首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environments co-contaminated with metals and organic compounds are difficult to remediate. Actinobacteria is an important group of microorganisms found in soils, with high metabolic versatility and potential for bioremediation. In this paper, actinobacteria were used to remediate soil co-contaminated with Cr(VI) and lindane. Five actinobacteria, tolerant to Cr(VI) and lindane mixture were selected: Streptomyces spp. A5, A11, M7, and MC1, and Amycolatopsis tucumanensis DSM 45259. Sterilized soil samples were inoculated with actinobacteria strains, either individually or as a consortium, and contaminated with Cr(VI) and lindane, either immediately or after 7 days of growth, and incubated at 30 °C during 14 days. All actinobacteria were able to grow and remove both contaminants, the consortium formed by Streptomyces spp. A5, M7, MC1, and A. tucumanensis showed the highest Cr(VI) removal, while Streptomyces sp. M7 produced the maximum lindane removal. In non-sterile soil samples, Streptomyces sp. M7 and the consortium removed more than 40% of the lindane, while Streptomyces sp. M7 demonstrated the greatest Cr(VI) removal. The most appropriate strategy for bioremediation of Cr(VI) and lindane co-contaminated soils would be the inoculation with Streptomyces sp. M7.  相似文献   

2.
Interactions of chromium with microorganisms and plants   总被引:24,自引:0,他引:24  
Chromium is a highly toxic non-essential metal for microorganisms and plants. Due to its widespread industrial use, chromium (Cr) has become a serious pollutant in diverse environmental settings. The hexavalent form of the metal, Cr(VI), is considered a more toxic species than the relatively innocuous and less mobile Cr(III) form. The presence of Cr in the environment has selected microbial and plant variants able to tolerate high levels of Cr compounds. The diverse Cr-resistance mechanisms displayed by microorganisms, and probably by plants, include biosorption, diminished accumulation, precipitation, reduction of Cr(VI) to Cr(III), and chromate efflux. Some of these systems have been proposed as potential biotechnological tools for the bioremediation of Cr pollution. In this review we summarize the interactions of bacteria, algae, fungi and plants with Cr and its compounds.  相似文献   

3.
The combined effect of phenanthrene and Cr(VI) on soil microbial activity, community composition and on the efficiency of bioremediation processes has been studied. Biometer flask systems and soil microcosm systems contaminated with 2,000 mg of phenanthrene per kg of dry soil and different Cr(VI) concentrations were investigated. Temperature, soil moisture and oxygen availability were controlled to support bioremediation. Cr(VI) inhibited the phenanthrene mineralization (CO2 production) and cultivable PAH degrading bacteria at levels of 500–2,600 mg kg−1. In the bioremediation experiments in soil microcosms the degradation of phenanthrene, the dehydrogenase activity and the increase in PAH degrading bacteria counts were retarded by the presence of Cr(VI) at all studied concentrations (25, 50 and 100 mg kg−1). These negative effects did not show a correlation with Cr(VI) concentration. Whereas the presence of Cr(VI) had a negative effect on the phenanthrene elimination rate, co-contamination with phenanthrene reduced the residual Cr(VI) concentration in the water exchangeable Cr(VI) fraction (WEF) in comparison with the soil microcosm contaminated only with Cr(VI). Clear differences were found between the denaturing gradient gel electrophoresis (DGGE) patterns of each soil microcosm, showing that the presence of different Cr(VI) concentrations did modulate the community response to phenanthrene and caused perdurable changes in the structure of the microbial soil community.  相似文献   

4.
铬(Chromium,Cr)是过渡金属元素,在自然界中以六价[CrO_4~(2-),Cr_2O_7~(2-),Cr(Ⅵ)]和三价[Cr(OH)_3,Cr(Ⅲ)]为主。很多微生物在长期铬胁迫的条件下,进化出了一系列铬转化和抗性机制。微生物对铬的转化包括Cr(Ⅵ)的还原和Cr(Ⅲ)的氧化。微生物的Cr(Ⅵ)还原可以将毒性强的六价铬转化为毒性弱或无毒的三价铬,这类微生物有较强的土壤和水体铬污染治理潜力。Cr(Ⅲ)的氧化也在铬的生物地球化学循环过程中起着至关重要的作用。除了Cr(Ⅵ)的还原,微生物对铬的抗性机制还有:(1)减少摄入;(2)外排;(3)清除胞内氧化压力;(4)DNA修复。本文主要介绍微生物的铬转化和抗性机制,以及其在铬污染生物修复中应用的最新研究进展。  相似文献   

