HOOC-FMS displayed increased α-helix/β-strand transition of OPH with increased OPH loading density. The fluorescence emission spectra of Trp residues were used to assess the tertiary structural changes of the enzyme. There was a 42% increase in fluorescence. This is in agreement with the fact that the fluorescence intensity of OPH was increased accompanying with the increased OPH activity when decreasing urea concentrations in solution. The steady-state anisotropy was increased after OPH entrapping in HOOC-FMS comparing to the free OPH in solution, indicating that protein mobility was reduced upon entrapment. The solvent accessibility of Trp residues of OPH was probed by using acrylamide as a collisional quencher. Trp residues of OPH-FMS had less solvent exposure comparing with free OPH in solution due to its electrostatical binding to HOOC-FMS thereby displaying the increased fluorescence intensity. These results suggest the interactions of OPH with HOOC-FMS resulted in the protein immobilization and a favorable conformational change for OPH in the crowded confinement space and accordingly the enhanced activity.  相似文献   

8.
Epoxide hydrolases catalyze hydrolytic epoxide ring-opening, most often via formation of a covalent hydroxyalkyl-enzyme intermediate. A mutant of Agrobacterium radiobacter epoxide hydrolase, in which the phenylalanine residue that flanks the invariant catalytic aspartate nucleophile is replaced by a threonine, exhibited inactivation during conversion when the (R)-enantiomer of para-nitrostyrene epoxide was used as substrate. HPLC analysis of tryptic fragments of the epoxide hydrolase, followed by MALDI-TOF and TOF/TOF analysis, indicated that inactivation was due to conversion of the nucleophilic aspartate into isoaspartate, which represents a novel mechanism of catalysis-induced autoinactivation. Inactivation occurred at a lower rate with the (S)-enantiomer of para-nitrostyrene epoxide, indicating that it is related to the structure of the covalent hydroxyalkyl-enzyme intermediate.  相似文献   

9.
Organophosphorus hydrolase (OPH) has been incorporated within polyurethane foams during polymer synthesis as a means of reducing the enzyme's environmental sensitivity to alterations in pH and bleach‐induced enzyme denaturation. Unfavorable losses of enzyme activity upon altered pH are reduced by covalently incorporating OPH within polyurethane matrices. Also, the stability of the immobilized enzyme under alkaline conditions is significantly enhanced. The bleach compatibility of OPH is also increased upon enzyme polymerization. Although a fraction of the increased bleach compatibility results from polyurethane oxidation, the covalent linkages between OPH and polyurethane directly enhance enzyme stability in buffered solutions of calcium hypochlorite bleach. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 250–254, 1999.  相似文献   

10.
Homo- and hetero-dimers of inactive organophosphorous group(s) dramatically enhanced the acetylcholinesterase (AChE; EC 3.1.1.7) inhibiting potency, with the highest potency observed at a tether length of 6 methylene groups (6d) for the homodimers, and 7 methylene groups (8e) for the heterodimers. The docking model of Drosophila melanogaster AChE suggested that 6d and 8e bound at the catalytic and peripheral sites of AChE, in which two organophosphorous groups of 6d individually oriented towards TRP83 of catalytic sites and TRP321 of peripheral sites, and phthalicimide group of 8e was appropriately arranged for a π-π interaction with the phenyl ring of TYR330, furthermore, the organophosphorous group introduced hydrophobic interaction with TRP83. The compounds prepared in this work demonstrated high insecticidal activity to Lipaphis erysimi and Tetranychus cinnbarinus at the concentration 300mg/L.  相似文献   

11.
The plasmid encoding His-tagged organophosphorus hydrolase (OPH) cloned from Sphingobium fuliginis was modified to be transferred back to this bacterium. The replication function of S. amiense plasmid was inserted at downstream of OPH gene, and S. fuliginis was transformed with this plasmid. The transformant produced larger amount of active OPH with His-tag than E. coli.  相似文献   