5.
Qualitative and quantitative changes of microbial communities in soil microcosms during bioremediation were determined throughout one year. The soil was contaminated with 0%, 2.5%, 5%, 10% (wt/wt) of petrochemical sludge containing polynuclear aromatic hydrocarbons. We analyzed the hydrocarbon concentration in the microcosms, the number of cultivable bacteria using CFU and most probable number assays, the community structure using denaturing gradient gel electrophoresis, and the metabolic activity of soil using dehydrogenase activity and substrate-induced respiration assays. After one year of treatment, the chemical analysis suggested that the hydrocarbon elimination process was over. The biological analysis, however, showed that the contaminated microcosms suffered under long-term disturbance. The number of heterotrophic bacteria that increased after sludge addition (up to 10(8)-10(9) cells ml(-1)) has not returned to the level of the control soil (2-6 x 10(7) cells ml(-1)). The community structure in the contaminated soils differed considerably from that in the control. The substrate-induced respiration of the contaminated soils was significantly lower (approximately 10-fold) and the dehydrogenase activity was significantly higher (20-40-fold) compared to the control. Changes in the community structure of soils depended on the amount of added sludge. The species, which were predominant in the sludge community, could not be detected in the contaminated soils.  相似文献   

6.
Intensive agriculture is spectacularly successful since last couple of decades due to the inputs viz; fertilizers and pesticides along with high yielding varieties. The mandate for agriculture development was to feed and adequate nutrition supply to the expanding population by side the agriculture would be entering to into new area of commercial and export orientation. The attention of public health and proper utilization natural resources are also the main issues related with agriculture development. Concern for pesticide contamination in the environment in the current context of pesticide use has assumed great importance [1]. The fate of the pesticides in the soil environment in respect of pest control efficacy, non-target organism exposure and offsite mobility has been given due consideration [2]. Kinetics and pathways of degradation depend on abiotic and biotic factors [6], which are specific to a particular pesticide and therefore find preference. Adverse effect of pesticidal chemicals on soil microorganisms [3], may affect soil fertility [4] becomes a foreign chemicals major issue. Soil microorganisms show an early warning about soil disturbances by foreign chemicals than any other parameters. But the fate and behavior of these chemicals in soil ecosystem is very important since they are degraded by various factors and have the potential to be in the soil, water etc. So it is indispensable to monitor the persistence, degradation of pesticides in soil and is also necessary to study the effect of pesticide on the soil quality or soil health by in depth studies on soil microbial activity. The removal of metabolites or degraded products should be removed from soil and it has now a day’s primary concern to the environmentalist. Toxicity or the contamination of pesticides can be reduced by the bioremediation process which involves the uses of microbes or plants. Either they degrade or use the pesticides by various co metabolic processes.  相似文献   

7.
河北九莲城淖尔可培养放线菌多样性及抗菌活性筛选   总被引:1,自引:1,他引:0  
【目的】勘探干涸的九莲城淖尔土壤放线菌多样性并进行活性筛选,以期发现药用微生物资源,为新抗生素的发现奠定基础。【方法】采用15种分离培养基,以稀释涂布法分离放线菌;根据分离菌株的16S rRNA基因序列同源性分析放线菌多样性;发酵液经乙酸乙酯萃取,菌丝体经丙酮浸提,获得提取浓缩物样品;样品通过纸片扩散法进行抗菌活性初筛;抗菌阳性菌株采用PCR技术进行Ⅰ型聚酮合酶(PKS I)KS域、Ⅱ型聚酮合酶(PKS II)KS域和非核糖体多肽合成酶(NRPS)A结构域抗生素生物合成基因的检测。【结果】从11份盐湖土壤样品中分离纯化到251株放线菌,其分布于放线菌纲的10个目15个科31个属,其中优势菌属为链霉菌属和拟诺卡氏菌属;251株放线菌中包括57株耐(嗜)盐放线菌,其优势菌属为拟诺卡氏菌属(22株)和涅斯捷连科氏菌属(15株)。基于16S r RNA基因序列的系统发育分析显示,菌株J11Y309为糖霉菌科潜在新属,菌株J12GA03为分枝杆菌科潜在新种。96株放线菌活性检测结果显示,56株至少对1株检定菌具有抗菌活性,阳性率为58.3%;56株有活性的放线菌中,47株至少含有1种抗生素生物合成基因,其中17株同时具有3种抗生素生物合成基因。【结论】干涸的九莲城淖尔土壤中含有较为丰富的药用放线菌资源,具有从中发现放线菌新物种和新抗生素的潜力。  相似文献   

8.
A critical environmental impact of the petroleum industry is the spillage of oil and related products that causes severe soil contamination. Although biodegradation of petroleum hydrocarbons may be successfully conducted under controlled conditions, the bioremediation of large volumes of contaminated soils still presents some technical challenges, particularly when contamination occurs in soils of high clay content. The main objective of this work is to evaluate the bioremediation of petroleum-contaminated clay-soil by fixed bed experiments. They were conducted in agreement with the full factorial experimental design 23. The processes employed were shown to be highly effective in decontaminating the soil, achieving removal rates of around 80%. The model chosen to represent the bioremediation process provided satisfactory results. The values calculated by the model were consistent with the experimental results.  相似文献   

9.
Soil containing hexachlorocyclohexane (HCH) was spiked with 14C--HCH and then subjected to bioremediation in bench-scale microcosms to determine the rate and extent of mineralization of the 14C-labeled HCH to 14CO2. The soil was treated using two different DARAMEND amendments, D6386 and D6390. The amendments were previously found to enhance natural HCH bioremediation as determined by measuring the disappearance of parent compounds under either strictly oxic conditions (D6386), or cycled anoxic/oxic conditions (D6390). Within 80 days of the initiation of treatment, mineralization was observed in all of the strictly oxic microcosms. However, mineralization was negligible in the cycled anoxic/oxic microcosms throughout the 275-day study, even after cycling was ceased at 84 days and although significant removal (up to 51%) of indigenous -HCH (146 mg/kg) was detected by GC with electron capture detector. Of the amended, strictly oxic treatments, only one, in which 47% of the spiked 14C-HCH was recovered as 14CO2, enhanced mineralization compared with an unamended treatment (in which 34% recovery was measured). Other oxic treatments involving higher amendment application rates or auxiliary carbon sources were inhibitory to mineralization. Thus, although HCH degradation occurs during the application of either oxic or cycled anoxic/oxic DARAMEND treatments, mineralization of -HCH may be inhibited depending on the amendment and treatment protocol.  相似文献   

10.
植物法生物修复PAHs和矿物油污染土壤的调控研究   总被引:62,自引:7,他引:62  
选择苜蓿草为供试植物,以污染物含量水平、专性细菌和真菌及有机肥为调控因子,进行了植物法生物修复多环芳烃(PAHs)和矿物油污染土壤的调控研究。结果表明,PAHs和矿物油的降解率与有机肥含量呈正相关,增加有机肥5%,可提高矿物油降解率17.6%~25.6%,PAHs降解率9%.在植物存在条件下,土壤微生物降解功能增强。多环芳烃总量的平均降解率比无植物对照土壤提高2.0%~4.7%.投加特性降解真菌可不同程度地提高土壤PAHs总量和矿物油的降解率。真菌对萤蒽、芘和苯(a)蒽/(艹屈)的降解有明显促进作用。而细菌能明显提高苊稀/芴、蒽和苯(a)萤蒽/苯(k)萤蒽的降解率。  相似文献   