12.
Moraxella sp., a native soil organism that grows on p-nitrophenol (PNP), was genetically engineered for the simultaneous degradation of organophosphorus (OP) pesticides and p-nitrophenol (PNP). The truncated ice nucleation protein (INPNC) anchor was used to target the pesticide-hydrolyzing enzyme, organophosphorus hydrolase (OPH), onto the surface of Moraxella sp., alleviating the potential substrate uptake limitation. A shuttle vector, pPNCO33, coding for INPNC-OPH was constructed and the translocation, surface display, and functionality of OPH were demonstrated in both E. coli and Moraxella sp. However, whole cell activity was 70-fold higher in Moraxella sp. than E. coli. The resulting Moraxella sp. degraded organophosphates as well as PNP rapidly, all within 10 h. The initial hydrolysis rate was 0.6 micromol/h/mg dry weight, 1.5 micromol/h/mg dry weight, and 9.0 micromol/h/mg dry weight for methyl parathion, parathion, and paraoxon, respectively. The possibility of rapidly degrading OP pesticides and their byproducts should open up new opportunities for improved remediation of OP nerve agents in the future.  相似文献   

13.
为了探索酶法合成头孢曲嗪的产业化工艺路线,从红纹黄单胞菌Xanthomonas rubrillineans中克隆-氨基酸酯水解酶基因全序列,转化入大肠杆菌中表达。以头孢曲嗪的合成转化率为指标,分别考察纯化的重组-氨基酸酯水解酶合成头孢曲嗪的最适温度、最适pH和最佳底物摩尔比。经聚丙烯酰胺凝胶电泳分析,重组-氨基酸酯水解酶的单体分子量为70 kDa。催化合成头孢曲嗪的最适pH为(6.0±0.1),最适温度为36℃。底物浓度约为7-ATTC 30 mmol/L、HPGM HCl 120 mmol/L,酶用量22 U/mL时,头孢曲嗪的转化率达到64.3%。结果为优化酶法合成头孢曲嗪的产业化工艺奠定了基础。  相似文献   

14.
A significantly improved, recombinant Escherichia coli has been developed to degrade the toxic organophosphorus compound, Paraoxon, to non-toxic materials by co-expression of organophosphorus hydrolase (OPH) under trc promoter and Vitreoscilla hemoglobin (VHb) under O2dependent nar promoter. VHb-expressing whole cells had significant enhancement of OPH activity (48%, 18.7 vs. 27.8 unit l–1) and bioconversion efficiency V max/K m (44%, 0.14 vs. 0.2 min–1) compared to VHb-free system.  相似文献   

15.
Cross-linked enzyme crystals of organophosphate hydrolase (CLEC-OPH) prepared from crude recombinant E. coli cell lysate was used for the development of an electrochemical biosensor for the detection of organophosphate pesticides. CLEC-OPH showed an increased V max of 0.721 U mg protein−1 and a slightly lower K m of 0.083 mM on paraoxon compared to the crude enzyme, resulting in an improved catalytic efficiency (k cat/K m = 4.17 × 105 M−1 min−1) with a remarkable increase on thermostability. An amperometric biosensor was constructed based on glutaraldehyde and albumin cross-linkage of CLEC-OPH with carbon nanotubes. The sensor exhibited greater sensitivity and operational stability with a lower limit of detection when compared with a sensor using an equivalent loading of crude OPH in a non-crystal form. The application of crude enzyme-based CLEC would offer a simple and economical approach for the fabrication of efficient electrochemical biosensors.  相似文献   

16.
We report, the surface presentation of organophosphorus hydrolase (OPH) and green fluorescent protein (GFP) fusions by employing the adhesin-involved-in-diffuse-adherence (AIDA-I) translocator domain as a transporter and anchoring motif. The surface location of the OPH-GFP fusion protein was confirmed by immunofluorescence microscopy, and protease accessibility, followed by Western blotting analysis. The investigation of growth kinetics and stability of resting cultures showed that the presence of the AIDA-I translocator domain in the outer membrane neither inhibits cell growth nor affects cell viability. Furthermore, the surface-exposed OPH-GFP was shown to have enzymatic activity and a functional fluorescence moiety. These results suggest that AIDA-I autotransporter is a useful tool to present heterologous macromolecule passenger proteins on the bacterial surface. Our strategy of linking GFP to OPH and the possibility to employ various bacterial species as host has enormous potential for enhancing field use.  相似文献   

17.
Acylpeptide hydrolase, a new class the serine-type peptidase, belongs to the , hydrolase group of proteins. The tetrameric enzyme showed varying degree of stability in the presence of 1–8 M urea. The enzyme displayed about 15% of its original activity when treated with 8 M urea for 1 h at 25°C. Complete recovery of the enzyme activity was observed on dialysis or dilution (50-fold) of the denatured enzyme. However, complete abolition of the enzyme activity was observed in the presence of 1 M GnHCl. Dialysis of the 1 M GnHCl-treated enzyme resulted in 15–20% recovery of the enzyme activity. The fluorescence emission spectra of the native enzyme at 337 nm showed a red shift up to 16 nm in 8 M urea and 18 nm in the presence of 4 M GnHCl. Native enzyme during far-UV circular dichroism spectroscopy exhibited predominantly -sheet structure. The enzyme lost its secondary structure at urea concentrations of 2 M and higher, whereas the tertiary structure was minimally perturbed below 4 M urea. However, in 1 M GnHCl the enzyme lost both its secondary and tertiary structures and the enzyme was found to dissociate into monomers of 70 kDa. Both monomeric and dimeric species were observed after 24-h dialysis of the enzyme denatured with GnHCl indicating the reassociation process. Both monomer and dimers forms recovered after dialysis were active.  相似文献   

18.
【背景】玉米赤霉烯酮(zearalenone,ZEN)及其衍生物是一群具有雌激素活性的霉菌毒素,广泛存在于被霉菌污染的谷物中,造成食品业和畜牧业的巨大损失。利用专一性高的水解酶进行生物转化可有效去除玉米赤霉烯酮。【目的】构建高效表达玉米赤霉烯酮水解酶的酵母系统,以促进玉米赤霉烯酮水解酶的研究和工业应用。【方法】将来源于麦氏喙枝孢霉(RhinocladiellamackenzieiCBS650.93)的Rmzhd基因转入毕赤酵母中,筛选获得高效表达菌株,通过高效液相色谱分析发酵液中重组酶的性质。【结果】发酵液中Rm ZHD对ZEN的酶活力为16.67 U/m L,对α-ZOL的酶活力为9.85 U/m L。SDS-PAGE检测表达产物的分子量,与理论值30.7k D符合,且发酵上清液蛋白纯度高。Rm ZHD的最适p H值为9.6,最适温度为45°C,并具有较好的耐热性。【结论】研究结果为玉米赤霉烯酮水解酶的异源表达及其潜在的工业应用提供了一定的指导。  相似文献   

19.
耐碱性甘露聚糖酶基因的克隆及其在毕赤酵母中的表达   总被引:10,自引:2,他引:10  
通过功能平板从土壤中筛选得到含甘露聚糖酶基因的耐碱菌株。构建其基因组文库,从中筛选到甘露聚糖酶基因TM1并测序分析,用BLAST分析表明,TM1的氨基酸序列与其他在GenBank发表的甘露聚糖酶的氨基酸序列的同源性均低于60%,故确定其为一个新的甘露聚糖酶基因(GenBank登录号为AY623903)。将此基因去除信号肽后的编码序列克隆到表达载体pHBM905C上,得到重组质粒pHBM1201。经SalⅠ酶切后分别转化毕赤酵母(Pichiapastoris)KM71、GS115、SMD1168,得到分泌表达的重组毕赤酵母。挑选相对表达量最高的重组毕赤酵母SMD1168-3在摇瓶中诱导产酶,对该酶的粗酶进行酶学性质分析表明,其最适反应温度为55℃,最适PH值为7.5,以魔芋粉为底物所测得的最高酶活为41.8U,半衰期为1h,在80℃保温5min其酶活由最初酶活的77%下降到11%,温度下降到55℃后活性可恢复到最初酶活的60%以上。  相似文献   

20.
餐厨垃圾厌氧消化产沼气过程中酶学表征   总被引:3,自引:0,他引:3  
厌氧消化产沼气被认为是餐厨垃圾资源化利用的有效方式之一,其实质是在多种微生物综合作用下的生物化学过程.本文研究了在促进和抑制性因子作用下,餐厨垃圾厌氧发酵的酶学过程,对其中的脱氢酶和水解酶(β-葡萄糖苷酶,BAA-蛋白水解酶,碱性磷酸酶)活性变化进行了分析.研究表明,与空白对照组相比添加酵母粉后脱氢酶的最高活性提高了8...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号