11.
Different bioremediation techniques (natural attenuation, biostimulation and bioaugmentation) in contaminated soils with two oily sludge concentrations (1.5% and 6.0%) in open and closed microcosms systems were assessed during 90 days. The results showed that the highest biodegradation rates were obtained in contaminated soils with 6% in closed microcosms. Addition of microbial consortium and nutrients in different concentrations demonstrated higher biodegradation rate of total petroleum hydrocarbons (TPH) than those of the natural attenuation treatment. Soils treated in closed microcosms showed highest removal rate (84.1 ± 0.9%) when contaminated at 6% and bacterial consortium and nutrients in low amounts were added. In open microcosms, the soil contaminated at 6% using biostimulation with the highest amounts of nutrients (C:N:P of 100:10:1) presented the highest degradation rate (78.7 ± 1.3%). These results demonstrate that the application of microbial consortium and nutrients favored biodegradation of TPH present in oily sludge, indicating their potential applications for treatment of the soils impacted with this important hazardous waste.  相似文献   

12.
放线菌属由于能够产生一系列结构复杂的生物活性物质而受到广泛关注, 这些活性代谢产物的大规模发酵生产在医药、农业等领域的应用中起着重要的作用。本文综述了近年来放线菌次级代谢产物产业化研究的一些新进展, 包括菌株的改造、生物过程优化和控制以及发酵放大技术, 并对这些方法和技术进行了讨论。  相似文献   

13.
Inorganic cyanide and nitrile compounds are distributed widely in the environment, chiefly as a result of anthropogenic activity but also through cyanide synthesis by a range of organisms including higher plants, fungi and bacteria. The major source of cyanide in soil and water is through the discharge of effluents containing a variety of inorganic cyanide and nitriles. Here the fate of cyanide compounds in soil and water is reviewed, identifying those factors that affect their persistence and which determine whether they are amenable to biological degradation. The exploitation of cyanides by a variety of taxa, as a mechanism to avoid predation or to inhibit competitors has led to the evolution in many organisms of enzymes that catalyse degradation of a range of cyanide compounds. Microorganisms expressing pathways involved in cyanide degradation are briefly reviewed and the current applications of bacteria and fungi in the biodegradation of cyanide contamination in the field are discussed. Finally, recent advances that offer an insight into the potential of microbial systems for the bioremediation of cyanide compounds under a range of environmental conditions are identified, and the future potential of these technologies for the treatment of cyanide pollution is discussed.  相似文献   

14.
Abstract

Liposomes (composed of soy phosphatides) in the form of small unilamellar vesicles (SUV), when added to soil contaminated by crude oil, accelerate bioremediation. After three weeks incubation at 30°C, using soil experimentally contaminated (with 10,000 ppm crude oil), level of bioremediation increased from 40% without SUV to 75% with SUV (0.1 wt% phospholipids per dry weight soil). Similarly, for accidentally contaminated soil (with ~17,000 ppm crude oil), addition of 0.1 wt% SUV to the soil increased the bioremediation level from 55 to 80%. The enhancing effect of liposomes is explained by two interrelated phenomena: a large increase both in total bacteria number and in diversity of bacterial species in the soil. Comparison after four weeks revealed 21 bacterial species in the presence of liposomes (many being oil-degrading bacterial species) and only nine species in the absence of liposomes. Both effects may be related to the physical effects of liposome phospholipids, which modify the crude oil by wetting it, thereby making it more accessible to the microorganisms. In addition, liposome phospholipids serve as phosphate and nitrogen sources for the bacteria.  相似文献   

15.
16.
Pesticides residues in soils and on vegetables are a public safety concern. Pretreatment with microorganisms degrading pesticides has the potential to alleviate the conditions. For this purpose, the degradation characteristics of chlorpyrifos by an isolated fungal strain Verticillium sp. DSP in pure cultures, soil, and on pakchoi (Brassica chinensis L.) were investigated. Degradation rate of chlorpyrifos in the mineral salts medium was proportional to the concentrations of chlorpyrifos ranging from 1 to 100 mg l−1. The rate of degradation for chlorpyrifos (1 mg l−1) in the mineral salts medium was 1.12 and 1.04 times faster at pH 7.0 than those at pHs 5.0 and 9.0, and the degradation at 35 °C was 1.15 and 1.12 times faster, respectively, than those at 15 and 20 °C. The addition of the fungal strain DSP into the contaminated soils was found to significantly increase the degradation of chlorpyrifos. Degradation rates of chlorpyrifos in inoculated soils were 3.61, 1.50 and 1.10 times faster in comparison with the sterilized soil, previously chlorpyrifos-untreated soil, and previously chlorpyrifos-treated soil under laboratory conditions. In contrast to the controls, the half-lives of chlorpyrifos were significantly shortened by 10.9% and 17.6% on treated pakchoi, 12.0% and 37.1% in inoculated soils, respectively, in the greenhouse and open field. The results indicate that the fungal strain DSP can be used successfully for the removal or detoxification of chlorpyrifos residues in/on contaminated soil and vegetable.  相似文献   

17.
Rpf protein, a kind of resuscitation promoting factor, was first found in the culture supernatant of Micrococcus luteus. It can resuscitate the growth of M. luteus in “viable but non-culture, VBNC” state and promote the growth of Gram-positive bacteria with high G + C content. This paper investigates the resuscitating activity of M. luteus ACCC 41016T Rpf protein, which was heterologously expressed in E. coli, to cells of M. luteus ACCC 41016T and Rhodococcus marinonascens HBUM200062 in VBNC state, and examines the effect on the cultivation of actinobacteria in soil. The results showed that the recombinant Rpf protein had resuscitation effect on M. luteus ACCC 41016T and R. marinonascens HBUM200062 in VBNC state. 83 strains of actinobacteria, which were distributed in 9 families and 12 genera, were isolated from the experimental group with recombinant Rpf protein in the culture medium. A total of 41 strains of bacteria, which were distributed in 8 families and 9 genera, were isolated from the control group without Rpf protein. The experimental group showed richer species diversity than the control group. Two rare actinobacteria, namely HBUM206391T and HBUM206404T, were obtained in the experimental group supplemented with Rpf protein. Both may be potential new species of Actinomadura and Actinokineospora, indicating that the recombinant expression of M. luteus ACCC 41016T Rpf protein can effectively promote the isolation and culture of actinobacteria in soil.  相似文献   

18.
Estimating and comparing the diversity of marine actinobacteria   总被引:4,自引:0,他引:4  
This paper reviews the application of species richness estimators to microbial diversity data and describes phylogenetic approaches to comparing microbial communities. The techniques are demonstrated using a community of marine actinobacteria. Results demonstrate that marine environments harbour massive actinobacterial diversity. Furthermore, these predictions are likely to be severe underestimates due to the use of arbitrary OTU definitions.  相似文献   

19.
The efficacy of indigenous microorganisms to degrade diesel oil in contaminated mainland sites in Singapore was investigated. A semi‐scale trial was made by spiking topsoil with 6 % [w/w] of diesel oil. The results indicated that in the presence of NPK commercial (Rosasol®) fertilizer a 53 % reduction in contaminant concentration was recorded after 60 days compared to untreated controls while the addition of a mixture of urea and K2HPO4 effected a 48 % reduction in the Total Recoverable Petroleum Hydrocarbons. A commercial culture and an enriched/isolated microbial association proved to be the least effective with 25 and 9 % reductions, respectively. The results confirmed the bioremediation potential of indigenous microorganisms for diesel‐oil contaminated mainland soil. Identification of the persistent compounds was done and perceived as a tool in decision‐making on strategies for speeding up of the degradation process to achieve clean‐up standards in shorter remediation periods.  相似文献   

20.
Biodegradation is a natural process, where the degradation of a xenobiotic chemical or pesticide by an organism is primarily a strategy for their own survival. Most of these microbes work in natural environment but some modifications can be brought about to encourage the organisms to degrade the pesticide at a faster rate in a limited time frame. This capability of microbe is some times utilized as technology for removal of contaminant from actual site. Knowledge of physiology, biochemistry and genetics of the desired microbe may further enhance the microbial process to achieve bioremediation with precision and with limited or no scope for uncertainty and variability in microbe functioning. Gene encoding for enzyme has been identified for several pesticides, which will provide a new inputs in understanding the microbial capability to degrade a pesticide and develop a super strain to achieve the desired result of bioremediation in a short time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号